THALES

SafeNet ProtectToolkit-C 5.6

PROGRAMMING GUIDE

%,

N

\Q\Q\m
\Q\Q
S

g,
aan "y,
\ ",

Document Information

Product Version 5.6
Document Part Number 007-013682-004
Release Date 08 January 2020

Revision History
Revision Date Reason

Rev. A 08 January 2020 Initial release

Trademarks, Copyrights, and Third-Party Software

Copyright 2009-2020 Gemalto. All rights reserved. Gemalto and the Gemalto logo are trademarks and service
marks of Gemalto and/or its subsidiaries and are registered in certain countries. All other trademarks and
service marks, whether registered or not in specific countries, are the property of their respective owners.

Disclaimer

All information herein is either public information or is the property of and owned solely by Gemalto and/or its
subsidiaries who shall have and keep the sole right to file patent applications or any other kind of intellectual
property protection in connection with such information.

Nothing herein shall be construed as implying or granting to you any rights, by license, grant or otherwise,
under any intellectual and/or industrial property rights of or concerning any of Gemalto’s information.

This document can be used for informational, non-commercial, internal, and personal use only provided that:

> The copyright notice, the confidentiality and proprietary legend and this full warning notice appear in all
copies.

> This document shall not be posted on any publicly accessible network computer or broadcast in any media,
and no modification of any part of this document shall be made.

Use for any other purpose is expressly prohibited and may result in severe civil and criminal liabilities.

The information contained in this document is provided “AS IS” without any warranty of any kind. Unless
otherwise expressly agreed in writing, Gemalto makes no warranty as to the value or accuracy of information
contained herein.

The document could include technical inaccuracies or typographical errors. Changes are periodically added to
the information herein. Furthermore, Gemalto reserves the right to make any change or improvement in the
specifications data, information, and the like described herein, at any time.

Gemalto hereby disclaims all warranties and conditions with regard to the information contained herein,
including all implied warranties of merchantability, fitness for a particular purpose, title and non-infringement. In
no event shall Gemalto be liable, whether in contract, tort or otherwise, for any indirect, special or
consequential damages or any damages whatsoever including but not limited to damages resulting from loss
of use, data, profits, revenues, or customers, arising out of or in connection with the use or performance of
information contained in this document.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 2

Gemalto does not and shall not warrant that this product will be resistant to all possible attacks and shall not
incur, and disclaims, any liability in this respect. Even if each product is compliant with current security
standards in force on the date of their design, security mechanisms' resistance necessarily evolves according
to the state of the art in security and notably under the emergence of new attacks. Under no circumstances,
shall Gemalto be held liable for any third party actions and in particular in case of any successful attack against
systems or equipment incorporating Gemalto products. Gemalto disclaims any liability with respect to security
for direct, indirect, incidental or consequential damages that result from any use of its products. It is further
stressed that independent testing and verification by the person using the product is particularly encouraged,
especially in any application in which defective, incorrect or insecure functioning could result in damage to
persons or property, denial of service, or loss of privacy.

Allintellectual property is protected by copyright. All trademarks and product names used or referred to are the
copyright of their respective owners. No part of this document may be reproduced, stored in a retrieval system
or transmitted in any form or by any means, electronic, mechanical, chemical, photocopy, recording or
otherwise without the prior written permission of Gemalto.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 3

CONTENTS

Preface: Aboutthe SafeNet ProtectToolkit-C Programming Guide 17
Customer Release NOteS 18
Gemalto Rebranding ... o . 18
AU N . 19
DocumMent CONVENt ONS 19

N O S 19
CaUtIONS il 19
AN S L 19
Command Syntax and Typeface Conventions 20
SUPPOt CONtaCS L 21
Customer Support Portal ... 21
TelephonNe SUPP O L 21

Chapter 1: An Introduction t0 PKCSH T L 23
RUNTIME LiCONSING < 24
The PRCSHI T MOl . L 24

Chapter 2: ENVIrONMENtS 27
Application ENVIrONmMENt L 27

Win32 ™ AWWiNG4 ™ EnVirOnNmMent . 27
UNIX ENVIrONM N S . 27
Java ™ ENVirONMEN S 27
Development Environment Guidelines 28
Compiling and Linking Applications on AlLX L 29
Compiling and Linking 64-bit Applications on ALX ... 29
Compiling and Linking 64-bit Applications for Solaris SPARC 29
Compiling and Linking 64-bit Applications for HP-UX ... L 29
MOV C Project Settings 30
Configuration / SetUD ... 30

