
ProtectToolkit 5.9.1
PTK-J

REFERENCE GUIDE



Document Information

Last Updated 2025-09-15 18:17:07-05:00

Trademarks, Copyrights, and Third-Party Software
Copyright 2009-2025 Thales Group. All rights reserved. Thales and the Thales logo are trademarks and service
marks of Thales Group and/or its subsidiaries and are registered in certain countries. All other trademarks and
service marks, whether registered or not in specific countries, are the property of their respective owners.

Disclaimer
All information herein is either public information or is the property of and owned solely by Thales Group and/or
its subsidiaries who shall have and keep the sole right to file patent applications or any other kind of intellectual
property protection in connection with such information.

Nothing herein shall be construed as implying or granting to you any rights, by license, grant or otherwise, under
any intellectual and/or industrial property rights of or concerning any of Thales Group’s information.

This document can be used for informational, non-commercial, internal, and personal use only provided that:

> The copyright notice, the confidentiality and proprietary legend and this full warning notice appear in all
copies.

> This document shall not be posted on any publicly accessible network computer or broadcast in any media,
and no modification of any part of this document shall be made.

Use for any other purpose is expressly prohibited and may result in severe civil and criminal liabilities.

The information contained in this document is provided “AS IS” without any warranty of any kind. Unless
otherwise expressly agreed in writing, Thales Group makes no warranty as to the value or accuracy of
information contained herein.

The document could include technical inaccuracies or typographical errors. Changes are periodically added to
the information herein. Furthermore, Thales reserves the right to make any change or improvement in the
specifications data, information, and the like described herein, at any time.

Thales Group hereby disclaims all warranties and conditions with regard to the information contained herein,
including all implied warranties of merchantability, fitness for a particular purpose, title and non-infringement. In
no event shall Thales Group be liable, whether in contract, tort or otherwise, for any indirect, special or
consequential damages or any damages whatsoever including but not limited to damages resulting from loss of
use, data, profits, revenues, or customers, arising out of or in connection with the use or performance of
information contained in this document.

Thales Group does not and shall not warrant that this product will be resistant to all possible attacks and shall not
incur, and disclaims, any liability in this respect. Even if each product is compliant with current security standards
in force on the date of their design, security mechanisms' resistance necessarily evolves according to the state of
the art in security and notably under the emergence of new attacks. Under no circumstances, shall Thales
Group be held liable for any third party actions and in particular in case of any successful attack against systems
or equipment incorporating Thales products. Thales Group disclaims any liability with respect to security for
direct, indirect, incidental or consequential damages that result from any use of its products. It is further stressed

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 2



that independent testing and verification by the person using the product is particularly encouraged, especially in
any application in which defective, incorrect or insecure functioning could result in damage to persons or
property, denial of service, or loss of privacy.

All intellectual property is protected by copyright. All trademarks and product names used or referred to are the
copyright of their respective owners. No part of this document may be reproduced, stored in a retrieval system or
transmitted in any form or by any means, electronic, mechanical, chemical, photocopy, recording or otherwise
without the prior written permission of Thales Group.

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 3



CONTENTS

Preface: About the ProtectToolkit-J Reference Guide 10
Document Conventions 10
Support Contacts 12

Chapter 1: Product Overview 13
Working With Slots 14
Resource Management 14
The Software 15

Chapter 2: JCA/JCE API Overview 16
Encryption/Decryption 16
The Cipher Class 16
Cipher Input and Output Streams 17
SealedObject 18
Algorithm Parameters 19

Message Digests 20
Message Authentication Code (MAC) 20
Authentication 21
Digital Signatures 21
Object Signing 23

Key Management 24
Generating Random Keys 24
Key Conversion 25
Key Agreement Protocols 27
Key Storage 27
Certificates 29

Error Handling and Exceptions 29

Chapter 3: Supported Ciphers 31
Cipher Algorithm Parameters 32
DES 33
DES Cipher Initialization 33
DES Key 33
DES KeyGenerator 34
DES SecretKeyFactory 34
DES Example Code 34

DESede 36
DESede Cipher Initialization 36
DESede Key 36
DESede KeyGenerator 37

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 4



DESede SecretKeyFactory 37
DESede Example Code 38

AES 39
AES Cipher Initialization 39
AES Key 39
AES KeyGenerator 40
AES SecretKeyFactory 40
AES Example Code 40

IDEA 41
IDEA Cipher Initialization 41
IDEA Key 41
IDEA KeyGenerator 42
IDEA SecretKeyFactory 42
IDEA Example Code 42

CAST128 43
CAST128 Cipher Initialization 43
CAST128 Key 43
CAST128 KeyGenerator 44
CAST128 SecretKeyFactory 44
CAST128 Example Code 44

RC2 45
RC2 Cipher Initialization 45
RC2 Key 45
RC2 KeyGenerator 46
RC2 SecretKeyFactory 46
RC2 Example Code 46

RC4 48
RC4 Cipher Initialization 48
RC4 Key 48
RC4 KeyGenerator 48
RC4 SecretKeyFactory 49
RC4 Example Code 49
PBE Ciphers 49
PBE Key 50
PBE Example Code 50

RSA 52
RSA Cipher Initialization 52
RSA Key 52
RSA KeyFactory 53
RSA Example Code 54

Chapter 4: Supported Signature Algorithms 55
MD2withRSA 55
MD5withRSA 56
SHA1withRSA 56
SHA224withRSA 56
SHA256withRSA 56

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 5



SHA384withRSA 56
SHA512withRSA 57
SHA1withDSA 57
DSA Key 57
DSA KeyGenerator 57
DSA Example Code 58

PKCS#1RSA 58
X.509RSA 59
DSARaw 59
RIPEMD128withRSA 59
RIPEMD160withRSA 59

Chapter 5: Supported MAC Algorithms 60
DESMAC 60
DESede MAC 60
DESedeX919 MAC 60
IDEA MAC 61
CAST128 MAC 61
RC2 61
HMAC/MD2 61
HMAC/MD5 61
HMAC/SHA1 61
HMAC/SHA224 62
HMAC/SHA256 62
HMAC/SHA384 62
HMAC/SHA512 62
Sample MAC Code 62

Chapter 6: Supported Message Digest Algorithms 64
MD2 64
MD5 64
SHA-1 65
SHA-224 65
SHA-256 65
SHA-384 65
SHA-512 65
RIPEMD128 66
RIPEMD160 66

Chapter 7: Key Management Utility (KMU) Reference 67
Compatibility Issues 68
Main KMU Interface 68
Token and Key Selection 69
Toolbar Buttons 69
Retrieving Information about a Token 70

Logging Into and Out From Tokens 70
Creating Keys 71

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 6



Available Keys 72
Key Attribute Types 72
Creating a Random Secret Key 73
Creating a Random Key Pair 74
Creating Key Components 76
Entering a Key from Components 78

Editing Key Attributes 79
Deleting a Key 80
Display Key Check Value 80
Importing and Exporting Keys 80
Exporting Keys 81
Importing Keys 84

Key Backup Feature Tutorial 87
Key Definitions 88
Creation of Encrypted Key Set to Backup (Payload) 88
Backup to File 88
Backup to Smart Card - Single Custodian Mode 89
Backup to Smart Card - Multiple Custodian Mode 90

Chapter 8: Administration Utility (gCTAdmin) Reference 92
Logging In and Out 92
Main gCTAdmin Interface 93
Toolbar Buttons 93

Slot and Token Management 94
Creating Slots 94
Removing Slots 94
Initializing a Token 95
Setting the Token User PIN 96
Setting the Token SO PIN 96
Resetting a Token 97

HSMManagement 97
Setting the Security Policy 97
Setting the Transport Mode 98
Clock Drift Correction 99
Viewing and Purging the System Event Log 99
Updating HSM Firmware 100
Tampering the HSM 101

Chapter 9: KMU Key Check Value (KCV) Calculation 102
Single-length Key KCV 102
Double-length Key KCV 102

Chapter 10: Key Generation 104
Secret Keys 104
Public Keys 105
RSA Keys 105
DSA Keys 105

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 7



Diffie-Hellman Keys 105
KeyAgreement Protocols 106
Diffie-Hellman KeyAgreement 106
Xor Key Derive 106

Chapter 11: Key Management 108
Key Storage 108
KeyWrapping 109
Key Specifications 110
AsciiEncodedKeySpec 110
CASTKeySpec 111
IDEAKeySpec 111
RC2KeySpec 111
RC4KeySpec 111
AESKeySpec 111

Chapter 12: Best Practice Guidelines 112
ProtectToolkit-J Provider 112
Key Protection 112
General ProtectToolkit-J Usage Guidelines 112

Appendix A: JCA/JCE API Tutorial 114
Public Key Cryptography 114
FileCrypt Application 115
File Encryption 115
Step 1 - Generate a Random Session Key 116
Step 2 - Encrypt the Session Key 116
Step 3 - Create and Initialize the Bulk Cipher 117
Step 4 - Encode Algorithm Parameters 117
Step 5 - Initialize the MAC Algorithm 117
Step 6 - Process the Input File 117
Step 7 - Create the Encrypted Output 118

File Decryption 120
Step 1 - Decrypt the session key 120
Step 2 - Initialize the Bulk Cipher 120
Step 3 - Initialize the MAC Algorithm 121
Step 4 - Process the encrypted input 121
Step 5 - Verify the MAC 122
Step 6 - Write out the decrypted result 122

Accessing Public Keys 124
Creating the KeyStore 124
Retrieving the Public Key 124
Retrieving the Private Key 124

Main() 124

Appendix B: Random Number Generation 127

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 8



Appendix C: References 128

Glossary 129

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 9



PREFACE: About the ProtectToolkit-J
Reference Guide

This document provides reference material for Java software developers using ProtectToolkit-J. It contains the
following chapters:

> "Product Overview" on page 13

> "JCA/JCE API Overview" on page 16

> "Supported Ciphers" on page 31

> "Supported Signature Algorithms" on page 55

> "Supported MAC Algorithms" on page 60

> "Supported Message Digest Algorithms" on page 64

> "Key Generation" on page 104

> "Key Management" on page 108

> "Best Practice Guidelines" on page 112

> "JCA/JCE API Tutorial" on page 114

> "Random Number Generation" on page 127

> "References" on page 128

This preface also includes the following information about this document:

> "Document Conventions" below

> "Support Contacts" on page 12

For information regarding the document status and revision history, see "Document Information" on page 2.

Document Conventions
This document uses standard conventions for describing the user interface and for alerting you to important
information.

Notes
Notes are used to alert you to important or helpful information. They use the following format:

NOTE Take note. Contains important or helpful information.

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 10



Preface:   About the ProtectToolkit-J Reference Guide

Cautions
Cautions are used to alert you to important information that may help prevent unexpected results or data loss.
They use the following format:

CAUTION! Exercise caution. Contains important information that may help prevent
unexpected results or data loss.

Warnings
Warnings are used to alert you to the potential for catastrophic data loss or personal injury. They use the
following format:

**WARNING** Be extremely careful and obey all safety and security measures. In this
situation you might do something that could result in catastrophic data loss or
personal injury.

Command Syntax and Typeface Conventions

Format Convention

bold The bold attribute is used to indicate the following:
> Command-line commands and options (Type dir /p.)
> Button names (Click Save As.)
> Check box and radio button names (Select the Print Duplex check box.)
> Dialog box titles (On the Protect Document dialog box, click Yes.)
> Field names (User Name: Enter the name of the user.)
> Menu names (On the Filemenu, click Save.) (ClickMenu > Go To > Folders.)
> User input (In the Date box, type April 1.)

italics In type, the italic attribute is used for emphasis or cross-references to other documents in this
documentation set.

<variable> In command descriptions, angle brackets represent variables. You must substitute a value for
command line arguments that are enclosed in angle brackets.

[optional]
[<optional>]

Represent optional keywords or <variables> in a command line description. Optionally enter
the keyword or <variable> that is enclosed in square brackets, if it is necessary or desirable to
complete the task.

{a|b|c}
{<a>|<b>|<c>}

Represent required alternate keywords or <variables> in a command line description. You
must choose one command line argument enclosed within the braces. Choices are separated
by vertical (OR) bars.

[a|b|c]
[<a>|<b>|<c>]

Represent optional alternate keywords or variables in a command line description. Choose
one command line argument enclosed within the braces, if desired. Choices are separated by
vertical (OR) bars.

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 11



Preface:   About the ProtectToolkit-J Reference Guide

Support Contacts
If you encounter a problem while installing, registering, or operating this product, please refer to the
documentation before contacting support. If you cannot resolve the issue, contact your supplier or Thales
Customer Support.

Thales Customer Support operates 24 hours a day, 7 days a week. Your level of access to this service is
governed by the support plan arrangements made between Thales and your organization. Please consult this
support plan for further information about your entitlements, including the hours when telephone support is
available to you.

Customer Support Portal
The Customer Support Portal, at https://supportportal.thalesgroup.com, is where you can find solutions for most
common problems. The Customer Support Portal is a comprehensive, fully searchable database of support
resources, including software and firmware downloads, release notes listing known problems and workarounds,
a knowledge base, FAQs, product documentation, technical notes, and more. You can also use the portal to
create and manage support cases.

NOTE You require an account to access the Customer Support Portal. To create a new
account, go to the portal and click on the REGISTER link.

Telephone
The support portal also lists telephone numbers for voice contact (Contact Us).

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 12

https://supportportal.thalesgroup.com/csm
https://supportportal.thalesgroup.com/csm
https://supportportal.thalesgroup.com/
https://supportportal.thalesgroup.com/csm?id=kb_article_view&sys_kb_id=42fb71b4db1be200fe0aff3dbf96199f&sysparm_article=KB0013367


CHAPTER 1: Product Overview

ProtectToolkit-J is a Cryptographic Service Provider for the Java Cryptographic Architecture (JCA) / Java
Cryptographic Extension (JCE) interface. ProtectToolkit-J implements a number of cryptographic algorithms that
are supported by SafeNet’s hardware encryption devices. These devices support encryption, signature
generation and verification, message digests, key storage and message authentication. ProtectToolkit-J also
includes a clean-room implementation of the JCA/JCE framework, allowing for immediate use with Java
6.x/7.x/8.x/9.x/10.x/11.x.

This document assumes some knowledge of the Java programming language, the JCA/JCE application
programming interfaces, and some understanding of the underlying adapter interface, which is based on
PKCS#11 (Cryptoki). See the ProtectToolkit-C Administration Guide for more information on Cryptoki. For
general information on the JCA/JCE, consult:

> "JCA/JCE API Overview" on page 16

> "JCA/JCE API Tutorial" on page 114

> JCA reference material found at http://docs.oracle.com/

This document does not discuss the security properties of the various algorithms in general; please consult the
standard cryptography texts for this information.

ProtectToolkit-J is known to the JCA/JCE by the provider name SAFENET. To request an algorithm
implemented by this provider, the string "SAFENET" should be passed to the getInstance()method.

ProtectToolkit-J is SafeNet’s Java Cryptographic Architecture (JCA) / Java Cryptographic Extension (JCE)
provider. It allows Cryptographic processing using the Java development language. It requires that
ProtectToolkit-C Runtime and an appropriate access provider are installed.

The ProtectToolkit-C Runtime package is
needed to perform Cryptoki (PKCS#11)
processing. The ProtectToolkit-C hardware
runtime needs an access provider. There are
two access provider install packages in order to
operate the runtime in a local PCIe bus or
network attached remote server arrangement.

The ProtectToolkit-C Software Development Kit (SDK) is
needed to develop applications using PKCS#11 processing.
The ProtectToolkit-C SDK includes the ProtectToolkit-C
runtime as well as a software emulation that does not require
any access providers.
Refer to ProtectToolkit Software Installation in the
ProtectServer HSM and ProtectToolkit Installation Guide for
instructions on how to install this SDK.

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 13

http://docs.oracle.com/
../../../../../../Content/Install/PTK_Install/PTK_Install.htm


Chapter 1:   Product Overview

Hardware
The hardware version
of ProtectToolkit-C
requires a
ProtectServer HSM.
Refer to the
ProtectServer
HSM and
ProtectToolkit
Installation Guide for
instructions on how to
install the adapter
and the runtime or
SDK package.

Software
The software-only version of ProtectToolkit-
C requires a compatible PC, and would
primarily be used in a development or
testing environment.
Refer to ProtectToolkit Software Installation
in the ProtectServer HSM and
ProtectToolkit Installation Guide for
instructions on how to install the software-
only version of the SDK package.

Remote Client/Server
This version of ProtectToolkit-C requires a
TCP/IP network with one or more machines
and a server. ProtectToolkit-C processing is
performed by the server at the request of the
client. The server must be running the
runtime package or the hardware version of
the SDK package.

Working With Slots
ProtectToolkit-J is capable of interfacing to multiple adapters. This is achieved by using different “virtual
providers” which map to each adapter. The virtual providers are named SAFENET.n, where n is the slot number
as configured with the ProtectToolkit-C runtime tools. The special provider SAFENET always maps to the first
slot.

A provider class exists (SAFENETProvider) for each of the slots in the package
au.com.safenet.crypto.provider.slot<n>. These providers may be statically installed. Alternatively, they may
be added dynamically by calling the SAFENETProvider.addProviders()method.

Resource Management
Resource management is an important consideration when using the SafeNet provider. In general, creation of a
provider instance (a Cipher object or Key object, for example) consumes resources within the adapter. This
consumption is less than that of the main JVM and so the garbage collection is not tuned to its needs. The
application programmer must therefore manage collection.

Two main techniques may be employed:

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 14

../../../../../../Content/Install/PTK_Install/PTK_Install.htm


Chapter 1:   Product Overview

> Explicitly track resource usage, invoking garbage collector on certain thresholds. For example, after the
creation of 100 “session” Key objects, which are only required for a short transaction and then discarded, it
may be necessary to run the garbage collector to clean up those unused instances.

> The second technique requires some tuning of the Cryptoki configuration on the adapter. If ProtectToolkit-J
cannot create a new “session” with the adapter it invokes the garbage collection (in the hope that there are
some old unused sessions awaiting cleanup). By reducing the maximum number of sessions allowed by the
adapter, the adapter may be tuned to the application's requirements so that explicit resource management is
not required.

The Software
The latest versions of the client software and HSM firmware can be found on the Thales Technical Support
Customer Portal. See "Support Contacts" on page 12 for more information. The following ProtectToolkit-J
packages can be found in the installation package:

Package Windows UNIX

ProtectToolkit-J Runtime PTKjprt.msi PTKjprov

ProtectToolkit-J SDK PTKjpsdk.msi PTKjpsdk

The ProtectToolkit-J Runtime includes the necessary shared libraries required to interface to the
ProtectToolkit-C Runtime, as well as the Java class libraries that implement the JCE specification and the
ProtectToolkit-J provider.

For instructions on ProtectToolkit-C Runtime installation and ProtectToolkit 5.9.1 system requirements, please
refer to ProtectToolkit Software Installation in the ProtectServer HSM and ProtectToolkit Installation Guide..

The ProtectToolkit-J SDK is provided as a software development platform.

NOTE If you will be using larger key sizes or non-FIPS algorithms, install the JCE Unlimited
Strength Jurisdiction Policy Files patch. They are available for download on the Oracle website
(http://www.oracle.com/technetwork/java/javase/downloads/jce-7-download-432124.html).

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 15

../../../../../../Content/Install/PTK_Install/PTK_Install.htm
http://www.oracle.com/technetwork/java/javase/downloads/jce-7-download-432124.html


CHAPTER 2: JCA/JCE API Overview

The purpose of this appendix is to provide an introduction to the Java APIs that provide security and
cryptographic services. These are known as the Java Cryptography Architecture (JCA) and Java Cryptography
Extensions (JCE).

While reading this document, it is suggested you have both the JCA/JCE API documentation at hand. The JCA
documentation can be found in the Java release or online at: http://docs.oracle.com/

JCE documentation is currently available at http://docs.oracle.com/.

Finally, ProtectToolkit-J includes a detailed reference manual detailing the specific algorithms included, and the
various parameters they accept.  It also includes some extensions to the base JCA/JCE API.

This document assumes the reader is familiar with the Java programming language. It contains the following
chapters:

> "Encryption/Decryption" below

> "Message Digests" on page 20

> "Message Authentication Code (MAC)" on page 20

> "Authentication" on page 21

> "Key Management" on page 24

> "Error Handling and Exceptions" on page 29

Encryption/Decryption
The JCE supports encryption and decryption using symmetric algorithms (such as DES and RC4) and
asymmetric algorithms (such as RSA and ElGamal). The algorithms may be stream or block ciphers, with each
algorithm supporting different modes, padding or even algorithm-specific parameters.

This section details the following:

> "The Cipher Class" below

> "Cipher Input and Output Streams" on the next page

> "SealedObject" on page 18

> "Algorithm Parameters" on page 19

The Cipher Class
The basic interface used to encipher or decipher data is the javax.crypto.Cipher class. The class provides the
necessary mechanism for encrypting and decrypting data using arbitrary algorithms from any of the installed
providers.

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 16

http://docs.oracle.com/
http://docs.oracle.com/


Chapter 2:   JCA/JCE API Overview

To create a Cipher instance, use one of the Cipher.getInstance()methods. This method will accept a
transformation string and an optional provider name. The transformation string is used to specify the encryption
algorithm as well as the cipher mode and padding. The transformation is specified in the form:

> "algorithm"

> "algorithm/mode/padding"

In the first instance, we are requesting the algorithm with its default mode and padding mechanism. The second
instance fully qualifies all options. For a list of support algorithms consult the provider's documentation. Some
common transformations are:

> "RC4"

> "DES/CBC/PKCS5Padding"

> "RSA/ECB/PKCS1Padding"

The following code will create a cipher for performing RC4 encryption or decryption, a cipher for doing RSA in
ECBmode with PKCS#1 padding provided by the ABA provider and a cipher for performing DESede
encryption/decryption in CBCmode with PKCS#5 padding:
Cipher rc4Cipher = Cipher.getInstance("RC4");
Cipher rsaCipher = Cipher.getInstance("RSA/ECB/PKCS1Padding");
Cipher desEdeCipher =

Cipher.getInstance("DESede/CBC/PKCS5Padding");
Once we have a Cipher instance, we will need to initialize the Cipher for encryption or decryption. We will also
need to provide a Key (see "Key Management" on page 24).
Key desKey, rsaKey;

desCipher.init(Cipher.ENCRYPT_MODE, desKey);
rsaCipher.init(Cipher.DECRYPT_MODE, rsaKey);
As you can see, the first value passed to the Cipher.init()method indicates whether we are initializing for
encryption or decryption. The second argument provides the key to use during encryption or decryption.

There are a number of other initialization methods for providing algorithm specific parameters (such as
Initialization Vectors, the number of rounds to use etc.). See "Algorithm Parameters" on page 19 for more
information.

Now that our Cipher is initialized, we can start processing data. To do so we use the Cipher.update() and
Cipher.doFinal()methods. The Cipher.update()methods may be used to incrementally process data. Once all
the data is processed, one of the Cipher.doFinal()methods must be called.
In the simplest usage, a single Cipher.doFinal() call may be passed all the data:

byte[] plainText = "hello world".getBytes();
byte[] cipherText = desCipher.doFinal(plainText);

Once the Cipher.doFinal()method has been called, the Cipher instance will be reset to the state it was in after
the last call to the Cipher.init()method. That means the Cipher may be reused to encipher or decipher more
data using the same Key and parameters that were specified in the initialization.

Cipher Input and Output Streams
Rather than deal with the complications of buffering enciphered or deciphered data produced by the
Cipher.update()methods, it may be desirable to use a Java Input/Output Stream type interface. Fortunately, the
JCE provides such a mechanism.

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 17



Chapter 2:   JCA/JCE API Overview

The javax.crypto.CipherInputStream and javax.crypto.CipherOutputStream are based on the Java IO filter
streams. This allows them to process data and pass on that data to an underlying stream.

To create a cipher stream, firstly create and initialize a javax.crypto.Cipher instance and the underlying stream
and then instantiate the required stream type with these two arguments.

For example, the following code fragment will create a CipherOutputStream that will encipher its data (using
DES) and pass the result to a ByteArrayOutputStream. We can access the ciphertext by calling
ByteArrayOutputStream.toByteArray().

Key desKey;
Cipher cipher = Cipher.getInstance("DES");
cipher.init(Cipher.ENCRYPT_MODE, desKey);

ByteArrayOutputStream bout = new ByteArrayOutputStream();
CipherOutputStream cout =

new CipherOutputStream(bout,  cipher);
cout.write("hello world".getBytes());
cout.close();

byte[] cipherText = bout.toByteArray();
Once we can encipher and decipher data using a simple stream, interface, we can create much more
complicated scenarios. For example, theOutputStream could just as easily be a SocketOutputStream, or we
could construct anObjectOutputStream on top of our cipher stream and encipher Java objects directly.

SealedObject
The javax.crypto.SealedObject class provides the mechanism to encipher a Serializable object. This class
allows the application to encipher a Java object and then recover the object, all through a simple interface. The
SealedObject is also serializable, to simplify the transport and storage of the enciphered objects.
A SealedObject can be constructed through either serialization or by its constructor. The constructor is used to
create a new enciphered object. The constructor's arguments are the object to encipher and the Cipher to use.
The provided Cipher instance must be initialized for encryption before the SealedObject is created. This means
calling a Cipher.init()method with Cipher.ENCRYPT_MODE as the mode, the required encryption Key and any
algorithm parameters.

The following fragment will create a new SealedObject containing the enciphered String "hello world":
Key desKey = ...
Cipher cipher = Cipher.getInstance("DES");
cipher.init(Cipher.ENCRYPT_MODE, deskey);

SealedObject so = new SealedObject("hello world", cipher);
To recover the original object, the SealedObject.getObject()methods may be used. These methods take either
a Cipher or Key object. When providing the Cipher parameter, the instance must be initialized in the
Cipher.DECRYPT_MODEmode, with the appropriate decryption key and the same algorithm parameters as the
original Cipher. When providing a Key parameter, the encryption algorithm and algorithm parameters are
extracted from the SealedObject.
The following fragment will extract a SealedObject object from anObjectInputStream and then recover the
protected object:

ObjectInputStream oin ...
Key desKey = ...

SealedObject so = (SealedObject)oin.readObject();
String plainText = (String)so.getObject(deskey);

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 18



Chapter 2:   JCA/JCE API Overview

One important security aspect to note with this class is that it does not use a digital signature to ensure the object
has not been tampered with in its serialized form. It is therefore possible that the object could be altered in
storage or transport without detection. Fortunately, the JCA provides the java.security.SignedObject
mechanism, which can be used in conjunction with the SealedObject class to avoid this problem. (See "Key
Conversion" on page 25 for a discussion on the SignedObject class).

Algorithm Parameters
Some cipher algorithms support parameterization. For example, the DES cipher in CBCmode can have an
initialization vector as an algorithm parameter and other ciphers may have a selectable block size or round
count. The JCE provides support for algorithm-independent initialization via the
java.security.spec.AlgorithmParameterSpec and java.security.AlgorithmParameters classes.
The java.security.spec.AlgorithmParameterSpec derived classes can be constructed programatically by an
application. The following classes are provided by the JCA/JCE:

java.security.spec

DSAParameterSpec Used to specify the parameters used with the DSA algorithm. The parameters consist of
the base g, prime p and sub-prime q.

javax.crypto.spec

DHGenParameterSpec The set of parameters used for generating Diffie-Hellman parameters for use in
Diffie-Hellman key agreement.

DHParameterSpec The set of parameters used with Diffie-Hellman as specified in PKCS#3.

IvParameterSpec An initialization vector for use with a feedback cipher. That is an array of bytes of
length equal to the block size of the cipher.

RC2ParameterSpec Parameters for the RC2 algorithm. The parameters are the effective key size and an
optional 8-byte initialization vector (only in feedback mode).

RC5ParameterSpec Parameters for the RC5 algorithm. The parameters are a version number, number of
rounds, a word size and an optional initialization vector (only in feedback mode).

Your provider may also include more classes for passing parameters to the algorithms it implements.

The JCA also has mechanisms for dealing with the provider-dependent AlgorithmParameters. This class is
used as an opaque representation of the parameters for a given algorithm and allows an application to store
persistently the parameters used by a Cipher.

There are three situations where an application may encounter an AlgorithmParameters instance:
1. Cipher.getParameters()

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 19



Chapter 2:   JCA/JCE API Overview

After a Cipher has been initialized, it may have generated a set of parameters (based on supplied and/or
default values). The value returned by the getParameters()method allows the Cipher to be re-initialized to
exactly the same state.

2. AlgorithmParameters.getInstance()
Rather than generating the parameters via the Cipher class, it is possible to generate them either based on
an encoded format or an AlgorithmParameterSpec instance. To do so create an uninitialized instance using
the getInstance method and then initialize it by calling the appropriate init()method.

3. AlgorithmParameterGenerator.getParameters()
Finally, a set of parameters can be generated using the AlgorithmParameterGenerator. First, a generator is
created for the required algorithm using the getInstance()method. Then the generator is initialized by calling
one of the init()methods, finally to create the instance use the getParametersmethod.

This class provides the concept of algorithm-independent parameter generation, in that the initialization can be
based on a "size" and a source of randomness. In this case the "size" value is interpreted differently for each
algorithm.

Message Digests
The JCA provides support for the generation of message digests via the java.security.MessageDigest class.
This class uses the standard factory class design, so to create aMessageDigest instance, use the getInstance
()method with the desired algorithm name and optional provider as parameters.

Once created use the various update()methods to process the message data and then finally call the digest()
method to calculate the final digest. At this point the instance may be reused to calculate a digest for a new
message.

MessageDigest digest = MessageDigest.getInstance("SHA");

byte[] msg = "The message".getBytes();
digest.update(msg);

byte[] result = digest.digest();

Message Authentication Code (MAC)
The javax.crypto.Mac API is used to access a message authentication code (MAC) algorithm. These algorithms
are used to check the integrity of messages upon receipt. There are two classes of MAC algorithms in general,
those that are based on message digests (known as HMAC algorithms) and those on encryption algorithms. In
both cases a shared secret is required.

AMac is used in the same fashion as a Cipher. First, use the factory methodMac.getInstance() to get the
provider implementation of the required algorithm, then initialize the algorithm with the appropriate key via the
Mac.init()method. Then, use theMac.update()method to process the message, and finally, use the
Mac.doFinal()method to calculate the MAC for the message.

To verify the message, follow the same procedure and compare the supplied MAC with the calculated MAC.

Note that it is not necessary to use theMac.init()method to check multiple messages if the shared secret has
not changed. TheMac will be reset after the call toMac.doFinal() (or a call toMac.reset()).

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 20



Chapter 2:   JCA/JCE API Overview

/*
* on the sender
*/
Mac senderMac = Mac.getInstance("HMAC-SHA1");
senderMac.init(shaMacKey);
byte[] mac = senderMac.doFinal(data);

/*
* now transmit message and mac to receiver
*/
Mac recMac = Mac.getInstance("HMAC-SHA1");
recMac.init(shaMacKey);
byte[] calcMac = recMac.doFinal(data);

for (int i = 0; i < calcMac.length; i ++)
{

if (calcMac[i] != mac[i])
{

/* bogus MAC! */
return false;

}
}

/* all okay */
return true;

Authentication
This section describes mechanisms for signing and verifying operations. It contains the following subsections:

> "Digital Signatures" below

> "Object Signing" on page 23

Digital Signatures
The java.security.Signature class provides the functionality of a digital signature algorithm. Digital signatures
are the digital equivalent of the traditional pen-and paper-signature. They can be used to authenticate the
originator of a document, as well as to prove that a person signed the document. Generally, digital signatures are
based on public-key encryption, which means that, unlike a MAC, anyone that has access to the public key (and
the document) can check the validity of the document.

The Signature interface supports generation and verification of signatures. Once a signature instance has been
created using the Signature.getInstance()method, it needs to be initialized with the Signature.initSign()
method for creation of a signature, or Signature.initVerify()method for verification of a signature.
Once initialized, the document to be processed should be passed to the signature via the Signature.update()
methods. Once the entire document has been processed, the Signature.sign()method may be called to
generate the signature, or the Signature.verify()method to verify a supplied signature against a previously
generated signature.

After a signature has been generated or verified, the Signature instance is reset to the state it was in after it was
last initialized, allowing another signature to be generated or verified using the same key.

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 21



Chapter 2:   JCA/JCE API Overview

One such signature algorithm is "MD5 with RSA", defined in PKCS#1. This algorithm specifies that the document
to be signed is passed through the MD5 digest algorithm and then an ASN.1 block containing the digest, along
with a digest algorithm identifier, is enciphered using RSA.

To create such a signature:
/*
* Assume this private key is initialized
*/
PrivateKey rsaPrivKey;

/*
* Create the Signature instance and initialize
* it for signing with our private key
*/
Signature rsaSig = Signature.getInstance("MD5withRSA");
rsaSig.initSign(rsaPrivKey);

/*
* Pass in the document data via the update() methods
*/
byte[] document = "The document".getBytes();
rsaSig.update(document);

/*
* Generate the signature
*/
byte[] signature = rsaSig.sign();

To verify the generated signature:
/*
* Assume this public key is initialized
*/
PublicKey rsaPubKey;

/*
* Create the Signature instance and initialize
* it for signature verification with the public key
*/
Signature rsaSig = Signature.getInstance("MD5withRSA");
rsaSig.initVerify(rsaPubKey);

/*
* Pass in the document data via the update() methods
*/
byte[] document = "The document".getBytes();
rsaSig.update(document);

/*
* Check the generated signature against the supplied
* signature
*/
if (rsaSig.verify(signature))
{

// signature okay
}
else
{

// signature fails
}

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 22



Chapter 2:   JCA/JCE API Overview

Object Signing
The java.security.SignedObject provides a mechanism for ensuring that a Java object can be authenticated
and cannot be tampered with without detection. The mechanism used is similar to the SealedObject in that the
object to be protected is serialized and then a signature is attached. The SealedObject is serializable, so it may
be stored or transmitted via the object streams.

To create a SignedObject, firstly create an instance of the signature algorithm to use via the
Signature.getInstance()method, then create the new SignedObject instance by providing the object to be
signed, the signing key and the Signature instance. Note that there is no need to initialize the Signature
instance; the SignedObject constructor will perform that function.

Signature signingEngine = Signature.getInstance(
"MD5withRSA");

SignedObject so = new SignedObject("hello world",
privateKey, signingEngine);

To verify a SignedObject, simply create the Signature instance for the required algorithm and then use the
SignedObject.verify()method with the appropriate PublicKey. Again, there is no need to initialize the
Signature instance.

Signature verifyEngine = Signature.getInstance(
"MD5withRSA");

if (so.verify(publicKey, verifyEngine))
{

// object okay, extract it
Object obj = so.getObject();

}
else
{

// object not authenticated
}

Note that this class only provides a mechanism for authentication and verification, it does not provide
confidentiality (i.e. encryption). The SealedObjectmay be used for this purpose (see "SealedObject" on
page 18). The following example combines these two classes to provide a confidential, authenticated, tamper-
proof object:

/*
* sealedObj will contain the signed, enciphered data
*/
SignedObject signedObj = new SignedObject(

"hello world", privateKey, signingEngine);
SealedObject sealedObj = new SealedObject(

signedObj, cipher);

/*
* to verify and recover the original object
*/
SignedObject newObj = sealedObject.getObject(cipher);
if (newObj.verify(publicKey, verificationEngine))
{

// object verified tampered
String str = (String)newObj.getObject();

}
else

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 23



Chapter 2:   JCA/JCE API Overview

{
// object tampered with!

}

Key Management
The JCA/JCE framework manages keys in two forms, a provider-dependent format and a provider-independent
format.

The provider-dependent keys will implement either the java.security.Key interface (or one of its subclasses) for
public-key algorithms, or the javax.crypto.SecretKey interface for secret-key algorithms. Provider keys can be
generated randomly, via a key agreement algorithm or from their associated provider-independent format.

The provider-independent formats will implement the java.security.spec.KeySpec interface. Subclasses of this
type exist for both specific key types and for different encoding types. For example, the
java.security.spec.RSAPublicKeySpec can be used to construct an RSA public key from its modulus and
exponent and a java.security.spec.PKCS8EncodedKeySpec can be used to construct a private key encoded
using PKCS#8.

Each Provider will supply a number of mechanisms that will create the provider-dependent keys or convert the
provider-independent keys into provider based keys.

This section contains information on the following:

> "Generating Random Keys" below

> "Key Conversion" on the next page

> "Key Agreement Protocols" on page 27

> "Key Storage" on page 27

> "Certificates" on page 29

Generating Random Keys
The simplest mechanism to create keys for a given provider is to use their random key generators. Random keys
are most often generated for use as "session-keys", used for a given dialogue or session and then no longer
required. In the case of public-key algorithms, however, they may be generated once and then stored for later
use. The JCE framework provides key generation via the following classes:

javax.crypto.KeyGenerator
Generation of symmetric keys (such as DES, IDEA, RC4)

java.security.KeyPairGenerator
Generation of public/private key pairs (such as RSA)

For instance, to create a random 128-bit key for RC4 and initialize a Cipher for encryption with this key:
/*
* Create the key generator for the desired algorithm,
* and then initialize it for the required key size.
*/
KeyGenerator rc4KeyGen = KeyGenerator.getInstance("RC4");
rc4KenGen.init(128);

/*
* Generate the key and then initialize the Cipher

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 24



Chapter 2:   JCA/JCE API Overview

*/
SecretKey rc4Key = rc4KeyGen.generateKey();
Cipher rc4Cipher = Cipher.getInstance("RC4");
rc4Cipher.init(Cipher.ENCRYPT_MODE, rc4Key);

Here, the SecretKey returned by the KeyGenerator.generateKey()method is a provider-dependent key. The
returned key can then be used with that provider's algorithms.

Some algorithms have keys that are considered weak, for example with a weak DES key the ciphertext may be
the same as the plaintext! Generally, the KeyGenerator will not generate those keys, but it is best to check the
provider documentation for details on the specific algorithm.

The code to generate a public/private key pair is quite similar:
KeyPairGenerator rsaKeyGen = KeyPairGenerator.getInstance("RSA");
rsaKeyGen.initialize(1024);

KeyPair rsaKeyPair = rsaKeyGen.generateKeyPair();
Cipher rsaCipher = Cipher.getInstance("RSA");
rsaCipher.init(Cipher.ENCRYPT_MODE, rsaKeyPair.getPrivate());

Key Conversion
Two interfaces are provided to convert between a provider-dependent Key and the provider-independent
KeySpec: java.security.KeyFactory and javax.crypto.SecretKeyFactory. The KeyFactory class is used for
public-key algorithms and the SecretKeyFactory class for secret-key algorithms.
An application may choose to store its keys in some way and then recreate the key using a KeySpec. For
example, the application may contain an embedded RSA public key as two integers; the RSAPublicKeySpec
along with a KeyFactory that can process RSAPublicKeySpec instances could then be used to create the
provider-dependent key.

Each provider will generally supply a number of KeyFactory/SecretKeyFactory classes that will accept the
various KeySpec classes and produce Key instances that may be used with the provider algorithms. These
factories are not likely to support all KeySpec types, so the provider documentation should provide the details as
to what conversions will be accepted.

There are a number of KeySpec classes provided by the JCA/JCE:

java.security.spec

PKCS8EncodedKeySpec A DER encoding of a private key according to the format specified in the PKCS#8
standard.

X509EncodedKeySpec A DER encoding of a public or private key, according to the format specified in the
X.509 standard.

RSAPublicKeySpec An RSA public key

RSAPrivateKeySpec An RSA private key

RSAPrivateCrtKeySpec An RSA private key, with the Chinese Remainder Theorem (CRT) values

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 25



Chapter 2:   JCA/JCE API Overview

java.security.spec

DSAPublicKeySpec A DSA public key

DSAPrivateKeySpec A DSA private key

javax.crypto.spec

DESKeySpec A DES secret key

DESedeKeySpec A DESede secret key

PBEKeySpec A user-chosen password that can be used with password base encryption (PBE)

SecretKeySpec A key that can be represented as a byte array and have no associated parameters. The
encoding type is known as RAW.

To convert a KeySpec instance into a provider based Key, firstly create a KeyFactory or SecretKeyFactory of
the appropriate type using the getInstance()method. Once the instance has been created, use the
KeyFactory.generatePrivate(), KeyFactory.generatePublic() or SecretKeyFactory.generateSecret()
method.

In the following example we will create a Key from a KeySpec and then recover the KeySpec from the Key.
/*
* This is the raw key
*/
byte[] keyBytes = { (byte)0x1, (byte)0x02, (byte)0x03,

(byte)0x04, (byte)0x05, (byte)0x06, (byte)0x07, (byte)0x08 };

/*
* Create the provider independent KeySpec
*/
DESKeySpec desKeySpec = new DESKeySpec(keyBytes);

/*
* Create the KeyFactory to do the Key<->KeySpec translation
*/
SecretKeyFactory keyFact = KeyFactory.getInstance("DES");

/*
* Create the provider based SecretKey
*/
SecretKey desKey = keyFact.generateSecret(desKeySpec);

/*
* Convert the provider Key into a generic KeySpec
*/
DESKeySpec desKeySpec2 = keyFact.getKeySpec(desKey,

DESKeySpec.class);

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 26



Chapter 2:   JCA/JCE API Overview

Key Agreement Protocols
Keys may also be generated using the javax.crypto.KeyAgreement API. This interface provides the
functionality of a key agreement (or key exchange) protocol. For example, a Diffie-Hellman KeyAgreement
instance would allow two or more parties to generate a shared Diffie-Hellman Key.

To generate the key, it is necessary to call KeyAgreement.doPhase() for each party in the exchange with a Key
object that represents the current state of the key agreement. The last call to KeyAgreement.doPhase() should
have the lastPhase set to true.
Once all the key agreement phases have been processed, the shared SecretKeymay be generated by calling
the KeyAgreement.generateSecret()method.
The KeyAgreement API does not define how each of the parties communicates the necessary information for
each exchange in the protocol. The required information is passed to the KeyAgreement.doPhase()method as
a Key. This Key will generally be generated using either a KeyGenerator or a KeyFactory. The provider
documentation will detail the specific steps required for a given protocol.

/*
* Create the KeyAgreement instance for the required
* protocol and initialize it with our key.  In the
* case of Diffie-Hellman this would be our private
* key.
*/
KeyAgreement keyAg = KeyAgreement.getInstance("DH");
keyAg.init(ourKey);

/*
* Exchange information as per the key exchange
* protocol.  For DH we would exchange public keys.
* Note since there is only two parties in this
* case the return value is not relevant.
*/
keyAg.doPhase(remotePubKey, true);

/*
* Create the shared secret-key
*/
SecretKey key = keyAg.generateSecret("DES");

Key Storage
Once a Key has been generated you may wish to store it for future use. Generally, you'll be saving public/private
keys so that you can reuse them at a later date in a key exchange.

The java.security.KeyStore API provides one mechanism for management of a number of keys and
certificates. There are two types of entries in a KeyStore: Key entries and Certificate entries. Key entries are
sensitive information, whereas certificates are not.

As Key entries are sensitive, they are therefore are protected by the KeyStore. The API allows for a password,
or pass phrase, to be attached to each key entry. What the actual implementation does with the password is not
defined, although it may be used to encipher the entry. A key entry may either be a SecretKey, or a PrivateKey.
In the case of a PrivateKey, the entry is saved along with a Certificate chain, which is the chain of trust. The
chain of trust starts with the Certificate containing the corresponding PublicKey and ends with a self-signed
certificate.

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 27



Chapter 2:   JCA/JCE API Overview

A certificate entry represents a "trusted certificate entry", that is, a Certificate whose identity we trust. This type of
entry can be used to authenticate other parties.

To create a KeyStore instance, use the KeyStore.getInstance()method. This will return an empty KeyStore
which may then be populated by calling the KeyStore.load()method. This method accepts an InputStream
instance and an optional password. Each individual KeyStore will treat these parameters differently, so check
the provider documentation for details.

The Sun provider supplies a KeyStore known as "JKS". This KeyStore is used by the keytool and jarsigner
applications.

/*
* Create an instance of the Java Key Store (defined by Sun)
*/
KeyStore keyStore = KeyStore.getInstance("JKS");

To add a new entry into the KeyStore, use either setCertificateEntry() or one of the setKeyEntry()methods.
This will add the new entry with the associated alias.

char[] myPass;
SecretKey secretKey;

/*
* Store a SecretKey in the KeyStore, with "mypass"
* as the password.
*/
keyStore.setKeyEntry("mysecretkey", secretKey,

myPass, null);

/*
* assume that privateKey contains my PrivateKey
* and myCert contains a Certificate with the
* corresponding PublicKey
*/
PrivateKey privateKey;
Certificate myCert;

keyStore.setKeyEntry("myprivatekey", privateKey,
myPass, myCert);

To extract an entry, use the getKey()method to extract a Key or getCertificate() for a Certificate.
/*
* recover the SecretKey
*/
SecretKey key = (SecretKey)keyStore.getKey("mysecretkey",

myPass);

/*
* recover the PrivateKey
*/
PrivateKey privKey =

(PrivateKey)keyStore.getKey("myprivatekey", myPass);

/*
* recover the Certificate (containing the PublicKey)
* corresponding to our PrivateKey

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 28



Chapter 2:   JCA/JCE API Overview

*/
Certificate cert = keyStore.getCertificate("myprivatekey");

If the KeyStore supports persistence via the store() and load()methods, the provider documentation will explain
what types of Key types may be stored.

Certificates
The JCA framework provides support for generic certificates, as well as X.509v3 certificates. Certificates may be
stored using the KeyStore API, or they may be generated from their encoded format (either the PEM or PKCS#7
encoding).

To create a java.security.cert.Certificate instance from its encoded format, first create a
java.security.cert.CertificateFactory instance of the required type (eg X.509). Then use the
generateCertificate() or generateCertificates()methods to convert your InputStream into Certificate
instances.

CertificateFactory cf =
CertificateFactory.getInstance("X.509");

X509Certificate cert =
(X509Certificate)cf.generateCertificate(inputStream);

Two useful methods of the Certificate class are getPublicKey() and verify(). The first of these allows access to
the PublicKey of the certificate's owner and the second allows an application to verify that the certificate was
signed using the private key that corresponds to the provided public key.

The java.security.cert.X509Certificate class, which extends the Certificate class, provides methods to access
the other attributes of a X.509 certificate such as the Issuer's distinguished name or its validity period.

The keytool application provided with JDK can be used to generate certificates and store them in a KeyStore.
Check the JDK documentation for information on how to use this application.

Error Handling and Exceptions
The JCA/JCE framework includes a number of specialized exception classes:

java.security

DigestException Thrown if an error occurs during the final computation of the digest. Generally
this indicates that the output buffer is of insufficient size.

InvalidAlgorithmParameter
Exception

Thrown by classes that use AlgorithmParameters or
AlgorithmParameterSpec instances where the supplied instance is not
compatible with the algorithm or the supplied parameter was null and the
algorithm requires a non-null parameter.

InvalidKeyException Thrown by the various classes that use Key objects, such as Signature,Mac,
and Cipher when the provided Key is not compatible with the given instance.

InvalidParameterException Only used in the deprecated interfaces in the Signature class and the
deprecated class Signer.

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 29



Chapter 2:   JCA/JCE API Overview

java.security

KeyStoreException Thrown by the KeyStore class when the object has not been initialized properly.

NoSuchAlgorithmException Thrown by the getInstance()methods when the requested algorithm is not
available.

NoSuchProviderException Thrown by the getInstance()methods when the requested provider is not
available.

SignatureException Thrown by the Signature class during signature generation or validation if the
object has not been initialized correctly or an error occurs in the underlying
ciphers.

javax.crypto

BadPaddingException Thrown by the Cipher class (or classes which use a Cipher class to process data)
if this cipher is in decryption mode, (un)padding has been requested, and the
deciphered data is not bounded by the appropriate padding bytes.

IllegalBlockSizeException Thrown by the Cipher class (or classes which use a Cipher class to process data)
if this cipher is a block cipher, no padding has been requested (only in encryption
mode), and the total input length of the data processed by this cipher is not a
multiple of block size

NoSuchPaddingException Thrown by the Cipher class by the getInstance()method when a transformation
is requested that contains a padding scheme that is not available.

ShortBufferException Thrown by the Cipher class when an output buffer is supplied that is too small to
hold the result.

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 30



CHAPTER 3: Supported Ciphers

ProtectToolkit-J includes support for symmetric block and stream ciphers, as well as support for the asymmetric
RSA cipher. The following algorithms are available through the javax.crypto.Cipher interface:

Cipher Name Key Length
(bits)

Block Size
(bits)

Cipher
Modes

Padding

"DES" on page 33 64 64 ECB,CBC PKCS5Padding,
NoPadding

"DESede" on page 36 128,192 64 ECB,CBC PKCS5Padding,
NoPadding

"AES" on page 39 128,182,256 64 ECB,CBC PKCS5 Padding,
NoPadding

"IDEA" on page 41 128 64 ECB,CBC PKCS5Padding,
NoPadding

"CAST128" on page 43 8-128 64 ECB,CBC PKCS5Padding,
NoPadding

"RC2" on page 45 0-1024 64 ECB,CBC PKCS5Padding,
NoPadding

"RC4" on page 48 8-2048 N/A ECB NoPadding

PBEWithMD2AndDES
("PBE Ciphers" on page 49)

64 64 N/A N/A

PBEWithMD5AndDES
("PBE Ciphers" on page 49)

64 64 N/A N/A

PBEWithMD5AndCAST
("PBE Ciphers" on page 49)

128 128 N/A N/A

PBEWithSHA1AndCAST
("PBE Ciphers" on page 49)

128 128 N/A N/A

PBEWithSHA1AndTripleDES
("PBE Ciphers" on page 49)

128 128 N/A N/A

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 31



Chapter 3:   Supported Ciphers

Cipher Name Key Length
(bits)

Block Size
(bits)

Cipher
Modes

Padding

"RSA" on page 52 512-4096 variable ECB PCKS1Padding,
NoPadding,
OAEP, OAEPPadding

Here, the Cipher name is the name of the Cipher as known to the JCE. To request a particular algorithm, pass
this name to the Cipher.getInstance()method. Some algorithms support different key lengths, and the
supported key lengths are listed in the table above. The block size is the size of data that is processed by the
cipher. During encryption, the amount of data processed must be a multiple of this size, unless padding is
employed (see below), and the encrypted output will therefore be a multiple of this size.

Electronic Codebook Mode (ECB) and Cipher Block Chaining (CBC) are defined in FIPS PUB 81: DES Modes of
Operation. All ciphers will default to ECB mode.

PKCS#5 padding is defined in PKCS#5, and is the standard padding applied to block ciphers with a block size of
64 bits. DES, DESede, IDEA, CAST128 and RC2 all default to "NoPadding". When PKCS5Padding is employed
with a block cipher, the input data for encryption can be any length, and will be padded to the appropriate length
before encryption.

PKCS#1 padding is defined in PKCS#1, and is the standard padding mechanism for the RSA cipher. When this
padding mechanism is used, PKCS#1 padding will be performed on each block encrypted. For public-key
encryption PKCS#1 type 1 blocks will be created, and for private-key encryption type 2 blocks will be created.
When “NoPadding” is requested, no PKCS#1 packing is applied to the data and the processing is performed as
per the X.509 (raw) RSA specification.

Cipher Algorithm Parameters
Currently, ProtectToolkit-J does not support algorithm parameters.

Calls to Cipher.getParameters() will always return null. Neither does the provider include any
java.security.AlgorithmParameters classes.

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 32



Chapter 3:   Supported Ciphers

DES
This algorithm is a 64-bit block cipher with a 64-bit key. The effective key size is only 56-bit, however, as 8 bits of
the key are used for parity. The algorithm described in FIPS PUB 46-2.

DES Cipher Initialization
This cipher supports both ECB and CBCmodes, and may be used with NoPadding or PKCS5Padding. To
create an instance of this class use the Cipher.getInstance()method with “SAFENET” as the provider and one
of the following strings as the transformation:

> DES

> DES/ECB/NoPadding

> DES/ECB/PKCS5Padding

> DES/CBC/NoPadding

> DES/CBC/PKCS5Padding

Using the “DES” transformation, the Cipher will default to ECB and NoPadding.
If the NoPaddingmode is selected, the input data must be a multiple of 8 bytes; otherwise, the encrypted or
decrypted result will be truncated. In PKCS5Padding, arbitrary data lengths are accepted; the ciphertext will be
padded to a multiple of 8 bytes, as described in PKCS#5. The decryption process will remove the padding from
the data so that the correct plaintext is returned.

This Cipher will accept a javax.crypto.spec.SecretKeySpec or
au.com.safenet.crypto.provider.CryptokiSecretKey as the key parameter during initialization.
When the Cipher is initialized in CBCmode, the Initialization Vector (IV) may be specified by passing a
javax.crypto.spec.IvParameterSpec instance to the Cipher.init()method. When decrypting in this mode, a
valid IV must be specified in the Cipher.init()method. For encryption, however, a random IV will be generated if
none is specified (the IV may be retrieved using the Cipher.getIV()method).
The IV may be provided as a java.security.AlgorithmParameters or a javax.crypto.spec.IvParameterSpec
instance. If the initialization is done using an AlgorithmParameters instance, it must be convertible to an
IvParameterSpec using the AlgorithmParameters.getParameterSpec()method.
This Cipher does not support the Cipher.getParameters()method; this method will always return null. The only
supported parameter for this class is the initialization vector, which may be determined using the Cipher.getIV()
method.