Chapter 3: ObjJeCt ClasSEeso 31
Creating, Modifying, Copying, and Deleting Objects 32
Additional AtrULE TYPES . 33
CommoON At DU S 39
Hardware Feature Objects 39
CloCk OB S 40
Monotonic Counter ObjeCtS ... 41
User O et il 41
Storage ObJeCts . 42
Data Ob S . . 43
Certificate ObJeCtS L 43

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 4

Ky OO CtS 46

PUblic Key ObJeCtS .. 48
Private Key ObjeCtS . . 52
Secret Key ObJeCtS . 57
Key Parameter ObJeCts . .. 63
Chapter 4: SafeNet ProtectToolkit-C Mechanisms 66
CRM _AES _CB il 78
CKM _AES CB O PAD .. 80
CKM_AES _CMAC ..o 81
CKM_AES_CMAC_GENERAL .. L 82
CKM _AES ECB oo 83
CKM_AES ECB ENCRYPT DA T A 84
CRM _AES G CM . 86
CKM _AES _KEY _GEN . L 88
CKM _AES KEY W R AP L 89
CKM_AES KEY WRAP _PAD . a0
CKM_AES _MAC . 91
CKM_AES_MAC_GENERAL L 92
CKM _AES OF B oo 93
CRIM AR P 94
CKM _ARIA CB C ... 95
CKM_ARIA _CBC _PAD .o 96
CRM A RIA ECB . 97
CKM _ARIA KEY _GEN 98
CRM AR A M AC 99
CKM_ARIA _MAC_GENERAL ... o 100
CKM_BIP32_CHILD _DERIVE 101
CKM_BIP32 MASTER DERIVE .. 104
CKM_CAST128_CBC ... 107
CKM_CAST128_CBC_PAD ... 108
CKM _CAST 128 ECB .. e e 109
CKM_CAST128 ECB _PAD .. 110
CKM_CAST 128 _KEY _GEN .. L 111
CKM_CAST 128 _MAC ..o 112
CKM_CAST128 MAC GENERAL . 113
CKM_CONCATENATE _BASE AND DAT A 114
CKM_CONCATENATE_BASE_AND _KEY .. e 115
CKM_CONCATENATE_DATA_AND _BASE 116
CKM _DECODE PR CS 7 e 117
CKM _DECODE _ X 509 119
CKM _DES BOCF .o 120
CKM_DES CB O ... 121
CKM_DES CBC _ENCRY PT _DAT A e 122
CKM _DES CB O PAD .. 123
CKM_DES _DERIVE_CBC ... L 124
CKM_DES DERIVE_ECB e 126

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 5

CKM _DES ECB oo 128

CKM_DES_ECB_ENCRYPT DATA oo 129
CKM_DES_ECB _PAD ... 130
CKM_DES_KEY _GEN ... oo 131
CKM_DES MAC oo 132
CKM_DES _MAC_GENERAL 133
CKM_DES_MDC_2 PADT ..o 134
CKM_DES _OFBBA ..o 135
CKM_DES2_ KEY _GEN oo 136
CKM_DES3 BCF oo 137
CKM_DES3_CBC ... 138
CKM_DES3_CBC_ENCRYPT _DATA ..o 139
CKM_DES3_CBC_PAD oo 140
CKM_DES3 CMAC oo 141
CKM_DES3_CMAC_GENERAL ..o oo 142
CKM_DES3 DDD_CBC ..o 143
CKM_DES3_DERIVE_CBC_DEPRECATED ..o oo 145
CKM_DES3_DERIVE_ECB_DEPRECATED ... oo 147
CKM_DES3_ECB ..o 149
CKM_DES3_ECB_ENCRYPT DATA .o 150
CKM_DES3_ECB_PAD oo 151
CKM_DES3_KEY GEN oo 153
CKM_DES3 MAC ..o 154
CKM_DES3_MAC_GENERAL ... oo 155
CKM_DES3_ OFBBA oo 156
CKM_DES3_RETAIL_CFB MAC oo 157
CKM_DES3_ X919 MAC ... oo 158
CKM_DES3_X919 MAC_GENERAL ... oo 159
CKM_DH_PKCS DERIVE oo 160
CKM_DH_PKCS_KEY_PAIR_GEN 161
CKM_DH_PKCS_PARAMETER_GEN ... 162
CKM_DSA .o 163
CKM_DSA _KEY PAIR GEN 164
CKM_DSA_PARAMETER GEN oo 165
CKM_DSA SHAT <o 166
CKM_DSA SHAT PKCS ..o 167
CKM_DSA SHA224 168
CKM_DSA_SHA224 PKCS . oo 169
CKM_DSA SHA256 ..o 170
CKM_DSA SHA256_PKCS ..o 171
CKM_EC_KEY PAIR GEN 172
CKM_ECDHA _DERIVE oo 174
CKM_ECDSA .o 180
CKM_ECDSA SHAT oo 181
CKM_ECDSA_SHA3 224 182
CKM_ECDSA_SHA3_ 256 .o oo 183
CKM_ECDSA_SHAB_ 384 ..o oo 184

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 6

CKM _EC DS A SHAS 512 185

CKM_ECDSA SHA224 186
CKM_ECDSA SHA256 ..o 187
CKM_ECDSA SHABBA ..o 188
CKM_ECDSA_SHABT 2 189
CKM_ECDSA_GBCS_SHA256 oo 190
CKM_ECIES ..o 191
CKM_ENCODE_ATTRIBUTES ... 194
CKM_ENCODE_PKCS 10 oo 195
CKM_ENCODE_PUBLIC_KEY oo 197
CKM_ENCODE_X 509 ... 198
CKM_ENCODE_X_509 LOCAL_CERT ... oo 201
CKM_EXTRACT_KEY_FROM_KEY oo 203
CKM_GENERIC_SECRET _KEY_GEN ..o oo 204
CKM_IDEA CBC ..o 205
CKM_IDEA CBC_PAD ... 206
CKM_IDEA ECB oo 207
CKM_IDEA ECB_PAD o 208
CKM_IDEA _KEY_GEN ..o 209
CKM_IDEA MAC ..o, 210
CKM_IDEA_MAC_GENERAL o 211
CKM_KEY _TRANSLATION L 212
CKM_KEY_WRAP_SET _OAEP ... 213
CKM_MD2 .o 214
CKM_MD2_HMAC oo 215
CKM_MD2_HMAC_GENERAL 216
CKM_MD2_KEY _DERIVATION ... 217
CKM_MD2_RSA PKCS ..o 218
KM M o 219
CKM_MD5_HMAC - oo 220
CKM_MD5_HMAC_GENERAL ..o 221
CKM_MD5_KEY _DERIVATION ... 222
CKM_MD5_RSA PKCS o 223
CKM_MILENAGE _DERIVE oo 224
CKM_MILENAGE_SIGN ..o 225
CKM NVB oo 226
CKM_PBA_SHAT WITH_SHAT HMAC 227
CKM_PBE_MD2_DES_CBC oo 228
CKM_PBE_MD5_CAST128_CBC ...\ 229
CKM_PBE_MD5_DES_CBC ... 230
CKM_PBE_SHA1 CAST128_CBC ... oo 231
CKM_PBE_SHA1 DES2 EDE_CBC ... oo 232
CKM_PBE_SHA1 DES3_EDE_CBC ..o\ 233
CKM_PBE_SHA1T RC2 40 CBC ...\ 234
CKM_PBE_SHA1 _RC2_128 CBC ..o oo 235
CKM_PBE_SHAT RCA A0 236
CKM_PBE_SHAT RCA_128 ... oo 237