DES Key
The DES Cipher requires either a SecretKeySpec or ProtectToolkit-J provider DES Key during initialization.

To create an appropriate SecretKeySpec, pass an 8 byte array and the algorithm name “DES” to the
SecretKeySpec constructor. For example:
byte[] keyBytes = { 0x01, 0x23, 0x45, 0x67,

0x89, 0xAB, 0xCD, 0xEF };
SecretKeySpec desKey = new SecretKeySpec(keyBytes, “DES”);

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 33



Chapter 3:   Supported Ciphers

Alternatively, a random ProtectToolkit-J DES key can be generated randomly using the KeyGenerator as
described in "Public Keys" on page 105, or from a provider-independent form as described in "Key
Specifications" on page 110. The DES key may also be stored in the ProtectToolkit-J KeyStore, as described in
"Key Storage" on page 108 .

The ProtectToolkit-J DES key will return the string “DES” as its algorithm name, “RAW” as its encoding.
However, since the key is stored within the hardware, the actual key encoding may not be available.

The key value can only be extracted from a key if the associated Cryptoki key is not marked as Sensitive. The
keys generated in ProtectToolkit-J will always be marked as sensitive. It is possible, however, to access any
Cryptoki keys stored on the device, and it is possible that the attributes of these keys have been modified.

DES KeyGenerator
The DES KeyGenerator is used to generate random DES keys. The generated key will be a hardware key that
has the Cryptoki CKA_EXTRACTABLE and CKA_SENSITIVE attributes set. Since these keys are marked as
sensitive, their getEncoded()method will return null.
During initialization, the strength and random parameters are ignored, as all keys are 64-bits and the hardware
includes a cryptographically-secure random source.

Keys generated using the KeyGenerator are not thread-safe. That is, a ProtectToolkit-J Key instance may only
be used by a single Cipher instance (as well as a single MAC instance) at any given time. See "Key
Generation" on page 104 for information on threading and ProtectToolkit-J keys.

DES SecretKeyFactory
The DES SecretKeyFactory is used to construct ProtectToolkit-J keys from their provider-independent form.
The provider independent form of the DES key is the javax.crypto.spec.DESKeySpec class.
Keys generated using the SecretKeyFactory are not thread-safe. That is, a ProtectToolkit-J Key instance may
only be used by a single Cipher instance (as well as a single MAC instance) at any given time. See"Key
Generation" on page 104 for information on threading and ProtectToolkit-J keys.

For example, to create the provider based key from its provider-independent form:
byte[] keyBytes = { 0x01, 0x23, 0x45, 0x67,

0x89, 0xAB, 0xCD, 0xEF };
DESKeySpec desKeySpec = new DESKeySpec(keyBytes);
SecretKeyFactory desKeyFact =

SecretKeyFactory.getInstance(“DES”, “SAFENET”);
SecretKey desKey = desKeyFact.generateSecret(desKeySpec);

DES Example Code
The following example code will create a random DES key, then create a DES cipher in CBCmode with
PKCS5Padding. Next, it initializes the cipher for encryption using the newly-created key. We then save the
initialization vector and encrypt the string "hello world".
To perform the decryption, we re-initialize the cipher in decrypt mode, with the same key and the initialization
vector that was created during encryption.
KeyGenerator keyGen = KeyGenerator.getInstance("DES",

"SAFENET");
Key desKey = keyGen.generateKey();
Cipher desCipher = Cipher.getInstance("DES/CBC/PKCS5Padding",

"SAFENET");

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 34



Chapter 3:   Supported Ciphers

desCipher.init(Cipher.ENCRYPT_MODE, desKey);
byte[] iv = desCipher.getIV();
byte[] cipherText = desCipher.doFinal(

"hello world".getBytes());
desCipher.init(Cipher.DECRYPT_MODE, desKey,

new IvParameterSpec(iv));
byte[] plainText = desCipher.doFinal(cipherText);

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 35



Chapter 3:   Supported Ciphers

DESede
This algorithm, known as triple-DES, is a 64-bit block cipher with a 192-bit key, although 24 bits of the key are
parity bits. This algorithm works by splitting the 192-bit key into three 64-bit keys and then applying the basic
DES cipher, first in the encrypt mode, second in the decrypt mode, and finally in the encrypt mode. The algorithm
is described in ANSI X9.17. It is also possible to use a double-length key (128 bits), in this case the first key is
reused as the final key.

DESede Cipher Initialization
This cipher supports both ECB and CBCmodes, and may be used with NoPadding or PKCS5Padding. To create
an instance of this class, use the Cipher.getInstance()method with “SAFENET” as the provider and one of the
following strings as the transformation:

> DESede

> DESede/ECB/NoPadding

> DESede/ECB/PKCS5Padding

> DESede/CBC/NoPadding

> DESede/CBC/PKCS5Padding

Using the “DESede” transformation, the Cipher will default to ECB and NoPadding.
If the NoPaddingmode is selected, the input data must be a multiple of 8 bytes; otherwise, the encrypted or
decrypted result will be truncated. In PKCS5Padding, arbitrary data lengths are accepted; the ciphertext will be
padded to a multiple of 8 bytes, as described in PKCS#5. The decryption process will remove the padding from
the data so that the correct plaintext is returned.

This Cipher will accept a javax.crypto.spec.SecretKeySpec or
au.com.safenet.crypto.provider.CryptokiSecretKey as the key parameter during initialization.
When the Cipher is initialized in CBCmode, the Initialization Vector (IV) may be specified by passing a
javax.crypto.spec.IvParameterSpec instance to the Cipher.init()method. When decrypting in this mode, a
valid IV must be specified in the Cipher.init()method. For encryption, however, a random IV will be generated if
none is specified (the IV may be retrieved using the Cipher.getIV()method).
The IV may be provided as a java.security.AlgorithmParameters or a javax.crypto.spec.IvParameterSpec
instance. If the initialization is done using an AlgorithmParameters instance, it must be convertible to an
IvParameterSpec using the AlgorithmParameters.getParameterSpec()method.
This Cipher does not support the Cipher.getParameters()method; this method will always return null. The only
supported parameter for this class is the initialization vector, which may be determined using the Cipher.getIV()
method.

DESede Key
The DESede Cipher requires either a SecretKeySpec or ProtectToolkit-J provider DESede Key during
initialization. The DESede key may be either a double- or triple-length key.

To create an appropriate SecretKeySpec, pass a 16 or 24-byte array and the algorithm name “DESede” to the
SecretKeySpec constructor. For example:
byte[] keyBytes = { 0x41, 0x22, 0x35, 0x17,

0x39, 0xDB, 0xDC, 0xEF
0x11, 0x93, 0x55, 0x67,

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 36



Chapter 3:   Supported Ciphers

0x39, 0xAC, 0xCD, 0xFF };
SecretKeySpec desEdeKey = new SecretKeySpec(keyBytes,

“DESede”);
Alternatively, a random ProtectToolkit-J DESede key can be generated using the KeyGenerator as described in
section "Public Keys" on page 105, or a provider-independent form as described in section "Key
Specifications" on page 110. The DESede key may also be stored in the ProtectToolkit-J KeyStore, as
described in "Key Storage" on page 108 .

The ProtectToolkit-J DESede key will return the string “DESede” as its algorithm name, and “RAW” as its
encoding. However, since the key is stored within the hardware, the actual key encoding may not be available.

The key value can only be extracted from a key if the associated Cryptoki key is not marked as Sensitive. The
keys generated in ProtectToolkit-J will always be marked as sensitive. It is possible, however, to access any
Cryptoki keys stored on the device, and it is possible that the attributes of these keys have been modified.

DESede KeyGenerator
The DESede KeyGenerator is used to generate random DESede double or triple length keys. The generated
key will be a hardware key that has the Cryptoki CKA_EXTRACTABLE and CKA_SENSITIVE attributes set.
Since these keys are marked as Sensitive, their getEncoded()method will return null.
During initialization, the strength parameter may be 128 to specify a double length key or 196 to specify a triple-
length key. If no strength is specified, a triple-length key will be generated. The random parameter is ignored as
the hardware includes a cryptographically-secure random source.

Keys generated using the KeyGenerator are not thread-safe. That is, a ProtectToolkit-J Key instance may only
be used by a single Cipher instance (as well as a single MAC instance) at any given time. See "Key
Generation" on page 104 for information on threading and ProtectToolkit-J keys.

DESede SecretKeyFactory
The DESede SecretKeyFactory is used to construct ProtectToolkit-J keys from their provider-independent
form. The provider-independent form of the DESede key is the javax.crypto.spec.DESedeKeySpec class.
Keys generated using the SecretKeyFactory are not thread-safe. That is, a ProtectToolkit-J Key instance may
only be used by a single Cipher instance (as well as a single MAC instance) at any given time. See"Key
Generation" on page 104 for information on threading and ProtectToolkit-J keys.

For example, to create the provider based key from its provider independent form (in this case we are generating
a triple-length key; specify 16 bytes for a double-length key):
byte[] keyBytes = { 0x41, 0x22, 0x35, 0x17,

0x39, 0xDB, 0xDC, 0xEF,
0x39, 0xDF, 0x28, 0x94,
0x11, 0x93, 0x55, 0x67,
0x11, 0x93, 0x55, 0x67,
0x39, 0xAC, 0xCD, 0xFF };

DESedeKeySpec desEdeKeySpec = new DESedeKeySpec(keyBytes);
SecretKeyFactory desEdeKeyFact =

SecretKeyFactory.getInstance(“DESede”, “SAFENET”);
SecretKey desEdeKey =

desEdeKeyFact.generateSecret(desEdeKeySpec);

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 37



Chapter 3:   Supported Ciphers

DESede Example Code
See "DES" on page 33 for the simple DES example. To convert the example to use DESede, use “DESede” in
place of “DES”.

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 38



Chapter 3:   Supported Ciphers

AES
This algorithm is an implementation of AES, which is a 64 bit block cipher with a variable length key 128, 192 or
256 bits long.

AES Cipher Initialization
This cipher supports both ECB and CBCmodes, and may be used with NoPadding or PKCS5Padding.  To
create an instance of this class use the Cipher.getInstance()method with “SAFENET” as the provider and one
of the following strings as the transformation:

> AES

> AES/ECB/NoPadding

> AES/CBC/NoPadding

> AES/CBC/PKCS5Padding

Using the “AES” transformation, the Cipher will default to ECB and NoPadding.
If the NoPaddingmode is selected, the input data must be a multiple of 8 bytes; otherwise, the encrypted or
decrypted result will be truncated. In PKCS5Padding, arbitrary data lengths are accepted; the ciphertext will be
padded to a multiple of 8 bytes, as described in PKCS#5. The decryption process will remove the padding from
the data so that the correct plaintext is returned.

This Cipher will accept a javax.crypto.spec.SecretKeySpec or
au.com.safenet.crypto.provider.CryptokiSecretKey as the key parameter during initialization.
When the Cipher is initialized in CBCmode, the Initialization Vector (IV) may be specified by passing a
javax.crypto.spec.IvParameterSpec instance to the Cipher.init()method. When decrypting in this mode, a
valid IV must be specified in the Cipher.init()method. For encryption, however, a random IV will be generated if
none is specified (the IV may be retrieved using the Cipher.getIV()method).
The IV may be provided as a java.security.AlgorithmParameters or a javax.crypto.spec.IvParameterSpec
instance. If the initialization is done using an AlgorithmParameters instance, it must be convertible to an
IvParameterSpec using the AlgorithmParameters.getParameterSpec()method.
This Cipher does not support the Cipher.getParameters()method; this method will always return null. The only
supported parameter for this class is the initialization vector, which may be determined using the Cipher.getIV()
method.

AES Key
The AES Cipher requires either a SecretKeySpec or ProtectToolkit-J provider AES Key during initialization.
AES keys can be 128, 192, or 256 bits long.

To create an appropriate SecretKeySpec, pass a 16, 24 or 32 byte array and the algorithm name “AES” to the
SecretKeySpec constructor.
For example:
byte[] keyBytes = { 0x41, 0x22, 0x35, 0x17,

0x39, 0xB6, 0xDC, 0x34,
0x11, 0x93, 0x55, 0x67,
0x39, 0xAC, 0xCD, 0xFF };

SecretKeySpec aesKey = new SecretKeySpec(keyBytes, “AES”);

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 39



Chapter 3:   Supported Ciphers

Alternatively, a random ProtectToolkit-J AES key can be generated using the KeyGenerator as described in
"Key Generation" on page 104, or a provider-independent form. The AES key may also be stored in the
ProtectToolkit-J KeyStore, as described in "Key Storage" on page 108.
The ProtectToolkit-J AES key will return the string “AES” as its algorithm name, “RAW” as its encoding.
However, since the key is stored within the hardware the actual key encoding may not be available.

The key value can only be extracted from a key if the associated Cryptoki key is not marked as Sensitive. The
keys generated in ProtectToolkit-J will always be marked as sensitive. It is possible, however, to access any
Cryptoki keys stored on the device, and it is possible that the attributes of these keys have been modified.

AES KeyGenerator
The AES KeyGenerator is used to generate random AES keys. The generated key will be a hardware key that
has the Cryptoki CKA_EXTRACTABLE and CKA_SENSITIVE attributes set. Since these keys are marked as
sensitive their getEncoded()method will return null.
During initialization, the strength parameter may only be 128, 192, or 256 bits, with the default size being 128
bits. The random parameter is ignored as the hardware includes a cryptographically-secure random source.

Keys generated using the KeyGenerator are not thread-safe. That is, a ProtectToolkit-J Key instance may only
be used by a single Cipher instance (as well as a single MAC instance) at any given time. See "Key
Generation" on page 104 for information on threading and ProtectToolkit-J keys.

AES SecretKeyFactory
The AES SecretKeyFactory is used to construct ProtectToolkit-J keys from their provider-independent form.
The provider-independent form of the AES key is the au.com.safenet.crypto.spec.AESKeySpec class.
Keys generated using the SecretKeyFactory are not thread-safe. That is, a ProtectToolkit-J Key instance may
only be used by a single Cipher instance (as well as a single MAC instance) at any given time. See"Key
Generation" on page 104 for information on threading and ProtectToolkit-J keys.

For example, to create the provider-based key from its provider-independent form:
byte[] keyBytes = { 0x41, 0x22, 0x35, 0x17,

0x39, 0xDB, 0xDC, 0xEF
0x11, 0x93, 0x55, 0x67,
0x39, 0xAC, 0xCD, 0xFF };

AESKeySpec ideaKeySpec = new AESKeySpec(keyBytes);
SecretKeyFactory aesKeyFact =

SecretKeyFactory.getInstance(“AES”, “SAFENET”);
SecretKey aesKey = aesKeyFact.generateSecret(aesKeySpec);

AES Example Code
See "DES" on page 33 for the simple DES example. To convert the example to use AES, use “AES” in place of
“DES”.

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 40



Chapter 3:   Supported Ciphers

IDEA
This algorithm is a 64-bit block cipher with a 128-bit key. The last patents on this algorithm expired in 2012, and
IDEA is now free for all uses.

IDEA Cipher Initialization
This cipher supports both ECB and CBCmodes, and may be used with NoPadding or PKCS5Padding. To
create an instance of this class, use the Cipher.getInstance()method with “SAFENET” as the provider and one
of the following strings as the transformation:

> IDEA

> IDEA/ECB/NoPadding

> IDEA/ECB/PKCS5Padding

> IDEA/CBC/NoPadding

> IDEA/CBC/PKCS5Padding

Using the “IDEA” transformation the Cipher will default to ECB and NoPadding.
If the NoPaddingmode is selected, the input data must be a multiple of 8 bytes; otherwise, the encrypted or
decrypted result will be truncated. In PKCS5Padding, arbitrary data lengths are accepted; the ciphertext will be
padded to a multiple of 8 bytes, as described in PKCS#5. The decryption process will remove the padding from
the data so that the correct plaintext is returned.

This Cipher will accept a javax.crypto.spec.SecretKeySpec or
au.com.safenet.crypto.provider.CryptokiSecretKey as the key parameter during initialization.
When the Cipher is initialized in CBCmode, the Initialization Vector (IV) may be specified by passing a
javax.crypto.spec.IvParameterSpec instance to the Cipher.init()method. When decrypting in this mode, a
valid IV must be specified in the Cipher.init()method. For encryption, however, a random IV will be generated if
none is specified (the IV may be retrieved using the Cipher.getIV()method).
The IV may be provided as a java.security.AlgorithmParameters or a javax.crypto.spec.IvParameterSpec
instance. If the initialization is done using an AlgorithmParameters instance, it must be convertible to an
IvParameterSpec using the AlgorithmParameters.getParameterSpec()method.
This Cipher does not support the Cipher.getParameters()method; this method will always return null. The only
supported parameter for this class is the initialization vector, which may be determined using the Cipher.getIV()
method.

IDEA Key
The IDEA Cipher requires either a SecretKeySpec or ProtectToolkit-J provider IDEA Key during initialization.
The IDEA key is always 128 bits long.

To create an appropriate SecretKeySpec, pass a 16 byte array and the algorithm name “IDEA” to the
SecretKeySpec constructor.  For example:
byte[] keyBytes = { 0x41, 0x22, 0x35, 0x17,

0x39, 0xB6, 0xDC, 0x34,
0x11, 0x93, 0x55, 0x67,
0x39, 0xAC, 0xCD, 0xFF };

SecretKeySpec ideaKey = new SecretKeySpec(keyBytes, “IDEA”);

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 41



Chapter 3:   Supported Ciphers

Alternatively, a random ProtectToolkit-J IDEA key can be generated using the KeyGenerator as described in
section "Public Keys" on page 105, or from a provider-independent form as described in section "Key
Specifications" on page 110. The IDEA key may also be stored in the ProtectToolkit-J KeyStore as described in
"Key Storage" on page 108.

The ProtectToolkit-J IDEA key will return the string “IDEA” as its algorithm name, “RAW” as its encoding.
However, since the key is stored within the hardware, the actual key encoding may not be available.

The key value can only be extracted from a key if the associated Cryptoki key is not marked as Sensitive. The
keys generated in ProtectToolkit-J will always be marked as sensitive. It is possible, however, to access any
Cryptoki keys stored on the device, and it is possible that the attributes of these keys have been modified.

IDEA KeyGenerator
The IDEA KeyGenerator is used to generate random IDEA keys. The generated key will be a hardware key that
has the Cryptoki CKA_EXTRACTABLE and CKA_SENSITIVE attributes set. Since these keys are marked as
sensitive their getEncoded()method will return null.
During initialization the strength and random parameters are ignored, as all keys are 128-bits and the hardware
includes a cryptographically-secure random source.

Keys generated using the KeyGenerator are not thread-safe. That is, a ProtectToolkit-J Key instance may only
be used by a single Cipher instance (as well as a single MAC instance) at any given time. See "Key
Generation" on page 104 for information on threading and ProtectToolkit-J keys.

IDEA SecretKeyFactory
The IDEA SecretKeyFactory is used to construct ProtectToolkit-J keys from their provider-independent form.
The provider-independent form of the IDEA key is the au.com.safenet.crypto.spec.IDEAKeySpec class.
Keys generated using the SecretKeyFactory are not thread-safe. That is, a ProtectToolkit-J Key instance may
only be used by a single Cipher instance (as well as a single MAC instance) at any given time. See"Key
Generation" on page 104 for information on threading and ProtectToolkit-J keys.

For example, to create the provider-based key from its provider-independent form:
byte[] keyBytes = { 0x41, 0x22, 0x35, 0x17,

0x39, 0xDB, 0xDC, 0xEF
0x11, 0x93, 0x55, 0x67,
0x39, 0xAC, 0xCD, 0xFF };

IDEAKeySpec ideaKeySpec = new IDEAKeySpec(keyBytes);
SecretKeyFactory ideaKeyFact =

SecretKeyFactory.getInstance(“IDEA”, “SAFENET”);
SecretKey ideaKey = ideaKeyFact.generateSecret(ideaKeySpec);

IDEA Example Code
See "DES" on page 33 for the simple DES example. To convert the example to use IDEA, use “IDEA” in place of
“DES”.

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 42



Chapter 3:   Supported Ciphers

CAST128
This algorithm is an implementation of CAST-128, a 64-bit block cipher with a variable length key from 8 to 128
bits. The algorithm is described in RFC-2144.

CAST128 Cipher Initialization
This cipher supports both ECB and CBCmodes, and may be used with NoPadding or PKCS5Padding. To
create an instance of this class, use the Cipher.getInstance()method with “SAFENET” as the provider and one
of the following strings as the transformation:

> CAST128

> CAST128/ECB/NoPadding

> CAST128/ECB/PKCS5Padding

> CAST128/CBC/NoPadding

> CAST128/CBC/PKCS5Padding

Using the “CAST128” transformation, the Cipher will default to ECB and NoPadding.
If the NoPaddingmode is selected, the input data must be a multiple of 8 bytes; otherwise, the encrypted or
decrypted result will be truncated. In PKCS5Padding, arbitrary data lengths are accepted; the ciphertext will be
padded to a multiple of 8 bytes, as described in PKCS#5. The decryption process will remove the padding from
the data so that the correct plaintext is returned.

This Cipher will accept a javax.crypto.spec.SecretKeySpec or
au.com.safenet.crypto.provider.CryptokiSecretKey as the key parameter during initialization.
When the Cipher is initialized in CBCmode, the Initialization Vector (IV) may be specified by passing a
javax.crypto.spec.IvParameterSpec instance to the Cipher.init()method. When decrypting in this mode, a
valid IV must be specified in the Cipher.init()method. For encryption, however, a random IV will be generated if
none is specified (the IV may be retrieved using the Cipher.getIV()method).
The IV may be provided as a java.security.AlgorithmParameters or a javax.crypto.spec.IvParameterSpec
instance. If the initialization is done using an AlgorithmParameters instance, it must be convertible to an
IvParameterSpec using the AlgorithmParameters.getParameterSpec()method.
This Cipher does not support the Cipher.getParameters()method; this method will always return null. The only
supported parameter for this class is the initialization vector, which may be determined using the Cipher.getIV()
method.

CAST128 Key
The CAST128 Cipher requires either a SecretKeySpec or ProtectToolkit-J provider CAST128 Key during
initialization. The CAST128 key may be any length of 8 to 128 bits.

To create an appropriate SecretKeySpec, pass an array of up to 16 bytes and the algorithm name “CAST128” to
the SecretKeySpec constructor. For example:
byte[] keyBytes = { 0x41, 0x22, 0x35, 0x17,

0x39, 0xDF, 0x28, 0x94,
0x11, 0x93, 0x55, 0x67,
0x39, 0xAC, 0xCD, 0xFF };

SecretKeySpec castKey = new SecretKeySpec(keyBytes,
“CAST128”);

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 43



Chapter 3:   Supported Ciphers

Alternatively, a random ProtectToolkit-J CAST128 key can be generated using the KeyGenerator as described
in "Key Generation" on page 104, or, a provider-independent form. The CAST128 key may also be stored in the
ProtectToolkit-J KeyStore as described in "Key Storage" on page 108.
The ProtectToolkit-J CAST128 key will return the string “CAST128” as its algorithm name, “RAW” as its
encoding. However, since the key is stored within the hardware, the actual key encoding may not be available.

The key value can only be extracted from a key if the associated Cryptoki key is not marked as Sensitive. The
keys generated in ProtectToolkit-J will always be marked as sensitive. It is possible, however, to access any
Cryptoki keys stored on the device, and it is possible that the attributes of these keys have been modified.

CAST128 KeyGenerator
The CAST128 KeyGenerator is used to generate random CAST128 keys. The generated key will be a hardware
key that has the Cryptoki CKA_EXTRACTABLE and CKA_SENSITIVE attributes set. Since these keys are
marked as sensitive, their getEncoded()method will return null.
During initialization, the strength parameter may be any length from 8 to 128. The default key size is 128 bits.
The random parameter is ignored as the hardware includes a cryptographically-secure random source.

Keys generated using the KeyGenerator are not thread-safe. That is, a ProtectToolkit-J Key instance may only
be used by a single Cipher instance (as well as a single MAC instance) at any given time. See "Key
Generation" on page 104 for information on threading and ProtectToolkit-J keys.

CAST128 SecretKeyFactory
The CAST128 SecretKeyFactory is used to construct ProtectToolkit-J keys from their provider-independent
form. The provider-independent form of the CAST128 key is the au.com.safenet.crypto.spec.CASTKeySpec
class.

Keys generated using the SecretKeyFactory are not thread-safe. That is, a ProtectToolkit-J Key instance may
only be used by a single Cipher instance (as well as a single MAC instance) at any given time. See"Key
Generation" on page 104 for information on threading and ProtectToolkit-J keys.

For example, to create the provider-based key from its provider-independent form:
byte[] keyBytes = { 0x41, 0x22, 0x35, 0x17,

0x39, 0xDB, 0xDC, 0xEF
0x11, 0x93, 0x55, 0x67,
0x39, 0xAC, 0xCD, 0xFF };

CAST128KeySpec castKeySpec = new CAST128KeySpec(keyBytes);
SecretKeyFactory castKeyFact =

SecretKeyFactory.getInstance(“CAST128”, “SAFENET”);
SecretKey castKey=castKeyFact.generateSecret(castEdeKeySpec);

CAST128 Example Code
See "DES Example Code" on page 34 for the simple DES example. To convert the example to use CAST128,
use “CAST128” in place of “DES”.

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 44



Chapter 3:   Supported Ciphers

RC2
This algorithm is a 64-bit block cipher with a variable-length key usually 40-bit or 128-bit. RC2 was designed by
Ron Rivest and is a trademark of RSA Data Security. For more information on this algorithm, see RFC-2268.

RC2 Cipher Initialization
This cipher supports both ECB and CBCmodes, and may be used with NoPadding or PKCS5Padding. To
create an instance of this class, use the Cipher.getInstance()method with “SAFENET” as the provider and one
of the following strings as the transformation:

> RC2

> RC2/ECB/NoPadding

> RC2/ECB/PKCS5Padding

> RC2/CBC/NoPadding

> RC2/CBC/PKCS5Padding

Using the “RC2” transformation, the Cipher will default to ECB and NoPadding.
If the NoPaddingmode is selected, the input data must be a multiple of 8 bytes; otherwise, the encrypted or
decrypted result will be truncated. In PKCS5Padding, arbitrary data lengths are accepted; the ciphertext will be
padded to a multiple of 8 bytes, as described in PKCS#5. The decryption process will remove the padding from
the data so that the correct plaintext is returned.

This Cipher will accept a javax.crypto.spec.SecretKeySpec or
au.com.safenet.crypto.provider.CryptokiSecretKey as the key parameter during initialization.
The RC2 Cipher may also be initialized with an instance of the javax.crypto.spec.RC2ParameterSpec class.
With this class it is possible to supply an initialization vector and an effective key size. If the Cipher is not
initialized in this way, the effective key size will default to 128.

The IV may be provided as a java.security.AlgorithmParameters or a javax.crypto.spec.IvParameterSpec
instance. If the initialization is done using an AlgorithmParameters instance, it must be convertible to an
IvParameterSpec using the AlgorithmParameters.getParameterSpec()method.
This Cipher does not support the Cipher.getParameters()method; this method will always return null. The only
supported parameter for this class is the initialization vector, which may be determined using the Cipher.getIV()
method.

RC2 Key
The RC2 Cipher requires either a SecretKeySpec or ProtectToolkit-J provider RC2 Key during initialization. The
RC2 key may be any length of 8 to 1024 bits.

To create an appropriate SecretKeySpec, pass an array of up to 128 bytes and the algorithm name “RC2” to the
SecretKeySpec constructor. For example:
byte[] keyBytes = { 0x41, 0x22, 0x35, 0x17,

0x39, 0xDF, 0x28, 0x94,
0x11, 0x93, 0x55, 0x67,
0x39, 0xAC, 0xCD, 0xFF };

SecretKeySpec rc2Key = new SecretKeySpec(keyBytes, “RC2”);

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 45



Chapter 3:   Supported Ciphers

Alternatively, a random ProtectToolkit-J RC2 key can be generated using the KeyGenerator as described in
section "Public Keys" on page 105, or a provider-independent form as described in section "Key
Specifications" on page 110. The RC2 key may also be stored in the ProtectToolkit-J KeyStore, as described in
"Key Storage" on page 108.

The ProtectToolkit-J RC2 key will return the string “RC2” as its algorithm name, “RAW” as its encoding.
However, since the key is stored within the hardware, the actual key encoding may not be available.

The key value can only be extracted from a key if the associated Cryptoki key is not marked as Sensitive. The
keys generated in ProtectToolkit-J will always be marked as sensitive. It is possible, however, to access any
Cryptoki keys stored on the device, and it is possible that the attributes of these keys have been modified.

RC2 KeyGenerator
The RC2 KeyGenerator is used to generate random RC2 keys. The generated key will be a hardware key that
has the Cryptoki CKA_EXTRACTABLE and CKA_SENSITIVE attributes set. Since these keys are marked as
sensitive, their getEncoded()method will return null.
During initialization, the strength parameter may be any multiple of 8 up to 1024 inclusive. The default key size is
128 bits. The random parameter is ignored as the hardware includes a cryptographically-secure random source.

Keys generated using the KeyGenerator are not thread-safe. That is, a ProtectToolkit-J Key instance may only
be used by a single Cipher instance (as well as a single MAC instance) at any given time. See "Key
Generation" on page 104 for information on threading and ProtectToolkit-J keys.

RC2 SecretKeyFactory
The RC2 SecretKeyFactory is used to construct ProtectToolkit-J keys from their provider-independent form.
The provider-independent form of the RC2 key is the au.com.safenet.crypto.spec.RC2KeySpec class.
Keys generated using the SecretKeyFactory are not thread-safe. That is, a ProtectToolkit-J Key instance may
only be used by a single Cipher instance (as well as a single MAC instance) at any given time. See"Key
Generation" on page 104 for information on threading and ProtectToolkit-J keys.

For example, to create the provider based key from its provider-independent form:
byte[] keyBytes = { 0x41, 0x22, 0x35, 0x17,

0x39, 0xDB, 0xDC, 0xEF
0x11, 0x93, 0x55, 0x67,
0x39, 0xAC, 0xCD, 0xFF };

RC2KeySpec rc2KeySpec = new RC2KeySpec(keyBytes);
SecretKeyFactory rc2KeyFact =

SecretKeyFactory.getInstance(“RC2”, “SAFENET”);
SecretKey rc2Key = rc2KeyFact.generateSecret(castEdeKeySpec);

RC2 Example Code
See"DES" on page 33 for the simple DES example. To convert the example to use RC2, use “RC2” in place of
“DES”.
Replace the IvParameterSpec call with the RC2ParameterSpec call, as illustrated in the following code
example:
KeyGenerator keyGen = KeyGenerator.getInstance("RC2","SAFENET");
Key rcKey = keyGen.generateKey();
Cipher rc2Cipher = Cipher.getInstance("RC2/CBC/PKCS5Padding","SAFENET");
rc2Cipher.init(Cipher.ENCRYPT_MODE, rcKey);
byte[] iv = rc2Cipher.getIV();

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 46



Chapter 3:   Supported Ciphers

byte[] cipherText = rc2Cipher.doFinal("hello world".getBytes());
rc2Cipher.init(Cipher.DECRYPT_MODE, rcKey,new RC2ParameterSpec(iv));
byte[] plainText = rc2Cipher.doFinal(cipherText);

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 47



Chapter 3:   Supported Ciphers

RC4
This algorithm is a stream cipher with a variable length key, usually 40-bit or 128-bit. RC4 is a trademark of RSA
Data Security. A description of the algorithm may be found in Applied Cryptography by Bruce Schneier.

RC4 Cipher Initialization
Since the RC4 Cipher is a stream cipher, it always operates in the same mode, which may be specified by the
transformations “RC4” or “RC4/ECB/NoPadding”. To create an instance of this class, use the
Cipher.getInstance()method with “SAFENET” as the provider and one of the valid transformation strings.
The size of the output of this cipher will always be the same as that of the input.

This Cipher will accept a javax.crypto.spec.SecretKeySpec or
au.com.safenet.crypto.provider.CryptokiSecretKey as the key parameter during initialization.
This Cipher does not support initialization with algorithm parameters, and so the Cipher.getParameters()
method will always return null.

RC4 Key
The RC4 Cipher requires either a SecretKeySpec or ProtectToolkit-J provider RC4 Key during initialization. The
RC4 key may be any length of 8 to 2048 bits.

To create an appropriate SecretKeySpec, pass an array of up to 256 bytes and the algorithm name “RC4” to the
SecretKeySpec constructor. For example:
byte[] keyBytes = { 0x41, 0x22, 0x35, 0x17,

0x39, 0xDF, 0x28, 0x94,
0x11, 0x93, 0x55, 0x67,
0x39, 0xAC, 0xCD, 0xFF };

SecretKeySpec desKey = new SecretKeySpec(keyBytes, “RC4”);
Alternatively, a random ProtectToolkit-J RC4 key can be generated using the KeyGenerator, as described in
section "Public Keys" on page 105, or a provider-independent form as described in section "Key
Specifications" on page 110. The RC4 key may also be stored in the ProtectToolkit-J KeyStore, as described
in"Key Storage" on page 108.

The ProtectToolkit-J RC4 key will return the string “RC4” as its algorithm name, “RAW” as its encoding.
However, since the key is stored within the hardware, the actual key encoding may not be available.

The key value can only be extracted from a key if the associated Cryptoki key is not marked as Sensitive. The
keys generated in ProtectToolkit-J will always be marked as sensitive. It is possible, however, to access any
Cryptoki keys stored on the device, and it is possible that the attributes of these keys have been modified.

RC4 KeyGenerator
The RC4 KeyGenerator is used to generate random RC4 keys. The generated key will be a hardware key that
has the Cryptoki CKA_EXTRACTABLE and CKA_SENSITIVE attributes set. Since these keys are marked as
sensitive, their getEncoded()method will return null.
During initialization, the strength parameter may be any length from 8 to 2048. The default key size is 128 bits.
The random parameter is ignored as the hardware includes a cryptographically-secure random source.

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 48



Chapter 3:   Supported Ciphers

Keys generated using the KeyGenerator are not thread-safe. That is, a ProtectToolkit-J Key instance may only
be used by a single Cipher instance (as well as a single MAC instance) at any given time. See "Key
Generation" on page 104 for information on threading and ProtectToolkit-J keys.

RC4 SecretKeyFactory
The RC4 SecretKeyFactory is used to construct ProtectToolkit-J keys from their provider-independent form.
The provider-independent form of the RC4 key is the au.com.safenet.crypto.spec.RC4KeySpec class.
Keys generated using the SecretKeyFactory are not thread-safe. That is, a ProtectToolkit-J Key instance may
only be used by a single Cipher instance (as well as a single MAC instance) at any given time. See"Key
Generation" on page 104 for information on threading and ProtectToolkit-J keys.

For example, to create the provider-based key from its provider-independent form:
byte[] keyBytes = { 0x41, 0x22, 0x35, 0x17,

0x39, 0xDB, 0xDC, 0xEF
0x11, 0x93, 0x55, 0x67,
0x39, 0xAC, 0xCD, 0xFF };

RC4KeySpec castKeySpec = new RC4KeySpec(keyBytes);
SecretKeyFactory castKeyFact =

SecretKeyFactory.getInstance(“RC4”, “SAFENET”);
SecretKey castKey=castKeyFact.generateSecret(castEdeKeySpec);

RC4 Example Code
The following example code will create a random RC4 key, then create a RC4 cipher. Next, it initializes the cipher
for encryption using the newly-created key. We then save the initialization vector and encrypt the string "hello
world".
To perform the decryption, we simply re-initialize the cipher in decrypt mode, with the same key. In this case
there is no need to process the initialization vector, as there is none with the RC4 algorithm.
KeyGenerator keyGen = KeyGenerator.getInstance("RC4",

"SAFENET");
Key rc4Key = keyGen.generateKey();
Cipher rc4Cipher = Cipher.getInstance("RC4", "SAFENET");
rc4Cipher.init(Cipher.ENCRYPT_MODE, rc4Key);
byte[] cipherText = rc4Cipher.doFinal(

"hello world".getBytes());
rc4Cipher.init(Cipher.DECRYPT_MODE, rc4Key);
byte[] plainText = desCipher.doFinal(cipherText);

PBE Ciphers
A PBE Cipher is a password based cipher. It allows keying of a cipher based on a user supplied password.
PKCS#5 is the standard which defines the generic PBE algorithm used by all PBE algorithms except for the
PBEWithSHA1AndTripleDES algorithm, which uses PKCS#12 (see PKCS #12: Personal Information
Exchange Syntax Standard). A particular PBE implementation will combine a message digest algorithm (such as
MD5) with a symmetric encryption algorithm (DES, for example).

ProtectToolkit-J includes five password-based Ciphers. They are essentially identical, with the password-
generation differences below:

> PBEWithMD2AndDES - uses MD2 in password generation

> PBEWithMD5AndDES - uses MD5 in password generation

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 49



Chapter 3:   Supported Ciphers

> PBEWithMD5AndCAST - uses MD5 in password generation
> PBEWithSHA1AndCAST - uses SHA1 in password generation
> PBEWithSHA1AndTripleDES - uses SHA1 in password generation

As the names suggest, these ciphers use either DES, CAST, or TripleDES as their encryption algorithm, and are
therefore 64-bit block ciphers. They are all operated with the block cipher in CBCmode; however, the
initialization vector is determined from the password, so there is no need to supply its value.

PBE Cipher Initialization
A PBE Cipher will always operate with the underlying Cipher in a specific mode. For ProtectToolkit-J, the DES
Cipher will operate in CBCmode with PCKS5Padding. Thus, the only valid transformations that may be passed
to the Cipher.getInstance()method are PBEWithMD2AndDES, PBEWithMD5AndDES ,
PBEWithMD5AndCAST, PBEWithSHA1AndCAST, or PBEWithSHA1AndTripleDES.
This Cipher will only accept a ProtectToolkit-J provider PBE key as the key parameter during initialization. To
create such a Key, use the PBE SecretKeyFactory described below.
This Cipher also requires initialization with a valid PBEParameterSpec instance, (or an AlgorithmParameters
instance that can be converted to the generic form via the getParameterSpec()method). This parameters
instance is used to supply the salt and iteration count parameters to the PBE Cipher. This is a required
parameter, there are no defaults and so the Cipher.getParameters()method, this will always return null.

PBE Key
The PBE Cipher instances require initialization with a ProtectToolkit-J provider PBE key. Instances of this type
may be created using the PBE SecretKeyFactory. The PBE SecretKeyFactory is used to construct
ProtectToolkit-J keys from their provider-independent form. The provider independent form of the PBE key is the
javax.crypto.spec.PBEKeySpec class.
For example, to create the provider based key from its provider independent form:
PBEKeySpec pbeKS = new PBEKeySpec(“password”.toCharArray())
SecretKeyFactory pbeKF = SecretKeyFactory.getInstance(“PBE”,

“SAFENET”);
Key key = pbeKF.generateSecret(pbeKS);
The ProtectToolkit-J PBE key will return the string “PBE” as its algorithm name, “RAW” as its encoding.
However, this key class does not support encoding and so will return null from the getEncoded()method.

PBE Example Code
The following example code will create a PBE key with the string “password”, convert this into a ProtectToolkit-J
PBE key, then create a PBE cipher. Next it initializes the cipher for encryption using the newly-created key and
the PBE parameters with a salt of “salt” and an iteration count of 5. Finally we encrypt the string "hello world".
To perform the decryption, we simply re-initialize the cipher in decrypt mode, with the same key and parameters.
PBEKeySpec pbeKS = new PBEKeySpec(“password”.toCharArray())
SecretKeyFactory pbeKF = SecretKeyFactory.getInstance(“PBE”,

“SAFENET”);
Key pbeKey = pbeKF.generateSecret(pbeKS);
PBEParameterSpec pbeParams =

new PBEParameterSpec(“salt”.getBytes, 5);
Cipher pbeCipher = Cipher.getInstance(“PBEWithMD5andDES”,

“SAFENET”);
pbeCipher.init(Cipher.ENCRYPT_MODE, pbeKey, pbeParams);

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 50



Chapter 3:   Supported Ciphers

byte[] cipherText = pbeCipher.doFinal(
“hello world”.getBytes());

pbeCipher.init(Cipher.DECRYPT_MODE, pbeKey, pbeParams);
byte[] plainText = pbeCipher.doFinal(cipherText);

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 51



Chapter 3:   Supported Ciphers

RSA
This algorithm is a block cipher with a variable-length key, whose block size is equal to the key size. RSA is
patented in the United States by RSA Data Security. The RSA cipher will operate in one of five modes,
depending on the padding requested. If “PKCS1Padding” is requested, the processing is performed as
described in PKCS#1. If “NoPadding” is requested, the processing is performed as specified in X.509 for raw
RSA.

NOTE Currently the RSA Cipher only supports encryption or decryption of a single block. Any
attempt to pass more data than a single block will result in a RuntimeException.

RSA Cipher Initialization
This cipher supports both only ECBmode, and may be used with NoPadding or PKCS1Padding. To create an
instance of this class, use the Cipher.getInstance()method with “SAFENET” as the provider and one of the
following strings as the transformation:

> RSA

> RSA/ECB/NoPadding

> RSA/ECB/PKCS1Padding

> RSA/ECB/OAEP

> RSA/ECB/OAEPPadding

Using the “RSA” transformation, the Cipher will default to ECB and PKCS1Padding. The NoPadding option will
result in “RAW” RSA, where each block will be 0 padded.

The block size of this cipher is dependent on the key size in use. The block size is equal to the number of bytes of
the RSA modulus. If the modulus is k bytes long, then the encrypted output size is always k. For the
“NoPadding” mode, the plaintext input must be equal to or less than k; with the “PKCS1Padding” mode, the
plaintext input must be equal to or less than k-11 bytes.

This Cipher will only accept a ProtectToolkit-J provider-based key during initialization. This key must be
generated by the ProtectToolkit-J RSA KeyFactory, KeyPairGenerator or KeyStore.
This Cipher does not support initialization with algorithm parameters, and so the Cipher.getParameters()
method will always return null.

RSA Key
The RSA Cipher requires either a ProtectToolkit-J RSA public or private Key during initialization. The RSA key
may be any length between 512 and 4096 bits (inclusive).

A new ProtectToolkit-J RSA key can be generated randomly using the KeyPairGenerator as described in
section "Public Keys" on page 105, or a provider-independent form as described in section "Key
Specifications" on page 110. The RSA key may also be stored in the ProtectToolkit-J KeyStore, as described in
"Key Storage" on page 108 .

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 52



Chapter 3:   Supported Ciphers

The ProtectToolkit-J RSA key will return the string “RSA” as its algorithm name, the public key type will return
“X.509” as its encoding (the private key types will return “RAW”) as its encoding. However, since the key is
stored within the hardware, the actual key encoding may not be available (private keys will return null from the
getEncoded()method). If the public key is available, the getEncoded()method will return the key as a DER-
encoded X.509 SubjectPublicKeyInfo block containing the public key as defined in PKCS#1.
The key value can only be extracted from a key if the associated Cryptoki key is not marked as Sensitive. The
keys generated in ProtectToolkit-J will always be marked as sensitive. It is possible, however, to access any
Cryptoki keys stored on the device, and it is possible that the attributes of these keys have been modified.

RSA KeyPairGenerator
The RSA KeyPairGenerator is used to generate random RSA key pairs. The generated key pair will consist of
two hardware keys, the public key and a private key with the Cryptoki CKA_SENSITIVE attribute set. The public
exponent for this key generator is fixed to the Fermat-4 value (hex 0x100001).

During initialization, the strength parameter may be any length from 512 to 4096. The default key size is 1024
bits. The random parameter is ignored as the hardware includes a cryptographically-secure random source.

Keys generated using the KeyPairGenerator are not thread-safe. That is, a ProtectToolkit-J Key instance may
only be used by a single Cipher instance (as well as a single MAC instance) at any given time. See"Key
Generation" on page 104 for information on threading and ProtectToolkit-J keys.

RSA KeyFactory
The RSA KeyFactory is used to construct ProtectToolkit-J keys from their provider-independent form. There are
three standard provider-independent forms for RSA keys, one for public keys, and two for private keys. They are:

> java.security.spec.RSAPublicKeySpec
> java.security.spec.RSAPrivateKeySpec
> java.security.spec.RSAPrivateCrtKeySpec
Additionally, there is the au.com.safenet.crypto.spec.AsciiEncodedKeySpec class which can be used for
keys encoded as hexadecimal strings. For more information on this KeySpec, see "Key Specifications" on
page 110.

Keys generated using the KeyFactory are not thread-safe. That is, a ProtectToolkit-J Key instance may only be
used by a single Cipher instance (as well as a single MAC instance) at any given time. See"Key Generation" on
page 104 for information on threading and ProtectToolkit-J keys.

To convert one of these supported KeySpec classes into a ProtectToolkit-J provider key:
KeyFactory rsaKeyFact = KeyFactory.getInstance(“RSA”,

“SAFENET”);
PublicKey pubKey = rsaKeyFact.generatePublic(pubKeySpec);
PrivateKey privKey = rsaKeyFact.generatePrivate(privKeySpec);
The RSA KeyFactory cannot currently convert ProtectToolkit-J keys into their provider-independent format, so
the getKeySpec()method will throw an InvalidKeySpecException. The class also cannot perform any key
translation via the translateKey()method.

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 53



Chapter 3:   Supported Ciphers

RSA Example Code
The following example code will create a random RSA key pair, then create a RSA cipher in ECB mode with
PKCS1Padding. Next it initializes the cipher for encryption using the public key from a newly-created key pair.
Finally, we encrypt the string "hello world".
To perform the decryption, we re-initialize the cipher in decrypt mode, with the private key from the key pair.
KeyPairGenerator keyGen = KeyPairGenerator.getInstance("RSA",

"SAFENET");
KeyPair rsaPair = keyGen.generateKeyPair();
Cipher rsaCipher = Cipher.getInstance("RSA/ECB/PKCS1Padding",

"SAFENET");
rsaCipher.init(Cipher.ENCRYPT_MODE, rsaPair.getPublic());
byte[] cipherText = rsaCipher.doFinal(

"hello world".getBytes());
rsaCipher.init(Cipher.DECRYPT_MODE, rsaPair.getPrivate());
byte[] plainText = rsaCipher.doFinal(cipherText);

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 54



CHAPTER 4: Supported Signature
Algorithms

The following Signature algorithms are available with the Provider through the java.security.Signature
interface:

> "MD2withRSA" below

> "MD5withRSA" on the next page

> "SHA1withRSA" on the next page

> "SHA224withRSA" on the next page

> "SHA256withRSA" on the next page

> "SHA384withRSA" on the next page

> "SHA512withRSA" on page 57

> "SHA1withDSA" on page 57

> "PKCS#1RSA" on page 58

> "X.509RSA" on page 59

> "DSARaw" on page 59

> "RIPEMD128withRSA" on page 59

> "RIPEMD160withRSA" on page 59

MD2withRSA
This Signature class implements the algorithm “MD2withRSA” as defined in PKCS#1. This algorithm will
perform a message digest of the data to be signed, encode that information in a X.509 DigestInfo block, and then
RSA encrypt the DER-encoded block.

Initialization requires a ProtectToolkit-J RSA key, either a private key for signing or a public key for signature
verification. For more information on RSA keys, see "RSA" on page 52.

This algorithm is provided for compatibility only; newer applications should use eitherMD5withRSA or
SHA1withRSA.
The following example will sign the message “hello world” with a pre-existing RSA private key, and then verify it
with the corresponding public key.
KeyPair rsaPair; // pre existing key pair
Signature rsaSig = Signature.getInstance(“MD2withRSA”, “SAFENET”);
rsaSig.initSign(rsaPair.getPrivate());
rsaSig.update(“hello world”.getBytes());
byte[] sig = rsaSig.sign();
rsaSig.initVerify(rsaPair.getPublic());
rsaSig.update(“hello world”.getBytes());
if (rsaSig.verify(sig)) {

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 55



Chapter 4:   Supported Signature Algorithms

System.out.println(“Signature okay”);
}
else {

System.out.println(“Signature fails verification”);
}

MD5withRSA
This Signature class implements the algorithm “MD5withRSA”, as defined in PKCS#1. This algorithm will
perform a message digest of the data to be signed, encode that information in a X.509 DigestInfo block, and then
RSA encrypt the DER-encoded block.

Initialization requires a ProtectToolkit-J RSA key, either a private key for signing or a public key for signature
verification. For more information on RSA keys, see "RSA" on page 52.

See "MD2withRSA" on the previous page for a simple example on using this algorithm; modify the algorithm
name used to “MD5withRSA”.

SHA1withRSA
This Signature class implements the algorithm “RSASSA-PKCS1-v1_5”, as defined in PKCS#1. This algorithm
will perform a message digest of the data to be signed, encode that information in a X.509 DigestInfo block and
then finally RSA encrypt the DER-encoded block.

Initialization requires a ProtectToolkit-J RSA key, either a private key for signing or a public key for signature
verification. For more information on RSA keys, see "RSA" on page 52.

See "MD2withRSA" on the previous page for a simple example on using this algorithm; modify the algorithm
name used to “SHA1withRSA”.

SHA224withRSA
This signature class is similar to SHA1withRSA, except it produces a signature from a digest length of 224 bits.

See "MD2withRSA" on the previous page for a simple example on using this algorithm; modify the algorithm
name used to “SHA224withRSA”.

SHA256withRSA
This signature class is similar to SHA1withRSA, except it produces a signature from a digest length of 256 bits.

See "MD2withRSA" on the previous page for a simple example on using this algorithm; simply modify the
algorithm name used to “SHA256withRSA”.

SHA384withRSA
This signature class is similar to SHA1withRSA, except it produces a signature from a digest length of 384 bits.

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 56



Chapter 4:   Supported Signature Algorithms

See "MD2withRSA" on page 55 for a simple example on using this algorithm; simply modify the algorithm name
used to “SHA384withRSA”.

SHA512withRSA
This signature class is similar to SHA1withRSA, except it produces a signature from a digest length of 512 bits.

See "MD2withRSA" on page 55 for a simple example on using this algorithm; simply modify the algorithm name
used to “SHA512withRSA”.

SHA1withDSA
This Signature class implements the Digital Signature Algorithm (DSA) as defined in FIPS PUB 186, which is
also compatible with the Sun-provided Signature algorithm of the same name. This algorithm will perform a
message digest (using SHA1) of the data to be signed, and then sign that data using DSA. The result of a sign
operation using this algorithm will be a DER-encoded block containing a sequence of the two integer values r
and s.

Initialization requires a ProtectToolkit-J DSA key, either a private key for signing or a public key for signature
verification. The section "DSA Key" below describes how to generate ProtectToolkit-J provider DSA keys.

DSA Key
The DSA Signature requires a ProtectToolkit-J DSA public or private Key during initialization. The DSA key may
be any length between 512 and 4096 bits (inclusive).

A new ProtectToolkit-J DSA key pair can be generated randomly using the KeyPairGenerator, as described in
"Key Generation" on page 104, or, a provider-independent form. The AES key may also be stored in the
ProtectToolkit-J KeyStore as described in "Key Storage" on page 108.
The ProtectToolkit-J DSA public and private keys will return the string “DSA” as the algorithm name, “RAW” as
the encoding type and null for the encoding.

DSA KeyGenerator
The DSA KeyPairGenerator is used to generate random DSA key pairs. The generated key pair will consist of
two hardware keys: the public key and a private key with the Cryptoki CKA_SENSITIVE attribute set. Each key
will also share the same set of DSA parameters.

During initialization, the strength parameter may be either 512 or 4096. The default key size is 1024 bits. The
random parameter is ignored as the hardware includes a cryptographically-secure random source. Any provided
AlgorithmParameterSpec parameters will also be ignored (this precludes generation of keys with non-default
parameters). The DSA parameters used for the 512 and 1024 bit keys are as specified in the Java Cryptography
Architecture Specification.

Keys generated using the KeyGenerator are not thread-safe. That is, a ProtectToolkit-J Key instance may only
be used by a single Cipher instance (as well as a single MAC instance) at any given time. See "Key
Generation" on page 104 for information on threading and ProtectToolkit-J keys.

The following example will generate a new random 1024 bit key pair:

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 57



Chapter 4:   Supported Signature Algorithms

KeyPairGenerator keyGen = KeyPairGenerator.getInstance(
“DSA”, “SAFENET”);

KeyPair dsaPair = keyGen.generateKeyPair();

DSA KeyFactory
The DSA KeyFactory is used to construct ProtectToolkit-J keys from their provider-independent form. There are
two standard provider-independent forms for DSA keys: one for public keys and one for private keys. They are
java.security.spec.DSAPublicKeySpec, and java.security.spec.DSAPrivateKeySpec.
Keys generated using the KeyFactory are not thread-safe. That is, a ProtectToolkit-J Key instance may only be
used by a single Cipher instance (as well as a single MAC instance) at any given time. See "Key Generation" on
page 104 for information on threading and ProtectToolkit-J keys.