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 7

CKM _PKCS12_PBE _EXPORT 238

CKM_PKCS12_PBE_IMPORT oo 241
CKM_PP_LOAD. _SECRET ..o 244
CKM_RC2_CBC ..o 246
CKM_RC2_CBC_ PAD oo 247
CKM_RC2_ECB oo 248
CKM_RC2_ECB _PAD ... 249
CKM_RC2_KEY _GEN ... oo, 250
CKM_RC2 MAC oo 251
CKM_RC2_MAC_GENERAL 252
CKM_RCA oo 253
CKM_RCA_KEY _GEN ..., 254
CKM_REPLICATE_TOKEN_RSA AES 255
CKM_RIPEMDA 28 oo 257
CKM_RIPEMDA28 HMAC ... 258
CKM_RIPEMD128_HMAC_GENERAL oo 259
CKM_RIPEMD128_RSA_PKCS o 260
CKM_RIPEMDAB0 oo 261
CKM_RIPEMDA60_HMAC ... 262
CKM_RIPEMD160_HMAC_GENERAL oo 263
CKM_RIPEMD160_RSA_PKCS o 264
CKM_RSA 9796 oo 265
CKM_RSA _FIPS_186_4 PRIME_KEY_PAIR_GEN ..o oo 266
CKM_RSA PKCS ..o 267
CKM_RSA _PKCS_KEY PAIR GEN .. 268
CKM_RSA PKCS_OAEP 269
CKM_RSA PKCS PSS ... oo 270
CKM_RSA X 509 .o 271
CKM_RSA X9 31 _KEY_PAIR GEN o 272
CKM_SECRET_RECOVER WITH_ATTRIBUTES .o oo 273
CKM_SECRET_SHARE_WITH_ATTRIBUTES .. . oo 275
CKM_SEED _CBC ..o 277
CKM_SEED _CBC_PAD oo 279
CKM_SEED _ECB oo 281
CKM_SEED _ECB_PAD ..o 283
CKM_SEED _KEY_GEN ..o oo 285
CKM_SEED. MAC oo 286
CKM_SEED _MAC_GENERAL oo 287
CKM_SET ATTRIBUTES oo 288
KM SHAT e 289
CKM_SHAT HMAC o 290
CKM_SHAT HMAC GENERAL o 291
CKM_SHA1T_KEY_DERIVATION oo 292
CKM_SHAT RSA PKCS ..o 293
CKM_SHAT _RSA PKCS PSS 294
CKM_SHA1T _RSA _PKCS_TIMESTAMP o 295
CKM_SHAS 224 e 298

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 8

CKM_SHASZ 224 HMAC . L 299

CKM_SHA3 224 HMAC_GENERAL 300
CKM_SHA3 224 KEY DERIVE ..o oo 301
CKM_SHA3 224 RSA PKCS .o 302
CKM_SHA3 224 RSA PKCS_ PSS . oo 303
CKM_SHAB 256 304
CKM_SHA3 256 HMAC ... oo 305
CKM_SHA3_256_HMAC_GENERAL . oo oo 306
CKM_SHA3 256 _KEY DERIVE o 307
CKM_SHA3 256 RSA PKCS ..o 308
CKM_SHA3 256 _RSA PKCS PSS ..o 309
CKM_SHAS 384 e 310
CKM_SHA3 384 HMAC - o oo 311
CKM_SHA3 384 HMAC_GENERAL o 312
CKM_SHA3 384 KEY DERIVE .o oo 313
CKM_SHA3 384 RSA PKCS oo 314
CKM_SHA3 384 RSA PKCS PSS .. oo 315
CKM_SHAS 512 316
CKM_SHA3 512 HMAC ..o 317
CKM_SHA3 512 HMAC_GENERAL . oo 318
CKM_SHA3 512 _KEY DERIVE o 319
CKM_SHA3 512 RSA PKCS oo 320
CKM_SHA3 512 RSA PKCS PSS . oo 321
CKM_SHAR24 e 322
CKM_SHA224 HMAC 323
CKM_SHA224 HMAC _GENERAL oo 324
CKM_SHA224 KEY DERIVATION ..o 325
CKM_SHA224 RSA PKCS oo 326
CKM_SHA224 RSA PKCS PSS oo 327
KM _SHA256 o 328
CKM_SHA256 HMAC ... 329
CKM_SHA256_HMAC_GENERAL . oo 330
CKM_SHA256_KEY DERIVATION o 331
CKM_SHA256_RSA PKCS oo 332
CKM_SHA256_RSA PKCS PSS .o 333
CKM_SHABBA e 334
CKM_SHA384 HMAC o 335
CKM_SHA384 HMAC_GENERAL - oo 336
CKM_SHA384 KEY _DERIVATION oo 337
CKM_SHA384 RSA PKCS ..o 338
CKM_SHA384 RSA PKCS PSS . oo 339
KM _SHABT 2 340
CKM_SHABT2 HMAC ..o, 341
CKM_SHA512_ HMAC_GENERAL oo 342
CKM_SHA512_KEY _DERIVATION oo 343
CKM_SHAB12_RSA PKCS oo 344
CKM_SHAS12_RSA PKCS PSS oo 345