To convert one of these supported KeySpec classes into a ProtectToolkit-J provider key:
KeyFactory dsaKeyFact = KeyFactory.getInstance(“DSA”,

“SAFENET”);
PublicKey pubKey = dsaKeyFact.generatePublic(pubKeySpec);
PrivateKey privKey = dsaKeyFact.generatePrivate(privKeySpec);
The DSA KeyFactory cannot currently convert ProtectToolkit-J keys into their provider independent format so
the getKeySpec()method will throw an InvalidKeySpecException. The class also cannot perform any key
translation via the translateKey()method.

DSA Example Code
The following example code will create a random DSA key pair, then create a DSA Signature. We will then use
this instance to sign the message “hello world” and verify that signature using the public key.
KeyPairGenerator keyGen = KeyPairGenerator.getInstance("DSA",

"SAFENET");
KeyPair rsaPair = keyGen.generateKeyPair();
Signature dsaSig = Signature.getInstance("DSA",

"SAFENET");
dsaSig.initSign(dsaPair.getPrivate());
dsaSig.update(“hello world”.getBytes());
byte[] sig = dsaSig.sign();
dsaSig.initVerify(dsaPair.getPublic();
dsaSig.update(“hello world”.getBytes());
if (dsaSig.verify()) {

System.out.println(“Signature okay”);
}
else {

System.out.println(“Signature fails verification”);
}

PKCS#1RSA
This signature algorithm will produce a PKCS#1 encoded block (block type 01) containing the private-key
encrypted message. The message length must be k-11 bytes long, where k is the length of the RSA modulus.
The generated signature will be k bytes long.

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 58



Chapter 4:   Supported Signature Algorithms

X.509RSA
This signature algorithm will perform "raw" RSA exponentiation on the input message by converting it to an
integer (most-significant byte first) and converting the result to a byte string (most-significant byte first). The input
message, considered as an integer, must be less than the modulus. Where necessary, the input message is
padded by prepending the message with 0-valued bytes.

This algorithm is intended for compatibility with applications that do not follow the PKCS#1 block format.

DSARaw
This signature algorithm will perform "raw" DSA exponentiation on the input message by converting it to an
integer (most-significant byte first) and converting the result to a byte string (most-significant byte first). The input
message, considered as an integer, must be less than the modulus. Where necessary, the input message is
padded by prepending the message with 0-valued bytes.

This algorithm is intended for compatibility with applications that do not follow the PKCS#1 block format.

RIPEMD128withRSA
This Signature class implements the algorithm “MD5withRSA”, as defined in PKCS#1, with the message digest
algorithm RIPEMD128 in place of MD5. This algorithm will perform a message digest of the data to be signed,
encode that information in a X.509 DigestInfo block, and then RSA-encrypt the DER-encoded block.

Initialization requires a ProtectToolkit-J RSA key, either a private key for signing or a public key for signature
verification. For more information on RSA keys, see "RSA" on page 52.

See "MD2withRSA" on page 55 for a simple example on using this algorithm; simply modify the algorithm name
used to “RIPEMD128withRSA”.

RIPEMD160withRSA
This Signature class implements the algorithm “MD5withRSA”, as defined in PKCS#1, with the message digest
algorithm RIPEMD160 in place of MD5. This algorithm will perform a message digest of the data to be signed,
encode that information in a X.509 DigestInfo block and then RSA-encrypt the DER-encoded block.

Initialization requires a ProtectToolkit-J RSA key, either a private key for signing or a public key for signature
verification. For more information on RSA keys, see "RSA" on page 52.

See "MD2withRSA" on page 55 for a simple example on using this algorithm; simply modify the algorithm name
used to “RIPEMD128withRSA”.

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 59



CHAPTER 5: Supported MAC Algorithms

The following MAC algorithms are available with the Provider through the javax.crypto.Mac interface:
> "DES MAC" below

> "DESede MAC" below

> "DESedeX919 MAC" below

> "IDEA MAC" on the next page

> "CAST128 MAC" on the next page

> "RC2" on the next page

> "HMAC/MD2" on the next page

> "HMAC/MD5" on the next page

> "HMAC/SHA1" on the next page

> "HMAC/SHA224" on page 62

> "HMAC/SHA256" on page 62

> "HMAC/SHA384" on page 62

> "HMAC/SHA512" on page 62

A sample code fragment for generating a MAC code is provided here:

> "Sample MAC Code" on page 62

DESMAC
This algorithm is compatible with FIPS PUB 113 as well as ANSI X9.9.

The MACmay be initialized using any valid DES key (see "DES" on page 33). The result MAC value will be a 4-
byte array.

DESede MAC
This algorithm is compatible with FIPS PUB 113.

The MACmay be initialized using any valid DESede key (see "DESede" on page 36). The result MAC value will
be a 4-byte array.

DESedeX919 MAC
This MAC implements the triple DES MAC algorithm as defined in X9.19 (or ISO 9807).

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 60



Chapter 5:   Supported MAC Algorithms

The MACmay be initialized using any valid DESede key (see "DESede" on page 36). The result MAC value will
be a 4-byte array.

IDEA MAC
This algorithm is compatible with FIPS PUB 113.

The MACmay be initialized using any valid IDEA key (see "IDEA" on page 41). The result MAC value will be a 4-
byte array.

CAST128 MAC
This algorithm is compatible with FIPS PUB 113.

The MACmay be initialized using any valid CAST128 key (see "CAST128" on page 43). The result MAC value
will be a 4-byte array.

RC2
This algorithm is compatible with FIPS PUB 113.

The MACmay be initialized using any valid RC2 key (see "RC2" on page 45). The result MAC value will be a 4-
byte array.

HMAC/MD2
This HMAC implements the HMAC algorithm as defined in RFC 2104 using the message digest function MD2.
The result MAC value will be a 16-byte array.

The MACmay be initialized using a SecretKeySpec with the algorithm name “HMAC/MD2”. It is also possible to
initialize this MAC using any of the secret keys generated by one of the KeyGenerator classes or KeyFactory
classes, as detailed in "Supported Ciphers" on page 31.

HMAC/MD5
This HMAC implements the HMAC algorithm as defined in RFC 2104 using the message digest function MD5.
The result MAC value will be a 16-byte array.

The MACmay be initialized using a SecretKeySpec with the algorithm name “HMAC/MD5”. It is also possible to
initialize this MAC using any of the secret keys generated by one of the KeyGenerator classes or KeyFactory
classes, as detailed in "Supported Ciphers" on page 31.

HMAC/SHA1
This HMAC implements the HMAC algorithm as defined in RFC 2104 using the message digest function SHA1.
The result MAC value will be a 20-byte array.

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 61



Chapter 5:   Supported MAC Algorithms

The MACmay be initialized using a SecretKeySpec with the algorithm name “HMAC/SHA1”. It is also possible
to initialize this MAC using any of the secret keys generated by one of the KeyGenerator classes or KeyFactory
classes, as detailed in "Supported Ciphers" on page 31.

HMAC/SHA224
This HMAC implements the HMAC algorithm as defined in RFC 2104 using the message digest function
SHA224. The result MAC value will be a 28-byte array.

The MACmay be initialized using a SecretKeySpec with the algorithm name “HMAC/SHA224”. It is also
possible to initialize this MAC using any of the secret keys generated by one of the KeyGenerator classes or
KeyFactory classes, as detailed in "Supported Ciphers" on page 31.

HMAC/SHA256
This HMAC implements the HMAC algorithm as defined in RFC 2104 using the message digest function
SHA256. The result MAC value will be a 32-byte array.

The MACmay be initialized using a SecretKeySpec with the algorithm name “HMAC/SHA256”. It is also
possible to initialize this MAC using any of the secret keys generated by one of the KeyGenerator classes or
KeyFactory classes, as detailed in "Supported Ciphers" on page 31.

HMAC/SHA384
This HMAC implements the HMAC algorithm as defined in RFC 2104 using the message digest function
SHA384. The result MAC value will be a 48-byte array.

The MACmay be initialized using a SecretKeySpec with the algorithm name “HMAC/SHA384”. It is also
possible to initialize this MAC using any of the secret keys generated by one of the KeyGenerator classes or
KeyFactory classes, as detailed in "Supported Ciphers" on page 31.

HMAC/SHA512
This HMAC implements the HMAC algorithm as defined in RFC 2104 using the message digest function
SHA512. The result MAC value will be a 64-byte array.

The MACmay be initialized using a SecretKeySpec with the algorithm name “HMAC/SHA512”. It is also
possible to initialize this MAC using any of the secret keys generated by one of the KeyGenerator classes or
KeyFactory classes, as detailed in "Supported Ciphers" on page 31.

Sample MAC Code
This sample code fragment will generate a MAC code (based on a randomly generated DES key) for the bytes in
the string "hello world".
KeyGenerator keyGen = KeyGenerator.getInstance("DES", "SAFENET");
Key desKey = keyGen.generateKey();

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 62



Chapter 5:   Supported MAC Algorithms

Mac desMac = Mac.getInstance("DES", "SAFENET");
desMac.init(desKey);
byte[] mac = desMac.doFinal("hello world".getBytes());

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 63



CHAPTER 6: Supported Message Digest
Algorithms

The following standard message digest algorithms are supported by the Provider through the
java.security.MessageDigest interface:

Message Digest Name Digest Length (bits)

"MD2" below 128

"MD5" below 128

"SHA-1" on the next page 160

"SHA-224" on the next page 224

"SHA-256" on the next page 256

"SHA-384" on the next page 384

"SHA-512" on the next page 512

"RIPEMD128" on page 66 128

"RIPEMD160" on page 66 160

MD2
This message digest algorithm produces a 128-bit digest. The algorithm is described in RFC-1319. This
algorithm is provided for compatibility only and is not recommended for other purposes. Instances of this
algorithm cannot be cloned.

To create a MD2 message digest for the message “hello world”:
MessageDigest md2 = MessageDigest.getInstance(“MD2”, “SAFENET”);
byte[] digest = md2.digest(“hello world”.getBytes());

MD5
This message digest algorithm produces a 128-bit digest. The algorithm is described in RFC-1321. This
algorithm is provided for compatibility only and is not recommended for other purposes. Instances of this
algorithm cannot be cloned.

To create a MD5 message digest for the message “hello world”:

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 64



Chapter 6:   Supported Message Digest Algorithms

MessageDigest md5 = MessageDigest.getInstance(“MD5”, “SAFENET”);
byte[] digest = md5.digest(“hello world”.getBytes());

SHA-1
The SHA-1 message digest algorithm produces a 160-bit digest. The algorithm is described in FIPS PUB 180-1.
Instances of this algorithm cannot be cloned.

To create a SHA-1 message digest for the message “hello world”:
MessageDigest sha1 = MessageDigest.getInstance(“SHA-1”, “SAFENET”);
byte[] digest = sha1.digest(“hello world”.getBytes());

SHA-224
The SHA-224 message digest algorithm produces a 224-bit digest. The algorithm is described in FIPS PUB 180-
1. Instances of this algorithm cannot be cloned.

To create a SHA-224 message digest for the message “hello world”:
MessageDigest sha256 = MessageDigest.getInstance(“SHA-224”, “SAFENET”);
byte[] digest = sha224.digest(“hello world”.getBytes());

SHA-256
The SHA-256 message digest algorithm produces a 256-bit digest. The algorithm is described in FIPS PUB 180-
1. Instances of this algorithm cannot be cloned.

To create a SHA-256 message digest for the message “hello world”:
MessageDigest sha256 = MessageDigest.getInstance(“SHA-256”, “SAFENET”);
byte[] digest = sha256.digest(“hello world”.getBytes());

SHA-384
The SHA-384 message digest algorithm produces a 384-bit digest. The algorithm is described in FIPS PUB 180-
1. Instances of this algorithm cannot be cloned.

To create a SHA-384 message digest for the message “hello world”:
MessageDigest sha384 = MessageDigest.getInstance(“SHA-384”, “SAFENET”);
byte[] digest = sha384.digest(“hello world”.getBytes());

SHA-512
The SHA-512 message digest algorithm produces a 512-bit digest. The algorithm is described in FIPS PUB 180-
1. Instances of this algorithm cannot be cloned.

To create a SHA-512 message digest for the message “hello world”:
MessageDigest sha512 = MessageDigest.getInstance(“SHA-512”, “SAFENET”);
byte[] digest = sha512.digest(“hello world”.getBytes());

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 65



Chapter 6:   Supported Message Digest Algorithms

RIPEMD128
The RIPEMD128 message digest algorithm produces a 128-bit digest. Instances of this algorithm cannot be
cloned.

To create a RIPEMD128 message digest for the message “hello world”:
MessageDigest rmd128 = MessageDigest.getInstance(“RIPEMD128”,
“SAFENET”);
byte[] digest = rmd128.digest(“hello world”.getBytes());

RIPEMD160
The RIPEMD160 message digest algorithm produces a 160-bit digest. Instances of this algorithm cannot be
cloned.

To create a RIPEMD160 message digest for the message “hello world”:
MessageDigest rmd160 = MessageDigest.getInstance(“RIPEMD160”,
“SAFENET”);
byte[] digest = rmd160.digest(“hello world”.getBytes());

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 66



Chapter 7:   Key Management Utility (KMU) Reference

CHAPTER 7: Key Management Utility (KMU)
Reference

The Key Management Utility (KMU) provides a graphical user interface for key management functions, using a
PKCS #11 sub-system. The utility provides the same functionality as the command line utility ctkmu See
CTKMU in the "Command Line Utilities Reference" section of the ProtectToolkit-C Administration Guide for more
information about this utility.

NOTE The KMU application is a Java-based application. A working Java runtime that supports
the Swing user interface must be installed. This application has been tested with JDK 6, JDK 7,
and JDK 8. The screenshots throughout this manual may vary from platform to platform.
When operating in WLD/HA mode, this utility should only be used to view the configuration. Any
changes to the configuration should be made in NORMAL mode. See Operation in WLDMode
and Operation in HA Mode in the "Cryptoki Configuration" section of the ProtectToolkit-C
Administration Guide for more information about these operating modes.

This chapter contains the following sections:

> "Compatibility Issues" on the next page

> "Main KMU Interface" on the next page

> "Logging Into and Out From Tokens" on page 70

> "Creating Keys" on page 71

• "Available Keys" on page 72

• "Key Attribute Types" on page 72

• "Creating a Random Secret Key" on page 73

• "Creating a Random Key Pair" on page 74

• "Creating Key Components" on page 76

• "Entering a Key from Components" on page 78

> "Editing Key Attributes" on page 79

> "Deleting a Key" on page 80

> "Display Key Check Value" on page 80

> "Importing and Exporting Keys" on page 80

> "Key Backup Feature Tutorial" on page 87

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 67

../../../../../../Content/PTK-C_Admin/CLI_Ref/CTKMU.htm
../../../../../../Content/PTK-C_Admin/Cryptoki_Config/WLD_Model/operation_WLD.htm
../../../../../../Content/PTK-C_Admin/Cryptoki_Config/WLD_Model/operation_HA.htm


Chapter 7:   Key Management Utility (KMU) Reference

Compatibility Issues

Using KMU with ProtectToolkit-J
ProtectToolkit-J is SafeNet’s Java Cryptography Architecture (JCA) and Java Cryptography Extension provider
(JCE) software.

KMUmay be used to set up tokens and keys for use with ProtectToolkit-J V3 or later.  The tokens and keys that
are managed with KMU are fully compatible and may be utilized by ProtectToolkit-J.  The KMUmay also be used
to see and manipulate keys that have been created by ProtectToolkit-J.  For more information, see "Key
Management" on page 108 in the ProtectToolkit-J Reference Guide.

Please contact Thales for further details on its SafeNet ProtectToolkit-J products.

Using KMU with ProtectToolkit-C V4.0, V3.x, and V2.x
This version of the KMU is not compatible for use with ProtectToolkit-C version 4.0 or less.

The KMU can read backup files and smart cards created by ProtectToolkit-C v2.x and v3.x but cannot create
backup cards/files for these older versions.

The ctkmu command line utility is capable of creating backup cards/files for ProtectToolkit-C v4.0 and V3.x
HSMs. So, if you are exporting keys from a system running ProtectToolkit-C 4.1 or above for import to an older
system then use the ctkmu and the -3 option.
Please contact Thales for a KMU that is compatible with older versions of this software.

Main KMU Interface
To start the KMU when using Microsoft Windows, locate the relevant program folder in the Windows Start menu
and click on the appropriate shortcut. To start the KMU in a UNIX environment, enter kmu at the command
prompt. To exit the KMU, select Tokens> Exit from the menu bar. Selecting Help from the main menu can
retrieve information about the current KMU version.

When the KMU is started, all toolbar functions are initially disabled. The user must first select a Token from the
Select a token drop-down box, which will list all available tokens. Initialized tokens are displayed by their
assigned label name. Uninitialized tokens are displayed as <Slotn>:<uninitialized token>.

NOTE The KMU is unable to initialize tokens or change PINs. Use gCTAdmin or the
command-line utility ctconf to perform these operations.

Once a token has been selected, the user is given the option to login. The PIN is authenticated, and a list of keys
and other objects within the token are displayed in theObjects on Selected Token box. Appropriate buttons on
the toolbar are enabled as shown in "Key Management Utility Main Interface" on the next page.

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 68



Chapter 7:   Key Management Utility (KMU) Reference

Figure 1: Key Management Utility Main Interface

Token and Key Selection
Tokens are selected from the Select a token drop-down box. If an uninitialized token is selected, an error
message is displayed. Use the admin utilityGCTADMIN to initialize tokens.

TheObjects on Selected Token box displays the objects currently stored on the selected token. This list
displays the label and the type of each object. Select items from this list to perform the various functions.

NOTE More than one key may be selected by drag-selecting to choose a range or SHIFT-
LBUTTON to add/remove items to a selection. Operations that can accept more than one key
will process all selected keys.

Toolbar Buttons
The buttons on the toolbar correspond to the following commands.

Token Info Edit Key Attributes

Create Random Secret Key Delete Key

Create Key Pair Import Key

Create Key Components Export Key

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 69



Chapter 7:   Key Management Utility (KMU) Reference

Enter Key from Components Import Domain Parameters

Display Key Check Value About KMU

The toolbar can be enabled or disabled from the Viewmenu.

Retrieving Information about a Token
Click the Token Info button on the toolbar, or choose Tokens> Token Info from the menu bar. The Token Info
dialog is displayed.

For more information on the items shown in this dialog, please refer to the PKCS #11 standard document.

Logging Into and Out From Tokens
To log in to a token

1. Select an initialized token from the Select a token drop-down list.
2. Select a user type and enter the PIN corresponding to the selected token.

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 70



Chapter 7:   Key Management Utility (KMU) Reference

NOTE Make sure that the CAPS lock is not on if the password contains lowercase characters.

PIN entry is masked so only the '•' character will be displayed as characters are typed. Some operations
require the Security Officer (SO) to be logged in while other operations (private object operations) require the
user to be logged in. It is also possible to open the token without logging in, but only public objects will be
visible (also, depending on the security policy for the token, various operations like key generation might not
be possible).

To log out from a token

Select Tokens > Logout From Token from the menu bar.

Creating Keys
The KMU supports four key creation functions:

> "Creating a Random Secret Key" on page 73

> "Creating a Random Key Pair" on page 74 (RSA public and private keys, for example)

> "Creating Key Components" on page 76

> "Entering a Key from Components" on page 78

NOTE To refresh the key information displayed on the Main KMU Interface, selectOptions>
Refresh from the menu bar. The display a representation of what KMU has found on that
token. If the token is modified by any other process or the KMU is out of sync with the token for
any reason, choosing this menu option will refresh the list.

The KMU can also export and import keys for key backup and/or key escrow. This feature employs the PKCS
#11 concept of key wrapping using high security key encryption keys (KEK) to wrap other KEKs and/or data
keys. The KEK is a special key created with the wrap attribute, allowing it to be used for this purpose. KEKs are
usually created as split custodian keys because of their enhanced security.

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 71



Chapter 7:   Key Management Utility (KMU) Reference

NOTE Only keys marked for export may be wrapped in this way, so it is possible to create keys
that can never be extracted from the secure key storage.

Key Component creation is an important feature of ProtectToolkit-C, since it allows key material to be split up
and distributed among multiple trusted custodians. All custodians must combine their components to reconstruct
the keys. Key custodians may use smart cards for key component and authentication PIN data storage, or use a
disk file for key component storage.

Available Keys
The following key types are available when selecting a key operation:

Single Key Types Key Pair Types

DES RSA (Public)

Double DES RSA (Private)

Triple DES DSA (Public)

AES (16, 24, or 36 bytes) DSA (Private)

IDEA DH (Public)

CAST128 (1 to 16 bytes) DH (Private)

RC2 (1 to 128 bytes) EC (Public)

RC4 (1 to 256 bytes) EC (Private)

SEED

Key Attribute Types
You can specify what attributes a key will have when it is created. The following table describes the attributes
which you can set when creating a key using the KMU.

Attribute Description

Persistent Stores the object on non-volatile memory.  Persistent objects can be accessed after session
termination.

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 72



Chapter 7:   Key Management Utility (KMU) Reference

Attribute Description

Private Defines whether the user PIN protects the object.  A private object is only accessible to an
application that has supplied the user PIN.

Sensitive If a key is sensitive, the key’s value cannot be revealed in plain text.  Once a key becomes
Sensitive it cannot be modified to be non-sensitive.

Modifiable Indicates whether or not the object is modifiable, that is, if the object’s attributes may be modified
after creation.

Wrap Indicates that the key may be used to wrap (that is, extract) other keys.

Unwrap Indicates that the key may be used to unwrap keys.

Extractable An extractable key can be wrapped (encrypted with another key) and extracted from the HSM.

Export Indicates the key may be used to export other keys (similar to the wrap function).

Exportable An exportable key may be wrapped (encrypted with another key), but only with keys marked with
the Export attribute.

Derive Indicates that the key can be used in key derivation functions.

Encrypt Indicates that the key may be used for encryption.

Decrypt Indicates that the key may be used for decryption.

Sign Indicates that the key may be used for signing.

Verify Indicates that the key may be used for verifying signatures or MAC values.

Creating a Random Secret Key
1. Select an initialized token from the Select a Token drop-down box and click on the Secret Key button in the

toolbar. Alternatively, selectOptions> Create> Secret Key from the menu bar.

TheGenerate Secret Key dialog is displayed.

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 73



Chapter 7:   Key Management Utility (KMU) Reference

2. Choose the type of key you wish to generate from theMechanism drop-down box. If you are generating an
AES, CAST, RC2 or RC4 key, you must specify a Key Size.

3. Enter a label for the key into the Label input field.
4. Select the desired key attributes by checking their boxes. See "Key Attribute Types" on page 72 for

descriptions of the individual attributes. There will be a default set of attributes checked for the key type.

5. ClickOK to generate the secret key, or Cancel to reject your input and return to the previous menu.
The generated key will be displayed in theObjects on Selected Token box on the main KMU interface.

Creating a Random Key Pair
1. Select an initialized token from the Select a Token drop-down box and click on the Key Pair button in the

toolbar. Alternatively, selectOptions> Create> Key Pair from the menu bar.

TheGenerate Key Pair dialog is displayed.

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 74



Chapter 7:   Key Management Utility (KMU) Reference

2. Select the type of key pair you wish to generate from the Key Pair Type drop-down box.
The Subject field can be left blank, in which case there will be no X.500 certificate information attached to the
key pair. If you specify a Subject, it must be set according to X.500 distinguished name syntax. For example,.
C=CA,O=safenet, CN=Alice. The subject fields can be any of the following, and may be input in any order:
• C= Country code

• O= Organization

• CN= Common Name

• OU= Organizational Unit

• L= Locality name

• ST= State name

This information will be stored with the public and private key objects in the CKA_SUBJECT_STR attribute
and also DER-encoded and stored in the CKA_SUBJECT attribute. This attribute will be propagated into any
PKCS #10 and X.509 certificates derived from these keys.

3. Specify the Key Size (bits) or Curve Name (only enabled if Key Pair Type is Elliptic Curve).

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 75



Chapter 7:   Key Management Utility (KMU) Reference

NOTE If the FIPS Mode security policy is enabled, the cryptographic operations of RSA, DSA,
DH, and EC algorithms are restricted to key sizes within a specified range. For more
information about the size limitations of keys that are created or imported in FIPS Mode, see
FIPS Mode Operational Restrictions in the "Security Policies and User Roles" section of the
ProtectToolkit-C Administration Guide.

4. Label both the public key and the private key. Check or uncheck any available boxes to select the desired key
attributes.

NOTE The check boxes are enabled and disabled according to the selected Key Pair Type.

5. PressOK to generate the keys, or Cancel to discard your input and return to the previous menu.
Generated keys will be displayed under theObjects on Selected Token list on the main KMU user interface.

Creating Key Components
This function will create a random key as a number of components. These components may be recorded
manually, either for backup purposes or so that they can be entered on another machine by using the Enter Key
function.

This is useful for the creation and distribution of Key Encryption Keys (KEKs) with multiple custodians. This
function makes it possible to create a key whose value is unknown to any single party. Only by combining the
components known by each custodian can the key be regenerated. Each component is randomly generated, and
in itself does not expose any portion of the final key value.

To create key components

1. Select an initialized token from the Select a Token drop-down. Log in if necessary.
2. ChooseOptions> Create> Generate Key Components from the menu bar, to open the Create Key

Components dialog box.

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 76

../../../../../../Content/PTK-C_Admin/Sec_Policies_User_Roles/typ_sec_policies.htm#FIPS


Chapter 7:   Key Management Utility (KMU) Reference

3. Select a key type from theMechanism drop-down list.

4. Enter a label for the key into the Label field.
5. For key types AES, CAST, RC2 and RC4, specify the size of the key to be generated in the Key Size (bits)

field.

6. Decide on the key attributes and click active checkboxes as required.
7. ClickOK to continue, or Cancel to abort this operation and return to the previous menu.
8. When prompted by the KMU, enter in the Number of Components field the number of components that you

wish the key to be split into. There is no limit on the number of components.

9. ClickOK to start displaying the key components, or Cancel to abort this operation and return to the previous
menu.

A Ready to generate componentn dialog box will be displayed for each component determined in step 8.

10.Record the Component Value and Key Check Value (KCV), both given in hexadecimal, displayed in these
dialogs. The KCV for the generated component is used to verify correct entry of the component during
manual key component entry.

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 77



Chapter 7:   Key Management Utility (KMU) Reference

Entering a Key from Components
This function allows a key to be entered from one or more components.

To enter a key from components

NOTE The component entry can be masked by selectingOptions> Mask Component Entry
before beginning the operation.

1. Select an initialized token from the Select a Token drop-down box and click Enter Key From Components
on the toolbar. Alternatively, selectOptions> Create> Enter Key From Components from the menu bar.

The Enter Key Components dialog will open.

2. Select a key type from theMechanism drop-down list.

3. Enter a label for the key into the Label field.
4. For key types AES, CAST, RC2 and RC4, specify the size of the key to be generated in the Key Size (bits)

field.

5. Decide on the key attributes and click active checkboxes as required.
6. ClickOK to continue, or Cancel to abort this operation and return to the previous menu.
7. When prompted by the KMU, enter the number of key components to combine in the Number of

Components field. There is no limit on the number of components.
8. ClickOK to continue and open the Ready to accept componentn dialog, or Cancel to abort this operation

A number of component dialogs will appear, corresponding with the number specified in the Enter Key
dialog.

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 78



Chapter 7:   Key Management Utility (KMU) Reference

NOTE The KCV appears automatically when the key component is entered, allowing the
custodian to confirm correct entry. The KMU will check that the KCVmatches that of the key
components being input. If a mismatch is detected, an error is shown.

Key check value (KCV) of symmetric keys can be displayed by selecting a key and clicking View on the toolbar.
Alternatively, selectOptions> View from the menu bar.

Refer to PKCS #11 Attributes in the ProtectToolkit-C Administration Guide for details on how the KCV is
calculated.

Editing Key Attributes
The attributes available to edit depend on what attributes were set when the key was created. The Edit
Attributes dialog box displays only the attributes that can be changed. Unavailable attributes are grayed out.

To edit key attributes

1. Double-click on the key you want to edit.
The Edit Attributes dialog box is displayed.

2. Check the active boxes for the attributes you want to change.

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 79

../../../../../../Content/PTK-C_Admin/pkcs11_attributes.htm


Chapter 7:   Key Management Utility (KMU) Reference

Deleting a Key
To delete a key

1. Select an initialized token from the Token Selection drop-down box. Enter the User PIN.
2. Select the key to be deleted from theObjects on Selected Token box, and click Delete Key on the toolbar.

Alternatively, selectOptions> Delete from the menu bar.

Display Key Check Value
You can check that a key matches an expected key value, without revealing anything about the actual key value,
by viewing its Key Check Value (KCV).

The KCV is a standard technique for obtaining an identification fingerprint from a key. The mechanism used,
compatible with AS 2805, is simply the first three hex digits obtained by encrypting binary zeros with the key.
Please refer to "Creating Keys" on page 71 for details of KCV generation.

To display the KCV for a key

Select a key from theObjects on Selected Token list and click the View button on the toolbar.

Alternatively, selectOptions> View from the menu bar.

Importing and Exporting Keys
The process of exporting and importing keys ensures that keys, certificate objects, and other PKCS#11 objects
can be recovered after a failure or tamper event. Keys can be exported to files on the host system or to smart
cards. When exporting to smart cards, you may export keys to a single card (single-custodian) or split the key
over multiple cards (multiple-custodian). All PKCS#11 attributes, including security attributes, and the
key/object's value are backed up.

It is not possible to back up the security officer and user PINs for a token. Before a restore/import operation, the
destination token must be already initialized and the SO and user PINs set. A number of additional keys are
generated, used, and then deleted during the backup process.

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 80



Chapter 7:   Key Management Utility (KMU) Reference

Exporting Keys
This function allows keys to be encrypted and written to smart cards, files, or the screen. The keys can then be
transferred to other machines. See Secure Key Backup and Restoration in the "Operational Tasks" section of the
ProtectToolkit-C Administration Guide for background information on backup and recovery methods, key
splitting schemes and key attributes.

Preparation
Before attempting a key backup, please ensure that you have:

> a valid key that can be backed up

> a smart card reader connected (if backing up to smart cards)

> sufficient initialized and erased smart cards or disk space to back up the required data

> created a wrapping key (if wrapping keys to be backed up). See "Creating Keys" on page 71 for instructions.

To export a key (or set of keys)

1. On the Key Management Utility main interface (see "Key Management Utility Main Interface" on page 69),
select the token containing the key(s) to be exported from the Select a token box, and log on to the token.
TheObjects on Selected Token list displays the available keys on the token.

2. Select one or more keys to export from theObjects on Selected Token list.
3. Right-click on the selected key(s) or selectOptions> Export.

Alternatively, click on the Export Key button on the toolbar.

The Export Keys dialog box displays. Details of selections appear in the Selected Token and Selected Key
(s) fields.

NOTE Wrapping keys must be created before the next step. See "Creating Keys" on page 71
for instructions.

4. From theWrapping Key drop-down list, select an appropriate wrapping key based on your choice of backup
and recovery method. See the table below for further assistance.

To use the: Select:

Multiple custodians
method

<Random key>

Single custodian
method

The desired wrapping key. This key is used to encrypt the key (or set of keys) to be
exported

5. In theOptions area, make further selections as appropriate for the backup and recovery method and
destination backup media to be used.

When using themultiple custodians backup and recovery method, onlyWrite to smart card(s) and
associated options may be selected.

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 81

../../../../../../Content/PTK-C_Admin/Operational_Tasks/secure_key_backup.htm


Chapter 7:   Key Management Utility (KMU) Reference

Continue with the following steps for the destination backup media required.

To export the selected key(s) to smart cards

1. In theOptions area, selectWrite to smart card(s).
2. Enter an identifying name for the smart card set in the Batch Name field.

The batch name cannot be the same as the token label if the N of M key splitting scheme is to be used (see
below).

3. If the multiple custodians backup and recovery method is to be used (<Random key> selected from the
wrapping key drop-down list) enter the number of custodians required.

4. When using the multiple custodians backup and recovery method you may also elect to use the N of M key
splitting scheme so that only N out of M custodians are needed to recover the key.

For example, if M = 3 and N = 2, only two out of the three custodians need to present their smart cards to
recover the key. To use the N of M scheme select the Use N of M checkbox and enter the minimum number
of custodians required to recover the key (N) in the No. of custodians for recovery field. This field only
displays after Use N of M has been selected. Note that N may not equal M.

5. ClickOK to begin the export operation or Cancel to abort it.
After clicking OK a dialog box displays and shows the Batch Name, a User Name entry field and a Smart card
PIN entry field for a custodian (see "Importing and Exporting Keys" on page 80).

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 82



Chapter 7:   Key Management Utility (KMU) Reference

6. Insert a smart card in the smart card reader.
7. Any user name may be entered. The PIN entered can be that already established for the inserted smart card

or a new one may be entered. The PIN must be entered again in the Re-Enter PIN field as an accuracy check.
ClickOK.

8. If a new PIN was entered, a prompt for the old PIN displays. Enter the old PIN to complete the change.

If an incorrect smart card PIN is entered, a prompt will display to enable re-entry. When logging in to a smart
card, the card is locked after 7 consecutive incorrect PIN attempts. You must re-initialize the card to set a new
PIN.

Data is now written to the smart card. If additional key shares are to be written to smart cards then a prompt
for the next smart card displays.

9. Remove the smart card from the smart card reader and repeat steps 5-9 until all the key shares required have
been written to smart cards.

When the operation is complete, an Export Successfulmessage box displays.

10.ClickOK to return to the main Key Management Utility interface.

To export the selected key(s) to a file

Available for the wrapping key backup and recovery method only.

1. In the Options area, selectWrite to selected file.
2. Enter the path and filename of the file to be created in the File to write field. If a file with the same filename

already exists at this location then it will be overwritten. Alternatively, browse to a location and enter a
filename by clicking on the “…” button next to the File to write field.

3. ClickOK to begin the export operation or Cancel to abort it.

To export the selected key(s) to the console

Available for the wrapping-key backup and recovery method only.

1. In theOptions area, selectWrite encrypted parts to the screen.
2. Select single ormulti-part export.
3. ClickOK to begin the export operation or Cancel to abort it.

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 83



Chapter 7:   Key Management Utility (KMU) Reference

Importing Keys
Importing allows keys, stored on smart cards, in files or as encrypted parts that were exported to the screen, to
be restored to a token. See Secure Key Backup and Restoration in the "Operational Tasks" section of the
ProtectToolkit-C Administration Guidefor background information on backup and recovery methods, key splitting
schemes and key attributes.

NOTE If the FIPS Mode security policy is enabled, the cryptographic operations of RSA, DSA,
DH, and EC algorithms are restricted to key sizes within a specified range. For more
information about the size limitations of keys that are created or imported in FIPS Mode, see
FIPS Mode Operational Restrictions in the "Security Policies and User Roles" section of the
ProtectToolkit-C Administration Guide.

To import a key (or set of keys)

1. From the Token Selection drop-down box select the token that is to receive the imported keys and click the
Import Keys button on the toolbar. Alternatively, selectOptions>Import from the menu bar.

The Import Key(s) dialog displays.

2. In the Options area, choose either Read from smart card(s), Read from selected file, or Import
encrypted parts, depending on the media that was used to store the key(s).

When choosing to read from smart card(s)

1. Select the backup and recovery method that was used to back up the key(s), either themultiple custodians or
the single custodianmethod, by making the appropriate selection from the Unwrap Key drop-down list.

If the backup method was: Select:

Multiple custodians <Random key>

Single custodian the particular wrapping key that was used to create the backup

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 84

../../../../../../Content/PTK-C_Admin/Operational_Tasks/secure_key_backup.htm
../../../../../../Content/PTK-C_Admin/Sec_Policies_User_Roles/typ_sec_policies.htm#FIPS


Chapter 7:   Key Management Utility (KMU) Reference

2. In theOptions area, select Read from smart card(s).
3. Insert the smart card in the smart card reader.
4. Select the smart card from the Selected Smartcard drop-down list. ClickOK to start the import operation, or

Cancel to abort.
5. The following dialog box, displaying the current card number and batch name, prompts for the smart card

PIN.

Enter the PIN for the smart card and clickOK.
If an incorrect smart card PIN is entered, a prompt will display to enable re-entry. When logging in to a smart
card, the card is locked after 7 consecutive incorrect PIN attempts. You must re-initialize the card to set a new
PIN.

If a smart card is from a different batch is inserted or if the card has already been read it will be rejected. A
prompt will display to insert another card.

Data is now retrieved from the smart card. If additional key shares are required to recover the key(s) then a
prompt for the next smart card displays.

6. Remove the smart card from the smart card reader and insert the next one. Repeat the previous step until all
the key shares required have been retrieved from smart cards.

When the operation has completed, the message Import Successfulmessage is displayed. The newly
imported key(s) also display in theObjects on Selected Token table in the main Key Management Utility
interface.

7. ClickOK to return to the main Key Management Utility interface.

When choosing to read from a selected file

1. From the Unwrap Key drop-down list, select the wrapping key that was used to create the backup.
If a wrong wrapping key is selected the error message, Key used to import was not the same as the key used
to export, will display.

2. Select Read from selected file.

3. Enter the filename for the encrypted key file into the File to Read field. The “…” button can be used to find and
select the file.

4. ClickOK to import the selected key, or Cancel to abort this operation.

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 85



Chapter 7:   Key Management Utility (KMU) Reference

If the import key operation is a success, the message Import command succeeded is displayed.  The newly
imported key also displays in theObjects on Selected Token table in the main Key Management Utility
interface.

When choosing to import encrypted parts

1. From the Unwrap Key drop-down list, select the wrapping key that was used to create the backup.
If a wrong wrapping key is selected, the error message Key used to import was not the same as the key used
to export will display.

2. Select Import encrypted parts.
3. Select eitherMulti Part or Single Part as applicable and clickOK to continue.

4. Enter the encrypted key (or key parts) and clickOK to import the key.

If the import key operation is a success, the message Import command succeeded is displayed.  The newly
imported key also displays in theObjects on Selected Token table in the main Key Management Utility
interface.

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 86



Chapter 7:   Key Management Utility (KMU) Reference

Key Backup Feature Tutorial
This section illustrates the use of KMU for Key Backup, which can be used to ensure keys, certificate objects and
other PKCS#11 objects can be recovered after a failure or tamper. 

It contains the following subsections:

> "Key Definitions" on the next page

> "Creation of Encrypted Key Set to Backup (Payload)" on the next page

> "Backup to File" on the next page

> "Backup to Smart Card - Single Custodian Mode" on page 89

> "Backup to Smart Card - Multiple Custodian Mode" on page 90

Two storage media options are available:

> smart card

> file (hard disk drive)

For smart card media, there are two modes available:

> single-custodian

> multiple-custodian

All the PKCS#11 attributes for any key/object, including the security attributes, are backed up along with the
key/object's value.

When backing up to smart card, the utility will automatically prompt for additional smart cards if the size of the
backup is larger than one smart card.

NOTE When logging in to a smart card, the card is locked after 7 consecutive incorrect PIN
attempts. You must re-initialize the card to set a new PIN.

The security officer and user PINs for a token cannot be backed up. Before a restore operation, the destination
token must be already initialized and the security officer and user PINs set.

There are a number of additional keys generated, used, and then deleted during the backup process.

NOTE The KMU application does not support using DES3 keys to make backups. You must
use the ctkmu command-line application. Include the -3 option to specify DES3. For example:
ctkmu x -s0 -w des3key -3 backup.bin
See CTKMU in the "Command Line Utilities Reference" section of the ProtectToolkit-C
Administration Guidefor complete command syntax.

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 87

../../../../../../Content/PTK-C_Admin/CLI_Ref/CTKMU.htm


Chapter 7:   Key Management Utility (KMU) Reference

Key Definitions

wK Wrapping key. The top-level key for the backup process.  This key must be valid for the operation E2x.
When performing a backup to file or single custodian to smart card, the custodian must provide this key. It
is recommended that this be a triple length DES key.
For the multiple Custodian backup, this key is created from the randomly generated split components for
each custodian.

tK A randomly generated transport key, which is a triple length DES key, using CKM_DES3_KEY_GEN.
This is the key that the keys/objects to be backed up will be wrapped under. This key is used with Wx.

mK A randomly generated MAC key, which is a triple length DES key, using CKM_DES3_KEY_GEN. This
key is used with Mx.

Ex Encryption using CKM_DES3_ECB_PAD with key 'x'.

E2x Encryption using CKM_(based on key type of ‘x’) with key 'x', e.g. CKM_DES3_ECB.

Wx C_WrapKey() operation using CKM_WRAPKEY_DES3_CBC with key 'x'.

Rx C_DeriveKey() operation using CKM_XOR_BASE_AND_DATA with key 'x' and provided data.

Mx MAC generation, using CKM_DES3_MAC (4 byte MAC result) with key 'x'.

Creation of Encrypted Key Set to Backup (Payload)
The creation of the encoded payload to backup is common to all storage options. The payload can contain one or
more keys/objects.

To create the encoded payload

1. Generate tK.
2. For each key/object to be backed up:

w =WtK(Key/Object)

The format of the resulting Payload is as follows:

p = Nl1w1[l2w2[l3w3[…lNwN]]]

where N = Number of keys/objects in the payload, li = length of wi, andwi = The i’th wrapped key data, i.e. WtK
(Key/Object)

3. Generate mK.
4. Calculate the MAC for the Payload, m = MmK(p).

Backup to File
This is the simplest form of backup.  The only limitation is that the wrapping key must already exist.  This key
must be able to be recreated after a tamper/failure before a restore can be performed.  It may be entered in
components, have a known value, or be backed up using the multiple custodian backup mode (described below).

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 88



Chapter 7:   Key Management Utility (KMU) Reference

To backup to file

1. Encode mK with tK, emK = EtK(mK)

2. Encode tK with wK, etK = EwK(tK)

3. Write the binary file containing the backed up Payload. The format of the file is:

Header Contains the version of the Backup Feature

length p Length of the encoded Payload

p Encoded Payload

m MAC of the Payload

length emK Length of the Encoded MAC key

emK Encoded MAC key

length etK Length of the Encoded Transport key

etK Encoded Transport key

4. Delete mK and tK.

Backup to Smart Card - Single Custodian Mode
This backup mode has more security than the backup to file mode because the payload is stored on a smart card
instead of in a file. The payload data on the smart card is also protected by the custodian’s PIN, i.e. the PIN must
be presented and authenticated to the smart card before the data can be read.

The only limitation is that the wrapping key must already exist.  This key must be able to be re-created after a
tamper/failure before a restore can be performed.  It may be entered in components, have a known value, or be
backed up using the multiple custodian backup mode (described below).

If the payload cannot fit on one smart card, then the backup process will prompt the custodian to continue
entering new smart cards, until the entire payload has been exported.

To back up to Smart Card

1. Encode mK with tK, emK = EtK(mK)

2. Encode tK with wK, etK = EwK(tK)

3. Write the following data files to the smart card:

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 89



Chapter 7:   Key Management Utility (KMU) Reference

Header Not protected by custodian’s PIN.
Contains the following information about the payload:
Contains the version of the backup feature
Name of this backup payload
MAC of the complete payload
MAC of the payload component on this smart card, i.e. MmK(p’)
Timestamp of payload creation
Total number of custodians
Number of the custodian who owns this smart card
Number of the current card being written
Flag to indicate if encoded transport key (etK) is on this smart card
Flag to indicate if encoded MAC key (emK) is on this smart card
Size of the complete payload
Size of the payload component on this smart card
Offset of this payload component in the complete payload
Name of custodian who owns this smart card
Payload
Protected by the custodian’s PIN.
The component of the payload contained on this smart card. This may be the entire payload.

etK Protected by the custodian’s PIN.
Encoded transport key
This data file will only be located on the last smart card of the backup set.

emK Protected by the custodian’s PIN.
Encoded MAC key
This data file will only be located on the last smart card of the backup set.

4. Delete mK and tK.

Backup to Smart Card - Multiple Custodian Mode
This backup mode has the most security. This is because the payload is stored on smart cards and the payload
is split between a number of custodians.  Also, the payload data on the smart card is protected by the custodian’s
PIN, i.e. the PIN must be presented and authenticated to the smart card before the data can be read.

The top level wrapping key (wK) is randomly generated, and each custodian has a component of this key.  The
entire set of smart cards is needed before the wrapping key can be successfully re-created.

If each custodian’s payload component cannot fit on one smart card, then the backup process will prompt the
custodian to continue entering new smart cards, until their payload component has been exported.

To back up to a Smart Card in Multiple Custodian Mode

1. Create an initial intermediate wrapping key, which is a triple length DES key, wK’, with a value of zero.

Each custodian must then:

2. Generate random wrapping key component (24 bytes), wC

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 90



Chapter 7:   Key Management Utility (KMU) Reference

3. Derive new intermediate wrapping key wK’ = RwK’(wC)

4. Delete the previous intermediate wrapping key (wK’-1)
5. Write the following data files to the smart card:

Header Not protected by custodian’s PIN.
Contains the following information about the payload:
Contains the version of the backup feature
Name of this backup payload
MAC of the complete payload
MAC of the payload component on this smart card, i.e. MmK(p’)
Timestamp of payload creation
Total number of custodians
Number of the custodian who owns this smart card
Number of the current card being written
Flag to indicate if encoded transport key (etK) is on this smart card
Flag to indicate if encoded MAC key (emK) is on this smart card
Size of the complete payload
Size of the payload component on this smart card
Offset of this payload component in the complete payload
Name of custodian who owns this smart card

wC Protected by the custodian’s PIN.
The wrapping key component for this custodian.

Payload Protected by the custodian’s PIN.
The component of the payload contained on this smart card.

The last custodian must then:

6. Encode mK with tK, emK = EtK(mK)

7. Encode tK with the final wrapping key (wK = wK’), etK = EwK(tK)

8. Write the following data files to the smart card:

etK Protected by the custodian’s PIN.
Encoded transport key
This data file will only be located on the last smart card of the last custodian of the backup set.

emK Protected by the custodian’s PIN.
Encoded MAC key
This data file will only be located on the last smart card of the last custodian of the backup set.

9. Delete mK, tK and wK.

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 91



Chapter 8:   Administration Utility (gCTAdmin) Reference

CHAPTER 8: Administration Utility
(gCTAdmin) Reference

The Administration Utility (gCTAdmin) provides a graphical user interface to functions that allow management of
the HSM hardware using a PKCS #11- sub-system. The functionality which is provided is identical to that of the
command line utility ctconf. See CTCONF in the "Command Line Utilities Reference" section of the
ProtectToolkit-C Administration Guide for more information about this utility.

NOTE The gCTAdmin application is a Java-based application. A working Java runtime that
supports the Swing user interface must be installed. The screenshots throughout this manual
may vary from platform to platform.
WhenWLDmode is configured, this utility does not operate.

To start gCTAdmin using Microsoft Windows, locate the program folder titled ProtectToolkit C RT or
ProtectToolkit C SDK in the Windows Startmenu, and click on the appropriate shortcut. To start the admin
utility in a UNIX environment, enter gctadmin at the command prompt.
To exit the utility, select File>Exit from the menu bar.

Select Help from theMain Menu for information about the current version of the software.
This chapter contains the following sections:

> "Logging In and Out" below

> "Main gCTAdmin Interface" on the next page

> "Slot and Token Management" on page 94

> "HSMManagement" on page 97

Logging In and Out
After startingGCTADMIN, the utility will check if the HSM hardware has been initialized.

If the hardware has not been initialized, the utility will prompt the operator to initialize the Admin Token. For full
details regarding initial configuration, please refer to Cryptoki Configuration in the ProtectToolkit-C
Administration Guide. Initialization is necessary for the Admin SO to create the Administrator user.

If the hardware has been initialized, the operator is prompted for entry of the Administrator PIN.

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 92

../../../../../../Content/PTK-C_Admin/CLI_Ref/CTCONF.htm
../../../../../../Content/PTK-C_Admin/Cryptoki_Config/cryptoki_config.htm#_Ref503316649


Chapter 8:   Administration Utility (gCTAdmin) Reference

PIN entry is masked so only the '•' character will be displayed as characters are typed.
To log out from the main interface, select the Logout option from the Filemenu.

Main gCTAdmin Interface
Following a successful login, the main user interface is displayed ("Main gCTAdmin interface" below). The main
interface shows the currently-selected HSM and a variety of its hardware settings.

In a host system containing multiple HSMs, other HSMs can be selected with File>Select Adapter. Choosing a
different HSM will require a new login.

Figure 2: Main gCTAdmin interface

Toolbar Buttons
The buttons on the toolbar correspond to the following commands.

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 93



Chapter 8:   Administration Utility (gCTAdmin) Reference

Token Configuration

Create Slots

Security Mode

Transport Mode

Set the Clock

View the Event Log

Slot and Token Management

Creating Slots
To create slots on the HSM, select File>Create Slot, or click Create Slots on the toolbar. A dialog will prompt for
the number of slots to be created.

NOTE It is not possible to add slots usingGCTADMIN while other ProtectToolkit-C
applications are running.

Removing Slots
Before removing slots from ProtectToolkit-C, ensure that the contained token and objects are not in use.

To remove a slot

Select File> Delete Slots. A list of available slots is displayed. Select the slot to delete from the list and click the
Delete button.

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 94



Chapter 8:   Administration Utility (gCTAdmin) Reference

NOTE The slot containing the Admin Token cannot be deleted.

Initializing a Token
The initialization of a token is performed to set the user and token SO PIN.

To initialize a token

1. Select Edit> Tokens… from the menu to open theManage Tokens dialog.

2. Select an uninitialized token from the slot drop-down box.

3. Click Initialize. The Initialize Token dialog will prompt for the token label, SO PIN and User PIN. A token is
considered initialized after entry of the SO PIN. The User PIN must be set at this time, but will not be required
until an application requires storage on that slot. User PINs are case-sensitive, and must be 4-32 characters
in length.

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 95



Chapter 8:   Administration Utility (gCTAdmin) Reference

NOTE PINs have to be entered twice to confirm correct entry.

4. Click Done to exit theManage Tokens dialog.

Setting the Token User PIN

To set a token user PIN

1. Select Edit> Tokens...
2. Select an initialized token from the slot drop-down box, then click User PIN. If the selected token does not

have a current User PIN, the dialog will prompt for the SO PIN in order to authorize the creation of the new
User PIN. User PINs are case-sensitive, and must be 4-32 characters in length.

If the selected token already has a User PIN assigned, the dialog will prompt for the current and new User PIN
to be entered.

NOTE PINs have to be entered twice to confirm correct entry.

3. Click Done to exit the Manage Tokens dialog.

Setting the Token SO PIN
1. To set a token SO PIN, select Edit>Tokens….

2. Select an initialized token from the slot drop-down box, then click SO PIN. The dialog will prompt for the
current and new SO PIN to be entered. User PINs are case-sensitive, and must be 4-32 characters in length.

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 96



Chapter 8:   Administration Utility (gCTAdmin) Reference

NOTE Enter PINs twice to confirm correct entry.

3. Click Done to exit theManage Tokens dialog.

Resetting a Token
A token reset can only be done to initialized tokens. Admin tokens cannot be reset and any attempt to do so will
display a warning.

NOTE Resetting a token will erase all objects and user data on that token and set a new user
PIN.

To reset a token

1. Select an initialized token from the slot drop-down box, and then click Reset and enter the token SO PIN to
open the Initialize Token dialog.

2. Enter a token label, SO PIN and User PIN. A token is considered initialized after entry of the SO PIN. The
User PIN does not have to be set until an application requires storage on that slot. User PINs are case-
sensitive, and must be 4-32 characters in length.

NOTE PINs have to be entered twice to confirm correct entry.

3. Click Done to exit theManage Tokens dialog.

HSMManagement

Setting the Security Policy
The most important aspect of ProtectToolkit-C administration is choosing the settings, or Security Policy, which
will determine how ProtectToolkit-C can be used. The Administrator is strongly advised to read Security Policies
and User Roles in the ProtectToolkit-C Administration Guide, which explains how different settings affect the
security and performance of the ProtectToolkit-C environment.

To set the HSM security policy

1. Select Edit> Security Mode...
2. Select the required settings from theModify Security Mode dialog box.

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 97

../../../../../../Content/PTK-C_Admin/Sec_Policies_User_Roles/sec_policies_user_roles.htm#SECURITY_POLICIES_AND_USER_ROLES
../../../../../../Content/PTK-C_Admin/Sec_Policies_User_Roles/sec_policies_user_roles.htm#SECURITY_POLICIES_AND_USER_ROLES


Chapter 8:   Administration Utility (gCTAdmin) Reference

3. ClickOK to store the selected security policy.

Setting the Transport Mode
The HSM transport mode is used to set the method in which the HSM responds when removed from the PCI bus.

To set the HSM transport mode

1. Select Edit> Transport Mode... to open the Transport Mode dialog box.

2. Choose from the following selections:

Disabled To be applied when HSM is installed and configured. This mode will tamper the HSM if
removed from the PCI bus.

Single Shot The HSM will not be tampered after removal from the PCI bus. HSM will automatically
disable Transport Mode the next time the HSM is reset or power is removed and restored.

Continuous The HSM will not be tampered by being removed from the PCI bus.

NOTE The transport mode does not disable the tamper response mechanism entirely. Any
attempt to physically attack the HSM will still result in a tamper event.