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 9

CKM_SSL3_KEY_AND_MAC_DERIVE .. oo 346

CKM_SSL3 _MASTER _KEY DERIVE 347
CRM _SSL3 MDD MAC 348
CKM_SSL3_PRE_MASTER _KEY GEN . . 349
CKM _SSL 3 SHAT _MAC il 350
CRM L VISA. OV o 351
CKM_WRAPKEY _AES CBC . 352
CKM_WRAPKEY _DES3 CBC 354
CKM_WRAPKEY _DESS ECB . 357
CKM_WRAPKEYBLOB AES CBC .. 359
CKM_WRAPKEYBLOB_DES3 _CBC ... 361
CKM_X9 42 DH_DERIVE . 363
CKM_X9 42 DH_KEY PAIR GEN 364
CKM_X9 42 DH PARAMETER GEN . 365
CKM _XOR _BASE _AND DA A 366
CKM_XOR_BASE _AND _KEY 367
CKM_ZKA MDC_2 KEY DERIVATION o 369
Vendor-Defined Error Codes . .l 370
Chapter 5: Sample Programs 375
C o aMIDIES L 375
T DEMO il 376
F O RY P 377
Additional C Sample Programs .. 377
Chapter 6: Best Practice GUIdelines 383
I O AU ON il 383
APPICatioON S CUIY 384
Application Usability ... 386
Per OrMaNCe 387
CaPACI Y 387
Setup / ConfigUIratioN il 388
Maintainability .l 389
D bUGGING - . 390
Interoperability L 390
Programming in FIPS MOAe .o 391
Key Management 392
Chapter 7: ctbrowse — TOKEeN BrOWSEro 398
COMPIANCE .. 398
User Interface .o . 399
Token Management SerVICeS ... 400
CryptographiC SerVICeS il 403
Drag and IO ..o 405
Calculate Parameter Value for CK_RSA_PKCS_PSS_PARAMS 406
Chapter 8: API Tutorial: Development of a Sample Application 407

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 1 0

Required Header Files . 407

RUNtiMeE SWItCNeS .. 408
ENCrypt FUNCHONS L. 408
Decrypt FUNCHON 414
F Oy Pt USa0® ..o 417
Wrapped Encryption Key Template 418
Assembling the Application .. L 418
Chapter 9: PKCS#11 Logger Library ... 420
Logger Architecture and Functionality 420
LOgger SO UD o 421
ACHVatiNg LOGQING o 421
Deactivating Logger Operation 424
Chapter 10: PKCS#11 Command Reference 425
General Purpose FUNCHONS . L 426
CoINtialiZe L 426

C o FINaliZe 426
GG etINT O 427

G GetFUNCHONL ISt 427
Slot and Token Management FUNCYiONS 428
G GetSIotList 428

G GetSIotINT O L 429

C Gt OKENINT O 430

C WatFOrSIOtE et 431
C_GetMechanismlList . 432
C_GetMechanismInfo . 432

C NI T OKEN L 432
T I T oK 433
CT _ReSe T OKEN L 434
NI PIN 434
St PIN 435
Session Management FUNCHONS 436
C O EN S S SION . 436
C_ClOSESESSION 437
C_ClOSEAIISESSIONS 437
C_GetSessiONIN O . 437
C_GetOperationState 438
C_SetOperationState ... 438
OGN . 439