3. ClickOK to set the Transport Mode.

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 98



Chapter 8:   Administration Utility (gCTAdmin) Reference

Clock Drift Correction
The HSM hardware's internal clock may occasionally need to be adjusted, due to clock drifts and other timing
differences between the HSM and the host system. The clock can be adjusted manually or synchronized with the
host system's clock (recommended).

To synchronize the HSM clock

1. Select Edit> Clock.
The current value of the HSM clock is displayed.

2. Edit the date and time manually, or synchronize the HSM clock to the host clock (recommended) by clicking
Synch.

3. ClickOK to close the dialog box.

Viewing and Purging the System Event Log
ProtectToolkit-C maintains a system event log as a means of tracking serious hardware or operational faults,
tamper events, and self-test error information. For full details on what the event log stores and how to interpret its
data, please refer to Using the System Event Log in the "Operational Tasks" section of the ProtectToolkit-C
Administration Guide.

When the event log is full, the HSM will no longer store new event records and will need to be purged. The event
log cannot be purged until it is full.

To view the event log

Select Event Log> Event Log View.
A dialog is shown containing a list of events with columns for “Firmware Type”, “Firmware Date”, “Error”, “Date”.

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 99

../../../../../../Content/PTK-C_Admin/Operational_Tasks/use_sys_event_log.htm


Chapter 8:   Administration Utility (gCTAdmin) Reference

To purge the event log

1. Select Event Log>Event Log Purge. A confirmation dialog appears.

2. Click Yes to confirm you want to purge the event log.

NOTE If the event log is not full, an error is displayed.

Updating HSM Firmware
The firmware that operates on the ProtectServer hardware can be upgraded to newer versions through a secure
upgrade facility. This facility will only allow the HSM to be upgraded to firmware versions that have been digitally
signed by SafeNet.

CAUTION! Depending on the active security policy, the HSMmight execute a soft tamper
before completing the upgrade process. This tamper will erase all key and configuration data
on the HSM. See Security Policies and User Roles in the ProtectToolkit-C Administration
Guide.

Firmware upgrades are distributed in the form of a digitally-signed file. Before a firmware upgrade, ensure that:

> All important user data and keys have been backed up

> The current HSM configuration has been noted

> All applications using the HSM have been closed

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 100

../../../../../../Content/PTK-C_Admin/Sec_Policies_User_Roles/sec_policies_user_roles.htm#SECURITY_POLICIES_AND_USER_ROLES


Chapter 8:   Administration Utility (gCTAdmin) Reference

To upgrade the HSM firmware

1. Select File> Upgrade Firmware.
2. Select the firmware upgrade file and clickOK to continue with the firmware upgrade.

NOTE The upgrade process may take up to two minutes to complete. Following the upgrade,
a dialog appears, stating the success or failure of the upgrade operation.

Tampering the HSM
It may be necessary to tamper the HSM at the end of its lifecycle, or after any other security-sensitive event
requiring all stored data to be immediately destroyed.

A tamper formats the secure memory of the HSM, erasing all configuration and user data.

To tamper the HSM

1. Select File> Tamper Adapter.
2. ClickOK to confirm the action.

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 101



Chapter 9:   KMU Key Check Value (KCV) Calculation

CHAPTER 9: KMU Key Check Value (KCV)
Calculation

The Key Management Utility calculates and displays keys according to AS 2805.6.3.

Single-length Key KCV
The single-length key check value is a one-way cryptographic function of a key, used to verify that the key has
been entered correctly.

The KCV is calculated by taking an input of constant D (64 Zero bits) and encrypting it with key K (64 bit). The 64
bit output is truncated to the most significant 24 bits which is reported as the keys KCV ("Single-length Key
Check Value KCV(K)." below).

Figure 3: Single-length Key Check Value KCV(K).

Double-length Key KCV
The double-length key check value is a one-way cryptographic function of a key, used to verify that the key has
been correctly entered.

The KCV is calculated by taking an input of constant D (64 Zero bits) and key *K (128 bit string made up of two 64
bit values KL and KR ). Data value D is encrypted with KL as the key.  The result is decrypted with KR as the key.
The result is then encrypted with KL as the key. The 64 bit output is truncated to the most significant 24 bits which
is reported as the double-length keys *KCV ("Double-length Key Check Value *KCV(*K)" on the next page).

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 102



Chapter 9:   KMU Key Check Value (KCV) Calculation

Figure 4: Double-length Key Check Value *KCV(*K)

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 103



CHAPTER 10: Key Generation

ProtectToolkit-J can generate random keys for each of the cipher algorithms it supports. These keys are Cryptoki
session keys; they are not stored permanently on the adapter. Session keys are not thread-safe and so may only
be used by a single Cipher instance and a single Signature (or MAC) instance at any time. Thus, it is allowable to
use a DES key for encryption in a Cipher instance and a single MAC instance but not two Cipher instances. Keys
fetched from the ProtectToolkit-J KeyStore do not have this restriction.
When generating a random key, the size of the key will be as follows:

Key Name Default Key Size Valid Key Sizes

DES 56 56

DESede 196 128,196

AES 128 128,196, 256

IDEA 128 128

CAST128 128 8-128

RC2 64 0-1024

RC4 64 8-2048

RSA 1024 512-4096

DSA 1024 512-3072

DH 1024 512-4096

This section describes the following:

> "Secret Keys" below

> "Public Keys" on the next page

Secret Keys
The secret key Ciphers will simply generate the appropriate number of random bytes for the key (there are no
checks for weak keys).

The following example will generate a random double-length DESede key. Generation of a key for a different
algorithm is as simple as changing the algorithm name and choosing an appropriate key length.
KeyGenerator keyGen = KeyGenerator.getInstance(“DESede”, “SAFENET”);
keyGen.init(128);
SecretKey key = keyGen.generateKey();

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 104



Chapter 10:   Key Generation

Public Keys

RSA Keys
The RSA key pair generator will generate keys based on an algorithm determined by key size. If the size is some
multiple of 256 bits greater than 1024, the algorithm specified in ANSI X 9.31 will be used. Otherwise, the one
specified in PKCS#1 is used. The key pair will be compatible with PKCS#1 RSA, ISO/IEC 9796 RSA and X.509
(raw) RSA standards. ANSI X 9.31 keys have a random 16-bit exponent, while PKCS#1 public exponent is fixed
to the Fermat-4 value (hex 0x1001).

The following example will generate a 2048-bit RSA key pair.
KeyPairGenerator keyPairGen = KeyPairGenerator.getInstance(“RSA”,

“SAFENET”);
keyPairGen.initialise(2048);
KeyPair keyPair = keyPairGen.generateKeyPair();

DSA Keys
The DSA key pair generator will generate keys based on the algorithm specified in the Digital Signature Standard
(FIPS PUB 186-1). DSA key generation requires a number of parameters; these are generally fixed in a given
application, but they are also usually randomly generated for a particular application. At present, ProtectToolkit-J
does not include any mechanism to generate these parameters. However, the DSA key pair generator can
accept these parameters (via a java.security.spec.DSAParameterSpec) or has configured defaults for 512- or
1024-bit keys (these defaults are listed in the JCE specification).

The following example will generate a 1024-bit DSA key pair, using the default DSA parameters.
KeyPairGenerator keyPairGen = KeyPairGenerator.getInstance(“DSA”,

“SAFENET”);
keyPairGen.initialise(1024);
KeyPair keyPair = keyPairGen.generateKeyPair();
This example will use the provided DSA parameters, rather than the built-in defaults.
BigInteger p, q, g;  // These are the parameter values
KeyPairGenerator keyPairGen = KeyPairGenerator.getInstance(“DSA”,

“SAFENET”);
DSAParameterSpec keyParamSpec = new DSAParamterSpec(p, q, g);
keyPairGen.initialise(keyParamSpec);
KeyPair keyPair = keyPairGen.generateKeyPair();

Diffie-Hellman Keys
The DH KeyPairGenerator will generate Diffie-Hellman keys suitable for the Diffie-Hellman key agreement
protocol. Diffie-Hellman key generation requires a number of parameters; these are generally fixed in a given
application, but they are also usually randomly generated for a particular application. At present, ProtectToolkit-J
does not include any mechanism to generate these parameters. However, the DH key pair generator can accept
these parameters (via a java.security.spec.DHParameterSpec) or has configured defaults for 512- or 1024-bit
keys (these defaults are listed in the JCE specification).

The following example will generate a 1024-bit DH key pair, using the default DH parameters.

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 105



Chapter 10:   Key Generation

KeyPairGenerator keyPairGen = KeyPairGenerator.getInstance(“DH”,
“SAFENET”);

keyPairGen.initialise(1024);
KeyPair keyPair = keyPairGen.generateKeyPair();
This example will use the provided DH parameters, rather than the built-in defaults.
BigInteger p, g;  // These are the parameter values
KeyPairGenerator keyPairGen = KeyPairGenerator.getInstance(“DH”,

“SAFENET”);
DSAParameterSpec keyParamSpec = new DHParamterSpec(p, g);
keyPairGen.initialise(keyParamSpec);
KeyPair keyPair = keyPairGen.generateKeyPair();

KeyAgreement Protocols
ProtectToolkit-J also includes mechanisms which allow for the creation of keys based on other keys.

Diffie-Hellman KeyAgreement
The DH KeyAgreement algorithm can be used to perform a 2-phase key Diffie-Hellman key agreement.

Xor Key Derive
This algorithm may be used to derive a new key from an existing key and a known data pattern. The key value
and the data pattern will be combined on the adapter using the XOR function. For example if the initial key has
the value 0x12,0x34 and the data pattern has the value 0x89,0xAB, the resultant key will have the value
0x88,0x88.

The actual key values will be combined within the adapter to ensure their values are never compromised. Also,
the newly-created key will inherit the attributes of the two keys such that the derived key will be as protected as
the two original keys. This mechanism may not be used to change the key type of the base key. Therefore, if the
base key is a DES key, the derived key must also be a DES key.

This mechanism can only be used on keys with the CKA_DERIVE attribute set to true. This will the case for
keys generated with any of the ProtectToolkit-J mechanisms (such as KeyGenerator classes). However, if the
key is generated with the Browser application, be sure to check the ‘Derive’ checkbox.
Do not create an instance of this class directly, rather use the KeyAgreement.getInstance() factory method:
KeyAgreement ka = KeyAgreement.getInstance("XorBaseAndKey", "SAFENET");

Once created, the instance should be initialized using the base key. Then, to combine with the data pattern, call
the doPhase()method with a SecretKeySpec instance created with the data pattern and true for the lastPhase
parameter.

Finally to obtain the newly created instance call the generateSecret()method with the appropriate key name.
For example:
byte[] data = {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08};
ka.init(baseKey);
ka.doPhase(new SecretKeySpec(data), true);
Key newKey = ka.generateSecret("DES");

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 106



Chapter 10:   Key Generation

NOTE The key material generated must be compatible with the key type requested in the
generateSecret()method call. Specifically, the length of the new key will be the minimum of
the lengths of the two components.

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 107



CHAPTER 11: Key Management

This section provides information on the following:

> "Key Storage" below

> "Key Wrapping" on the next page

> "Key Specifications" on page 110

Key Storage
The encryption adapter has the facility to store public, private, and secret keys. These keys will be stored in the
non-volatile storage on the card. As well as key storage, it is also possible to store X.509 Certificates (which
contain a public key). ProtectToolkit-J provides access to this storage mechanism via the JCE KeyStore API.
The JCE name for this KeyStore is CRYPTOKI.

The JCE KeyStore API allows storage of a Key and an associated alias. This alias is simply a unique string which
may be used to access the key. To store a key in the key store, use the setKeyEntry(). To retrieve a key, use the
getKey(). Keys may be removed from the KeyStore using the deleteEntry()method.
Currently, only two types of keys may be stored in the ProtectToolkit-J KeyStore: either ProtectToolkit-J keys or
javax.crypto.spec.SecretKeySpec keys. Other key types must be converted to their ProtectToolkit-J
equivalents before storage.

Currently, the Certificate support is based on Sun’s Certificate implementation which is only available on the Sun
Java2 JVM.

Per Key password protection is not supported, so a null password may be supplied to the methods used to store
and retrieve keys from the KeyStore. The password provided to the load()method will be used to log in to the
token, and so to access private objects on the token it is necessary to provide the PIN. If a PIN is not supplied, all
objects will be stored as public objects. When a PIN is supplied, only PublicKey and Certificate objects will be
stored as public objects; all others will be private. In either case, the InputStream passed to the store() and load
()methods will not change the contents of the key store.
Keys stored in the KeyStore are the only thread-safe ProtectToolkit-J keys. A key instance obtained from the
KeyStore.getKeyEntry()method will return a key that may be used in multiple Cipher, MAC, and Signature
instances.

The following example will create a new random DES key, and then store that key in the KeyStore. Note that
even though we first create the key and then store it, the actual key value will not leave the hardware and
therefore remains secure.
KeyGenerator keyGen = KeyGenerator.getInstance(“DES”, “SAFENET”);
Key key = keyGen.generateKey();
KeyStore keyStore = KeyStore.getInstance(“CRYPTOKI”, “SAFENET”);
keyStore.load(null, null);
keyStore.setKeyEntry(“des key”, key, null, null);
The following example can be used to access the previously stored key:

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 108



Chapter 11:   Key Management

KeyStore keyStore = KeyStore.getInstance(“CRYPTOKI”, “SAFENET”);
keyStore.load(null, null);
Key key = keyStore.getKey(“des key”, null);

KeyWrapping
The CRYPTOKI KeyStore also provides a key wrapping mechanism. Key wrapping is a technique where one key
value is encrypted using another key. With ProtectToolkit-J, since the key values are stored securely on the
hardware, we can use this technique to encrypt the key on the hardware and then extract the encrypted key.

For example, using this mechanism, a session key may be generated on the hardware and then exported from
the hardware in an encrypted (wrapped) form. The key will generally be encrypted using a Public/Private key
encryption cipher and can then be safely exported from the HSM. It is also possible to use secret keys for key
wrapping. In this case, however, the same secret key must exist on both the source (performing the wrapping
function) and the destination adapters.

TheWrappingKeyStore API is an extension to the standard JCE that is used to provide access to key wrapping
services. This class is identical to the standard KeyStore API, except that it provideswrapKey() and unwrapKey
()methods. The wrapping key store can be instantiated using the following code:
import au.com. safenet.crypto.WrappingKeyStore;

...

WrappingKeyStore wks = WrappingKeyStore.getInstance("CRYPTOKI",
"SAFENET");

...
ThewrapKey()method has the following signature:
public byte[] wrapKey(Key wrapKey, String transformation, Key key)
throws GeneralSecurityException
The wrapKey parameter specifies the Key used to encrypt the key parameter. The transformation parameter
specifies the encryption transformation that is to be used to encrypt the key. With the CRYPTOKI KeyStore, you
can transform the following:

> AESWrap

> AESWrapPad

> RSA/ECB/PKCS1Padding

> RSA/ECB/NoPadding

> DES/ECB/NoPadding

> DES/ECB/PKCS5Padding

> DESede/ECB/NoPadding

> DESede/ECB/PKCS5Padding

> IDEA/ECB/NoPadding

> IDEA/ECB/PKCS5Padding

> CAST128/ECB/NoPadding

> CAST128/ECB/PKCS5Padding

> RC2/ECB/NoPadding

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 109



Chapter 11:   Key Management

> RC2/ECB/PKCS5Padding

> RC4

A GeneralSecurityException will be thrown if the transformation parameter is invalid.

The value returned is a byte array containing the encrypted key. This value may be passed to the unwrapKey
()method to extract the original key. The unwrapKey()method has the following signature:
public Key unwrapKey(Key unwrapKey, String transformation,

byte[] wrappedKey, String keyAlgorithm)
throws GeneralSecurityException
This method will "unwrap" or decrypt the encrypted key using the provided decryption key and transformation.
The Key returned will be of the type specified by the keyAlgorithm parameter. This parameter must match the
actual key type that was originally wrapped.

The unwrapKey parameter should be either the same secret key as was used to wrap the key, or the private key
corresponding to the public key used to wrap the key. The transformation parameter specifies the decryption
transformation used to decrypt the key. This value should be the same as that used to wrap the key. The
wrappedKey parameter should contain the encrypted key. The keyAlgorithm should specify the algorithm that
the decrypted key is for.

A GeneralSecurityException will be thrown if the transformation parameter is invalid.

The following example will create a new random RC4 key, wrap that key with an RSA public key, and unwrap it
with the associated RSA private key.
KeyGenerator keyGen = KeyGenerator.getInstance(“RC4”, “SAFENET”);
Key rc4Key = keyGen.generateKey();
WrappingKeyStore wks = WrappingKeyStore.getInstance(“CRYPTOKI”);
wks.load(null, null);  // initialise the KeyStore
Key publicKey = wks.getKey(“RSA_pub”, null);
byte[] encKey = Wks.wrapKey(publicKey,“RSA/ECB/PKCS1Padding”,rc4Key);
// give the encrypted key to the recipient, and unwrap it
Key privateKey = wks.getKey(“RSA_priv”, null);
Key recoveredKey = wks.unwrapKey(privateKey, “RSA/ECB/PKCS1Padding’,

encKey);

Key Specifications
As well as supporting the relevant JCA/JCE defined KeySpec classes, ProtectToolkit-J includes a number of
custom provider-independent key classes for use with its KeyFactory classes. These classes all live in the
au.com.safenet.crypto.spec package:

AsciiEncodedKeySpec
Used to encode RSA, DSA or Diffie-Hellman public and private keys as ASCII strings. These strings contain the
key's integer components as hexadecimal strings separated by a full stop. For example, an RSA private key:
public_exponent.modulus.private_exponent.p.q

A public key will contain only the first two elements and a private key will contain all five. The RSA KeyFactory
can convert from this KeySpec into the provider-based key.

For DSA keys the format is:

y.p.q.g (private keys) x.p.q.g (public keys)

For Diffie-Hellman keys, the format is:

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 110



Chapter 11:   Key Management

y.p.g (private keys) x.p.g (public keys)

CASTKeySpec
Used to encode keys for the CAST algorithm. This class takes a byte array, which it will use directly as the CAST
key. The array must be less than or equal to 16 bytes, the maximum key size for a CAST key.

IDEAKeySpec
Used to encode keys for the IDEA algorithm. This class takes a byte array and uses the first 16 bytes of the array
as the IDEA key.

RC2KeySpec
Used to encode keys for the RC2 algorithm. This class takes a byte array, which it will use directly as the RC2
key. The array must be less than or equal to 128 bytes, the maximum key size for a RC2 key.

RC4KeySpec
Used to encode keys for the RC4 algorithm. This class takes a byte array, which it will use directly as the RC4
key. The array must be less than or equal to 256 bytes, the maximum key size for a RC4 key.

AESKeySpec
Used to encode keys for the AES algorithm. This class takes a byte array, which it will use directly as the AES
key. The array must be 16, 24 or 32 bytes.

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 111



CHAPTER 12: Best Practice Guidelines

The purpose of this section is to outline some of the best practices application developers can use when
developing their ProtectToolkit-J based applications.

The following guidelines do not attempt to replace the vast body of literature regarding building secure systems
or implementing cryptography for security. Rather it focuses on some of the specific aspects of the
ProtectToolkit-J product that are particularly relevant to building applications in a timely and reliable way.

ProtectToolkit-J Provider
The ProtectToolkit-J JCA/JCE Provider provides access to the many cryptographic features of the ProtectServer
range of hardware.

As the provider is hardware-based, there are a number of differences between it and other software-based
implementations. Mostly, these stem from the different methods used to protect the key store, where hardware
can effectively provide some level of physical protection.

Key Protection

Usage
Each key has an associated set of usage flags that indicate which cryptographic operations may be performed
with the key. For example, specific flags may be set to enable encryption or signature generation. Keys in the
ProtectToolkit-J provider will adhere to these rules.

Value
Normally, keys protected by the hardware will not allow their values to be revealed outside the adapter. Thus, the
Key.getEncoded() interface will generally return a null value.

General ProtectToolkit-J Usage Guidelines
> Create persistent keys with the Key Management Utility (KMU) and specify their key usage attributes

appropriately.

• secret and private keys should always be sensitive

• each key should be usable for only one purpose

• use the KMU for key backups with the exportable attribute

> Persistent key instances from the ProtectToolkit-J KeyStore implementation are shareable. This means a key
lookup only needs to be performed once, rather than every time a key is required.

> Initialize the token correctly. Different applications should use different tokens.

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 112



Chapter 12:   Best Practice Guidelines

> Install the ProtectToolkit-J provider as the highest priority, or use Security.insertProvider
(SAFENETProvider() early on in your application. This will ensure that the SAFENET hardware
SecureRandom will become the system default, providing improved quality random data and avoiding the
startup performance penalty of the Sun implementation.

> Fully specify Cipher transformations. For example, use "DES/ECB/NoPadding" instead of "DES".

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 113



APPENDIX A: JCA/JCE API Tutorial

This appendix will introduce the reader to the Java API known as the Java Cryptography Extension (JCE)
through development of a simple application.

It is important to note that this tutorial does not provide complete coverage of this API. The API specification
documentation should serve as the detailed reference. It can be found here: http://docs.oracle.com/

During this tutorial we will develop a JCE-based application that allows for simple file encryption. This application
will allow the user to encrypt and decrypt files.

The files are encrypted using a combination of public-key and secret-key cryptography. The encrypted files also
include a Message Authentication Code (MAC) to ensure the integrity of their contents. Where possible, the
standard API mechanisms will be used to achieve the desired functionality.

The code fragments included in this document are used to highlight the important sections of the application. The
full source code for the application may be found in the Java source file FileCrypt.java.

NOTE To avoid running into issues, move samples out of the installation directory before
modifying, compiling, or running them.

This document contains the following chapters:

> "Public Key Cryptography" below

> "FileCrypt Application" on the next page

• "File Encryption" on the next page

• "File Decryption" on page 120

• "Accessing Public Keys" on page 124

• "Main()" on page 124

Public Key Cryptography
The sample application will encrypt a document using a secret-key cipher algorithm, for example DES or RC4,
and a randomly generated key. This algorithm is known as the bulk cipher, as it is used to perform the bulk of the
encryption. The randomly generated key will be encrypted using a public-key cipher algorithm.

By combining public-key and secret-key encryption in this manner, we retain the advantages of public-key
cryptography (we don't have to share a secret key) and the performance advantage of a secret-key cipher.

It is assumed that two public key pairs have been generated for this application: the first for the document sender
and the second for the recipient.

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 114

http://docs.oracle.com/


Appendix A:   JCA/JCE API Tutorial

FileCrypt Application
The FileCrypt application enables files to be encrypted for a given recipient and then decrypted by that recipient.
Since the encrypted file contains a MAC, the recipient of a document will also be able to verify that the encrypted
file was not tampered with.

These encrypted files will be stored in this custom format:

Field Length (bytes)

KeyLength 4

KeyBytes As specified by KeyLength

AlgParamsLength 4

AlgParams As specified by AlgParamsLength

MacLength 4

Mac As specified by MacLength

Encrypted Data Remainder of file

This section contains information on the following functions:

> "File Encryption" below

> "File Decryption" on page 120

> "Accessing Public Keys" on page 124

> "Main()" on page 124

File Encryption
In order to encrypt a file, we need to know the public key of its recipient - the party who can decrypt the file. These
arguments are passed to the encryptFile()method.
The encryptFile()method will:
1. Generate a random session key.

2. Encrypt the session key with the recipient's public key.
3. Initialize the bulk cipher with the session key.
4. Encode the bulk cipher's algorithm parameters.

5. Initialize the MAC algorithm.

6. Process the input file.
7. Create the output from the various components.

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 115



Appendix A:   JCA/JCE API Tutorial

Step 1 - Generate a Random Session Key
To achieve acceptable performance during file encryption and decryption, we need to use a symmetric-key
cipher. This symmetric key, which we will call the session key, will be encrypted (using the recipient's public key)
and then stored with the encrypted file. Rather than simply using the same key for each file, we need to generate
a random key for each encryption.

The KeyGeneratormechanism is used to create random SecretKey key objects. A provider-based instance is
created using the KeyGenerator.getInstance()method.
This instance can then be initialized using one of the KeyGenerator.init()methods. In the simplest case, no
initialization is required, in which case the provider's default initialization is used. Alternatively, initialization can
request a key of the given key size, or other key parameters by using a
java.security.AlgorithmParameterSpec class.
The following method will create a new random SecretKey for the given algorithm and provider using the default
initialization:
SecretKey generateSecretKey(String algorithm, String

provider)
{

KeyGenerator keyGen = KeyGenerator.getInstance(
algorithm, provider);

return keyGen.generateKey();
}

Step 2 - Encrypt the Session Key
Once we have generated the session key, we need to encrypt it using the recipient's public key. In this way we
can safely transmit the session key such that only the recipient can recover the actual key. The Thales
SAFENET provider includes a special interface to its KeyStore to provide session key encryption.
The au.com.safenet.crypto.WrappingKeyStore class extends the standard KeyStoremechanism to provide
"key wrapping" which enables a session key to be generated in the hardware, then encrypted on the hardware
and exported in an encrypted form. This means that the session key is never visible outside the hardware.

TheWrappingKeyStore.wrapKey()method accepts three arguments: two keys and a transformation string.
The first Key is the RSA PublicKey used to perform the encryption, the second Key is the DES key we wish to
encrypt. The final parameter, the transformation string, describes the encryption method that should be used to
encrypt the key. Currently, this string may be RSA/ECB/PKCS1Padding or RSA/ECB/NoPadding.
static final String PROVIDER = "SAFENET";
static final String WRAP_KEYSTORE = "CRYPTOKI";
static final String WRAP_TRANSFORM =

"RSA/ECB/PKCS1Padding";

byte[] encryptKey(PublicKey wrapKey, SecretKey key)
{

WrappingKeyStore keyStore;
keyStore = WrappingKeyStore.getInstance(WRAP_KEYSTORE,

PROVIDER);
keyStore.load(null, null);
return keyStore.wrapKey(wrapKey, WRAP_TRANSFORM, key);

}

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 116



Appendix A:   JCA/JCE API Tutorial

Step 3 - Create and Initialize the Bulk Cipher
This application will simply use the default AlgorithmParameters for the bulk encryption algorithm. Therefore,
the initialization of our Cipher is quite simple:
static final String PROVIDER = "SAFENET";
static final String BULK_ALGORITHM = "DES";

Cipher bulkCipher = Cipher.getInstance(BULK_ALGORITHM,
PROVIDER);

bulkCipher.init(Cipher.ENCRYPT_MODE, secretKey);

Step 4 - Encode Algorithm Parameters
The only algorithm parameter supported by the Thales SAFENET provider is an initialization vector. An
initialization vector is used in a block cipher when it is operating in a feedback mode: DES in CBCmode for
example. During encryption, the initialization vector is used to prime the cipher. However, unlike the key, its value
is not secret.

The cipher used to decrypt the data streammust be initialized with the same initialization vector for the
decryption to succeed.

The following method will return the algorithm parameters encoded into a byte array. For now, we just return the
IV directly as this is the only supported algorithm parameter.
byte[] encodeParameters(Cipher cipher)
{

byte[] iv = cipher.getIV();
return iv;

}

Step 5 - Initialize the MAC Algorithm
In this example we will use a MAC algorithm instead of a signature algorithm. The significant difference here is
that the MAC will only tell us if the encrypted document has been tampered with, it will not authenticate the
sender.
static final String PROVIDER = "SAFENET";
static final String MAC_ALGORITHM = "DESMac";

Mac mac = Mac.getInstance(MAC_ALGORITHM, PROVIDER);
mac.init(secretKey);

Step 6 - Process the Input File
We are now ready to process the input file to generate the encrypted output and the MAC. The following method
will accept the initialized Cipher,Mac and input/output streams. The data on the InputStream will be read in
blocks (of some arbitrary size), then processed by theMac instance and then encrypted with the Cipher
instance.

The encrypted data will then be written to theOutputStream. This method will return the MAC as a byte array.
static final int READ_BUFFER = 50;

byte[] encrypt(Cipher cipher, Mac mac, InputStream in,
OutputStream out)

{
byte[] block = new byte[READ_BUFFER];

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 117



Appendix A:   JCA/JCE API Tutorial

int len;
while ((len = in.read(block)) != -1)
{

/*
* update our MAC value
*/
mac.update(block, 0, len);

/*
* encrypt the data
*/
byte[] enc = cipher.update(block, 0, len);
if (enc != null)
{

/*
* output the encrypted data
*/
out.write(enc);

}
}

/*
* output the final block if required
*/
byte[] finalBlock = cipher.doFinal();
if (finalBlock != null)
{

out.write(finalBlock);
}

return mac.doFinal();
}

Step 7 - Create the Encrypted Output
Now that we have written the various building blocks, we can construct the final encryptFile()method:
static final String PROVIDER = "SAFENET";
static final String BULK_ALGORITHM = "DES";
static final String BULK_TRANSFORM =

"DES/CBC/PKCS5Padding";
static final String MAC_ALGORITHM = "DESMac";

void encryptFile(InputStream in, OutputStream out,          
PublicKey publicKey)

{
/*
* Create a random SecretKey and encrypt it using
* the recipient's PublicKey
*/
SecretKey secretKey = generateSecretKey(BULK_ALGORITHM,

PROVIDER);
byte[] wrappedKey = encryptKey(publicKey, secretKey);

/*
* Create and initialise the Cipher used to encrypt the

document
*/
Cipher bulkCipher =

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 118



Appendix A:   JCA/JCE API Tutorial

Cipher.getInstance(BULK_TRANSFORM,PROVIDER);
bulkCipher.init(Cipher.ENCRYPT_MODE, secretKey);

/*
* Encode the algorithm parameters for the Cipher
*/
byte[] algParams = encodeParameters(bulkCipher);

/*
* Create the Mac instance and initialise it with our
* session key
*/
Mac mac = Mac.getInstance(MAC_ALGORITHM, PROVIDER);
mac.init(secretKey);

/*
* Encrypt the document to an internal buffer and
* calculate the MAC value of the plain text
*/
ByteArrayOutputStream bOut =

new ByteArrayOutputStream();
byte[] macValue = encrypt(bulkCipher, mac, in, bOut);

/*
* Encode the output file
*/
DataOutputStream dOut = new DataOutputStream(out);

/*
* Write out the key
*/
dOut.writeInt(wrappedKey.length);
dOut.write(wrappedKey);

/*
* Write out the parameters, note these may be null
*/
if (algParams != null)
{

dOut.writeInt(algParams.length);
dOut.write(algParams);

}
else
{

dOut.writeInt(0);
}

/*
* Write out the MAC
*/
dOut.writeInt(macValue.length);
dOut.write(macValue);

/*
* And finally the encrypted document
*/
bOut.writeTo(dOut);

}

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 119



Appendix A:   JCA/JCE API Tutorial

File Decryption
To decrypt an encrypted file we simply need to reverse the encryption process. However, rather than using the
recipient's public key, we need to use the private key in order to recover the session key.

The decryptFile()method will:
1. Decode the input from the various components and decipher the session key with the recipient's private key.

2. Initialize the bulk cipher with the session key and algorithm parameters.

3. Initialize the MAC algorithm.

4. Process the encrypted input.
5. Verify the calculated MAC with the MAC from the document.

6. Write out the decrypted result.

Step 1 - Decrypt the session key
static final String PROVIDER = "SAFENET";
static final String WRAP_KEYSTORE = "CRYPTOKI";
static final String WRAP_TRANSFORM = "RSA/ECB/PKCS1Padding";
static final String BULK_ALGORITHM = "DES";

Key decryptKey(PrivateKey wrapKey, byte[] wrappedKey)
{

WrappingKeyStore keyStore;
keyStore = WrappingKeyStore.getInstance(WRAP_KEYSTORE,

PROVIDER);

return keyStore.unwrapKey(wrapKey, WRAP_TRANSFORM,
wrappedKey, BULK_ALGORITHM);

}

Step 2 - Initialize the Bulk Cipher
Next, we need to create and initialize the Cipher instance we will use to decrypt the document. It is important
here to ensure that our Cipher instance that will be used to perform the decryption is initialized with the same
parameters generated by the encryption Cipher. In the case of the Thales SAFENET provider, the only
parameter type is the IvParameterSpec, so we convert our serialized parameters directly.
static final String PROVIDER = "SAFENET";
static final String BULK_ALGORITHM = "DES";

Cipher bulkCipher = Cipher.getInstance(BULK_TRANSFORM,
PROVIDER);

if (algParams != null)
{

AlgorithmParameterSpec params;
params = new IvParameterSpec(algParams);

bulkCipher.init(Cipher.DECRYPT_MODE, secretKey,
params);

}
else

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 120



Appendix A:   JCA/JCE API Tutorial

{
bulkCipher.init(Cipher.DECRYPT_MODE, secretKey);

}

Step 3 - Initialize the MAC Algorithm
Initialization of the MAC during decryption is identical to that during encryption:
static final String PROVIDER = "SAFENET";
static final String MAC_ALGORITHM = "DESMac";

Mac mac = Mac.getInstance(MAC_ALGORITHM, PROVIDER);
mac.init(secretKey);

Step 4 - Process the encrypted input
Next we need to recover the plaintext from the ciphertext and calculate a new MAC. This process is nearly
identical to the encrypt()method, however, since the MAC is calculated on the plaintext, we update the Mac with
the output from the Cipher.
static final int READ_BUFFER = 50;

byte[] decrypt(Cipher cipher, Mac mac, InputStream in, OutputStream out)
{

/*
* read the input in chunks and process each chunk
*/
byte[] block = new byte[READ_BUFFER];
int len;
while ((len = in.read(block)) != -1)
{

/*
* decipher the data
*/
byte[] plain = cipher.update(block, 0, len);
if (plain != null)
{

/*
* update our MAC value
*/
mac.update(plain);

/*
* output the deciphered data
*/
out.write(plain);

}
}

/*
* output the final block if required
*/
byte[] finalBlock = cipher.doFinal();
if (finalBlock != null)
{

/*
* update our MAC value
*/
mac.update(finalBlock);

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 121



Appendix A:   JCA/JCE API Tutorial

/*
* output the deciphered data
*/
out.write(finalBlock);

}

return mac.doFinal();
}

Step 5 - Verify the MAC
To verify the MAC, we simply compare the MAC bytes we previously extracted with the value just calculated.
if (!Arrays.equals(fileMac, calculatedMac))

{
throw new GeneralSecurityException("File has been
tampered with.");

}

Step 6 - Write out the decrypted result
Now that we have verified that the file is not corrupted we can output the contents to the destination.
static final String PROVIDER = "SAFENET";
static final String BULK_ALGORITHM = "DES";
static final String BULK_TRANSFORM = "DES/CBC/PKCS5Padding";
static final String MAC_ALGORITHM = "DESMac";

void decryptFile(InputStream in, OutputStream out,PrivateKey privateKey)
{

/*
* Decode the input file
*/
DataInputStream dIn = new DataInputStream(in);

/*
* recover the encrypted Key data
*/
int keyLen = dIn.readInt();
byte[] keyBytes = new byte[keyLen];
dIn.readFully(keyBytes);

/*
* recover the algorithm parameters
*/
int algLen = dIn.readInt();
byte[] algBytes = null;
if (algLen > 0)
{

algBytes = new byte[algLen];
dIn.readFully(algBytes);

}

/*
* recover the stored MAC value
*/
int macLen = dIn.readInt();

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 122



Appendix A:   JCA/JCE API Tutorial

byte[] fileMac = new byte[macLen];
dIn.readFully(fileMac);

/*
* recreate the session key
*/
Key secretKey = decryptKey(privateKey, keyBytes);

/*
* Create our Cipher and initialise it with our key
* and algorithm parameters.
*/
Cipher bulkCipher =

Cipher.getInstance(BULK_TRANSFORM,PROVIDER);
if (algBytes != null)
{

AlgorithmParameterSpec params;
params = new IvParameterSpec(algBytes);

bulkCipher.init(Cipher.DECRYPT_MODE, secretKey,
params);

}
else
{

bulkCipher.init(Cipher.DECRYPT_MODE, secretKey);
}

/*
* Initialise the Mac we use to verify the file

integrity
*/
Mac mac = Mac.getInstance(MAC_ALGORITHM, PROVIDER);
mac.init(secretKey);

/*
* Decrypt the file to a temporary buffer
*/
ByteArrayOutputStream bOut =

new ByteArrayOutputStream();
byte[] calculatedMac = decrypt(bulkCipher, mac, in,

bOut);

/*
* verify the stored MAC value with the calculated

value
*/
if (!Arrays.equals(fileMac, calculatedMac))
{

throw new GeneralSecurityException(
"File has been tampered with.");

}
else
{

/*
* save the decrypted output to the outputstream
*/
bOut.writeTo(out);

}
}

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 123



Appendix A:   JCA/JCE API Tutorial

Accessing Public Keys
A Java java.security.KeyStore implementation is used to store the public keys for this application. The Thales
SAFENET provider implementation of the KeyStore is known as CRYPTOKI, and enables access to the keys
stored on the hardware. At present, this KeyStore only supports storage of Key objects and does not provide
any support for the storage of Certificate objects. Additionally, this KeyStore will ignore the password parameter
supplied to the getKey()method.

Creating the KeyStore
Creating a KeyStore instance and populating it is generally a two step process. First, we create the instance and
then use the KeyStore.load()method to initialize it with the key data. The load()method accepts an
InputStream instance which allows for keys to be stored on an arbitrary data source. The CRYPTOKI
KeyStore, however, accesses key storage on the hardware directly and so ignores the load()method
completely.
static final String PROVIDER = "SAFENET";
static final String KS_NAME = "CRYPTOKI";

KeyStore loadKeyStore()
{

KeyStore ks = KeyStore.getInstance(KS_NAME, PROVIDER);
ks.load(null, null);

return ks;
}

Retrieving the Public Key
Our application needs to determine the recipient's public key in order to encrypt the file. The standard
mechanism for accessing public keys is to extract the Certificate for the recipient by using the
KeyStore.getCertificate()method and then use the Certificate.getPublicKeymethod to recover the key.
However with the CRYPTOKI KeyStore we will simply use the KeyStore.getKey()method.
PublicKey publicKey = (PublicKey)ks.getKey(recipientAlias,

null);

Retrieving the Private Key
To decrypt the file we need to look up the private key. To access private keys stored in a KeyStore use the
KeyStore.getKey()method.
PrivateKey privateKey = (PrivateKey)ks.getKey(myAlias,

null);

Main()
Now that we have all the required building blocks, the last remaining step is to put it all together. We need to
process command line arguments and call the appropriate methods. We also need to add exception handling.

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 124



Appendix A:   JCA/JCE API Tutorial

The followingmain()method is responsible for determining if we are encrypting or decrypting the file and the
names of the keys to use:
public static void main(String[] args)
{

boolean encrypt = false;
boolean decrypt = false;

String keyName = null;

/*
* examine all the command line arguments
*/
for (int i = 0; i < args.length; i++)
{

if (args[i].equals("-encrypt"))
{

encrypt = true;
}
else if (args[i].equals("-decrypt"))
{

decrypt = true;
}
else if (args[i].equals("-key"))
{

keyName = args[++i];
}

}

/*
* validate the arguments
*/
if (encrypt == decrypt)
{

if (encrypt)
{

System.err.println("Cannot encrypt and decrypt
file!");

}
else
{

System.err.println("Must specify -encrypt or -
decrypt.");

}
System.exit(1);

}

if (keyName == null)
{

System.err.println("Missing key name.");
System.exit(1);

}

FileCrypt fileCrypt = new FileCrypt();
KeyStore ks = fileCrypt.loadKeyStore();

if (encrypt)
{

PublicKey publicKey = (PublicKey)ks.getKey(keyName,

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 125



Appendix A:   JCA/JCE API Tutorial

null);

fileCrypt.encryptFile(System.in, System.out, publicKey);
}
else
{

PrivateKey privateKey = (PrivateKey)ks.getKey(keyName,
null);
fileCrypt.decryptFile(System.in, System.out, privateKey);

}
}

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 126



APPENDIX B: Random Number Generation

The Safenet provider (named “safenet”) implements a java.security.SecureRandom class for generating
random data. This implementation is known as "CRYPTOKI". Besides using a hardware-based entropy
generator, one of the major benefits of this implementation is that it does not suffer from the slow initialization
problem that the Sun-provided (and most other) software implementations do.

This interface is only available under Java2.

This implementation allows access to the encryption adapter random source for both seeding and random
number generation. The ProtectServer PCIe HSM uses hardware-based random number generation.

Serialization of an instance of this class will not save the state of the random number generator as it is contained
within the hardware.

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 127



APPENDIX C: References

This section contains a list of resources used as references in this guide:

> FIPS PUB 42-2: Data Encryption Standard

> FIPS PUB 81: DES Modes of Operation

> FIPS PUB 113: Computer Data Authentication

> FIPS PUB 180-1: Secure Hash Standard

> FIPS PUB 186-1: Digital Signature Standard (DSS)

> PKCS#1: RSA Encryption Standard

> PKCS#5: Block Cipher Padding

> PKCS#11: Cryptographic Token Interface Standard

> RFC-1319: The MD2 Message-Digest Algorithm

> RFC-2104: HMAC - Keyed-Hashing for Message Authentication

> RFC-2144: The Cast-128 Encryption Algorithm

> RFC-2268: A Description of the RC2(r) Encryption Algorithm

> RFC-3281: An Internet Attribute Certificate Profile for Authorization

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 128



Glossary

Glossary

A
Adapter
The printed circuit board responsible for cryptographic processing in a HSM

AES
Advanced Encryption Standard

API
Application Programming Interface

ASO
Administration Security Officer

Asymmetric Cipher
An encryption algorithm that uses different keys for encryption and decryption. These ciphers are usually also
known as public-key ciphers as one of the keys is generally public and the other is private. RSA and ElGamal are
two asymmetric algorithms

B
Block Cipher
A cipher that processes input in a fixed block size greater than 8 bits. A common block size is 64 bits

Bus
One of the sets of conductors (wires, PCB tracks or connections) in an IC

C
CA
Certification Authority

CAST
Encryption algorithm developed by Carlisle Adams and Stafford Tavares

Certificate
A binding of an identity (individual, group, etc.) to a public key which is generally signed by another identity. A cer-
tificate chain is a list of certificates that indicates a chain of trust, i.e. the second certificate has signed the first, the

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 129



Glossary

third has signed the second and so on

CMOS
Complementary Metal-Oxide Semiconductor. A common data storage component

Cprov
ProtectToolkit C - SafeNet’s PKCS #11 Cryptoki Provider

Cryptoki
Cryptographic Token Interface Standard. (aka PKCS#11)

CSA
Cryptographic Services Adapter

CSPs
Microsoft Cryptographic Service Providers

D
Decryption
The process of recovering the plaintext from the ciphertext

DES
Cryptographic algorithm named as the Data Encryption Standard

Digital Signature
Amechanism that allows a recipient or third party to verify the originator of a document and to ensure that the doc-
ument has not be altered in transit

DLL
Dynamically Linked Library. A library which is linked to application programs when they are loaded or run rather
than as the final phase of compilation

DSA
Digital Signature Algorithm

E
Encryption
The process of converting the plaintext data into the ciphertext so that the content of the data is no longer obvious.
Some algorithms perform this function in such a way that there is no known mechanism, other than decryption with
the appropriate key, to recover the plaintext. With other algorithms there are known flaws which reduce the dif-
ficulty in recovering the plaintext

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 130



Glossary

F
FIPS
Federal Information Protection Standards

FM
Functionality Module. A segment of custom program code operating inside the CSA800 HSM to provide additional
or changed functionality of the hardware

FMSW
Functionality Module Dispatch Switcher

H
HA
High Availability

HIFACE
Host Interface. It is used to communicate with the host system

HSM
Hardware Security Module

I
IDEA
International Data Encryption Algorithm

IIS
Microsoft Internet Information Services

IP
Internet Protocol

J
JCA
Java Cryptography Architecture

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 131



Glossary

JCE
Java Cryptography Extension

K
Keyset
A keyset is the definition given to an allocated memory space on the HSM. It contains the key information for a spe-
cific user

KWRAP
KeyWrapping Key

M
MAC
Message authentication code. A mechanism that allows a recipient of a message to determine if a message has
been tampered with. Broadly there are two types of MAC algorithms, one is based on symmetric encryption
algorithms and the second is based on Message Digest algorithms. This second class of MAC algorithms are
known as HMAC algorithms. A DES based MAC is defined in FIPS PUB 113, see http://www.itl.n-
ist.gov/div897/pubs/fip113.htm. For information on HMAC algorithms see RFC-2104 at http://www.i-
etf.org/rfc/rfc2104.txt

Message Digest
A condensed representation of a data stream. A message digest will convert an arbitrary data stream into a fixed
size output. This output will always be the same for the same input stream however the input cannot be recon-
structed from the digest

MSCAPI
Microsoft Cryptographic API

MSDN
Microsoft Developer Network

P
Padding
Amechanism for extending the input data so that it is of the required size for a block cipher. The PKCS documents
contain details on the most common padding mechanisms of PKCS#1 and PKCS#5

PCI
Peripheral Component Interconnect

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 132



Glossary

PEM
Privacy Enhanced Mail

PIN
Personal Identification Number

PKCS
Public Key Cryptographic Standard. A set of standards developed by RSA Laboratories for Public Key Cryp-
tographic processing

PKCS #11
Cryptographic Token Interface Standard developed by RSA Laboratories

PKI
Public Key Infrastructure

ProtectServer
SafeNet HSM

ProtectToolkit C
SafeNet's implementation of PKCS#11. Protecttoolkit C  represents a suite of products including various PKCS#11
runtimes including software only, hardware adapter, and host security module based variants. A Remote client and
server are also available

ProtectToolkit J
SafeNet's implementation of JCE. Runs on top of ProtectToolkit C

R
RC2/RC4
Ciphers designed by RSA Data Security, Inc.

RFC
Request for Comments, proposed specifications for various protocols and algorithms archived by the Internet
Engineering Task Force (IETF), see http://www.ietf.org

RNG
Random Number Generator

RSA
Cryptographic algorithm by Ron Rivest, Adi Shamir and Leonard Adelman

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 133



Glossary

RTC
Real-Time Clock

S
SDK
Software Development Kits Other documentation may refer to the SafeNet Cprov and Protect Toolkit J SDKs.
These SDKs have been renamed ProtectToolkit C and ProtectToolkit J respectively.·The names Cprov and Pro-
tectToolkit C refer to the same device in the context of this or previous manuals.·The names Protect Toolkit J and
ProtectToolkit J refer to the same device in the context of this or previous manuals.

Slot
PKCS#11 slot which is capable of holding a token

SlotPKCS#11
Slot which is capable of holding a token

SO
Security Officer

Symmetric Cipher
An encryption algorithm that uses the same key for encryption and decryption. DES, RC4 and IDEA are all sym-
metric algorithms

T
TC
Trusted Channel

TCP/IP
Transmission Control Protocol / Internet Protocol

Token
PKCS#11 token that provides cryptographic services and access controlled secure key storage

TokenPKCS#11
Token that provides cryptographic services and access controlled secure key storage

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 134



Glossary

U
URI
Universal Resource Identifier

V
VA
Validation Authority

X
X.509
Digital Certificate Standard

X.509 Certificate
Section 3.3.3 of X.509v3 defines a certificate as: "user certificate; public key certificate; certificate: The public keys
of a user, together with some other information, rendered unforgeable by encipherment with the private key of the
certification authority which issued it"

Thales ProtectServer HSM 5.9.1 PTK-J Reference Guide
2025-09-15 18:17:07-05:00 Copyright 2009-2025 Thales Group 135


	Preface:   About the ProtectToolkit-J Reference Guide
	Document Conventions
	Support Contacts

	Chapter 1:   Product Overview
	Working With Slots
	Resource Management
	The Software

	Chapter 2:   JCA/JCE API Overview
	Encryption/Decryption
	The Cipher Class
	Cipher Input and Output Streams
	SealedObject
	Algorithm Parameters

	Message Digests
	Message Authentication Code (MAC)
	Authentication
	Digital Signatures
	Object Signing

	Key Management
	Generating Random Keys
	Key Conversion
	Key Agreement Protocols
	Key Storage
	Certificates

	Error Handling and Exceptions

	Chapter 3:   Supported Ciphers
	Cipher Algorithm Parameters
	DES
	DES Cipher Initialization
	DES Key
	DES KeyGenerator
	DES SecretKeyFactory
	DES Example Code

	DESede
	DESede Cipher Initialization
	DESede Key
	DESede KeyGenerator
	DESede SecretKeyFactory
	DESede Example Code

	AES
	AES Cipher Initialization
	AES Key
	AES KeyGenerator
	AES SecretKeyFactory
	AES Example Code

	IDEA
	IDEA Cipher Initialization
	IDEA Key
	IDEA KeyGenerator
	IDEA SecretKeyFactory
	IDEA Example Code

	CAST128
	CAST128 Cipher Initialization
	CAST128 Key
	CAST128 KeyGenerator
	CAST128 SecretKeyFactory
	CAST128 Example Code

	RC2
	RC2 Cipher Initialization
	RC2 Key
	RC2 KeyGenerator
	RC2 SecretKeyFactory
	RC2 Example Code

	RC4
	RC4 Cipher Initialization
	RC4 Key
	RC4 KeyGenerator
	RC4 SecretKeyFactory
	RC4 Example Code
	PBE Ciphers
	PBE Key
	PBE Example Code

	RSA
	RSA Cipher Initialization
	RSA Key
	RSA KeyFactory
	RSA Example Code


	Chapter 4:   Supported Signature Algorithms
	MD2withRSA
	MD5withRSA
	SHA1withRSA
	SHA224withRSA
	SHA256withRSA
	SHA384withRSA
	SHA512withRSA
	SHA1withDSA
	DSA Key
	DSA KeyGenerator
	DSA Example Code

	PKCS#1RSA
	X.509RSA
	DSARaw
	RIPEMD128withRSA
	RIPEMD160withRSA

	Chapter 5:   Supported MAC Algorithms
	DES MAC
	DESede MAC
	DESedeX919 MAC
	IDEA MAC
	CAST128 MAC
	RC2
	HMAC/MD2
	HMAC/MD5
	HMAC/SHA1
	HMAC/SHA224
	HMAC/SHA256
	HMAC/SHA384
	HMAC/SHA512
	Sample MAC Code

	Chapter 6:   Supported Message Digest Algorithms
	MD2
	MD5
	SHA-1
	SHA-224
	SHA-256
	SHA-384
	SHA-512
	RIPEMD128
	RIPEMD160

	Chapter 7:   Key Management Utility (KMU) Reference
	Compatibility Issues
	Main KMU Interface
	Token and Key Selection
	Toolbar Buttons
	Retrieving Information about a Token

	Logging Into and Out From Tokens
	Creating Keys
	Available Keys
	Key Attribute Types
	Creating a Random Secret Key
	Creating a Random Key Pair
	Creating Key Components
	Entering a Key from Components

	Editing Key Attributes
	Deleting a Key
	Display Key Check Value
	Importing and Exporting Keys
	Exporting Keys
	Importing Keys

	Key Backup Feature Tutorial
	Key Definitions
	Creation of Encrypted Key Set to Backup (Payload)
	Backup to File
	Backup to Smart Card - Single Custodian Mode
	Backup to Smart Card - Multiple Custodian Mode


	Chapter 8:   Administration Utility (gCTAdmin) Reference
	Logging In and Out
	Main gCTAdmin Interface
	Toolbar Buttons

	Slot and Token Management
	Creating Slots
	Removing Slots
	Initializing a Token
	Setting the Token User PIN
	Setting the Token SO PIN
	Resetting a Token

	HSM Management
	Setting the Security Policy
	Setting the Transport Mode
	Clock Drift Correction
	Viewing and Purging the System Event Log
	Updating HSM Firmware
	Tampering the HSM


	Chapter 9:   KMU Key Check Value (KCV) Calculation
	Single-length Key KCV
	Double-length Key KCV

	Chapter 10:   Key Generation
	Secret Keys
	Public Keys
	RSA Keys
	DSA Keys
	Diffie-Hellman Keys
	KeyAgreement Protocols
	Diffie-Hellman KeyAgreement
	Xor Key Derive


	Chapter 11:   Key Management
	Key Storage
	Key Wrapping
	Key Specifications
	AsciiEncodedKeySpec
	CASTKeySpec
	IDEAKeySpec
	RC2KeySpec
	RC4KeySpec
	AESKeySpec


	Chapter 12:   Best Practice Guidelines
	ProtectToolkit-J Provider
	Key Protection
	General ProtectToolkit-J Usage Guidelines

	Appendix A:   JCA/JCE API Tutorial
	Public Key Cryptography
	FileCrypt Application
	File Encryption
	Step 1 - Generate a Random Session Key
	Step 2 - Encrypt the Session Key
	Step 3 - Create and Initialize the Bulk Cipher
	Step 4 - Encode Algorithm Parameters
	Step 5 - Initialize the MAC Algorithm
	Step 6 - Process the Input File
	Step 7 - Create the Encrypted Output

	File Decryption
	Step 1 - Decrypt the session key
	Step 2 - Initialize the Bulk Cipher
	Step 3 - Initialize the MAC Algorithm
	Step 4 - Process the encrypted input
	Step 5 - Verify the MAC
	Step 6 - Write out the decrypted result

	Accessing Public Keys
	Creating the KeyStore
	Retrieving the Public Key
	Retrieving the Private Key

	Main()

	Appendix B:   Random Number Generation
	Appendix C:   References
	Glossary