o LOgOU 441
Object Management FUNCHONS .. . 442
G Create Ot 442

C oY O Ot 442
Gl CoPYOD Ot 443

G Destroy O e Ct . 444

C Gttt SIZE .. 444

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 1 1

C_GetAttrbUtEValUE 444

G SetAtrIbULEValUE .. 445
C_FindObjectsINit 446
C U FINAOD e CtS . 446
C_FIndODbjeCtsFINal « . L 446
Encrypltion FUNCHONS 447
G ENCIrY P NIt . 447
C NGy L 447
C ENCryptUpdate . 448
G ENCrYP NGl 448
Decryption FUNCHONS . . 449
C oDy ptINit 449
G D Y Pt 449
C o DeCryptUpdate 450
G DecryptFinal il 450
Message Digesting FUNCHONS . . il 451
C o DIgestINit L 451
DSt . 451
C o DigestUpdate L 451
C o DIgeSt Y 452
CoDigestFiNal .. 452
Signing and MACING FUNCHONS . . 453
oSN NI L 453
o SIaN 453
o SIgNUPAate . 454
G SIgNFINGl 454
C_SIgNReCOVerINIt . 454
G SIgNRECOVET L 454
Functions for Verifying Signatures and MACS ... 456
GVt Y NI 456
GV Iy . 457
C VerifyUpdate . L 457
C o VerifYFINal 457
C_VerifyRecoverinit .l 457
GV erifYRECOV T 458
Dual-function Cryptographic FUNCtions il 459
C_DigestEncryptUpdate ... 459
C_DecryptDigestUpdate o 459
C_SignEncryptUpdate . . 459
C_DecryptVerifyUpdate ... L 460
Key Management FUNCHONS .. . 461
CoGenerate ey ol 461
C_GenerateKeyPair il 461
G WA Y . 462
G UNWIaPKEY .. 462
C DIV Y ... 462
Random Number Generation Functions il 464

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 1 2

C_SeedRaANAOM 464

C_GenerateRaNdOM . 464
Parallel Function Management FUuNCtioNs il 465
C_GetFunctionStatus il 465

G CancCelFUNC I ON 465
EXtra FUNCHONS .. 466
G PresentTiCKet . 466
CT _SetHsmDead 466
CT_GetHOMIA o 467
CT T OHSM S S S 0N . . 467
FMSC _SendReCeIVE ... L 467
Chapter 11: CTUTIL.H Functionality Reference ... 470
BUIldDNKeY Pair .. 473
BuildDsaKeyPair . 475
BUIldRSaC Ky Pair . 477
BUIIdRSaKeY PaIr . 479
C IO O NG il 481
CalCKV G L 482
CalCKV O B CN 483
OO UMD il 484
CheckCryptoKIVerSION .. 485
CreateDesKeY ... L 486
Create S ety L 487
G A T OO ING . 488
CT _Create O e Ct . il 489
CT_CreatePublicObject .. . 490
CT_Create_Set Attributes _Ticket INfO ... 491
CT_Create_Set_ Attributes TiCKet ... 492
CT_DerEncodeNamedCuUrVve . 493
CUIVE 2D 5T . 494
CT_GetAUthChallenNge .. e 495
CT _GetOb et DIgest 496
CT_GetECCDomainParameters 497
CT_GetObjectDigestFromParts 498
CT G TP PIN L 499
G ErTOr S NG e 500
CT _GetECK Y SIZe 501
CT_MakeObjectNonModifiable 502
CT 0PN O Ct . 503
CT _Read O et il 504
CT_RenameOb et . L 505
CT_SetCKDateStrFrom T ime 506
G StrUCtUre T O AT e 507
G Structure _From AT e 508
G SetLimits AN DU eSS 509
G WIite O e Ct . 510

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 1 3

DateConvertGmMtToLOCal ... 511

Date CON eIt il 512
UM P A UL e S 513
DUMPDHKEY PaIr 514
DUMP D S AKEY PaIr 515
DUMP RO AKEY Pl 516
FINd A DU e 517
FindKeyFromName .. 518
FindToKenFromNamMe .o 519
GenerateDhKeY Pair 520
GenerateDsaKeyPair . . 522
GenerateRsaKeyPair . . 524
Gt AT 526
getDerEncodedNamedCuUIVe il 527
GetDeVICEE T O 528
GetODbJeCtCOUNt L 529
GetSeCUNtYMOAE 530
GetSesSIONCOUNT il 531
GetTotalSessioNCOUNt L 532
NUMIT EM S 533
=T ST o k= o 534
SO AT . 535
SOW IOt . 536
SOW T OKEN 537
SE A UL 538
ST BT O 539
I EY T YD L 540
S ECN AN SN . 541
U O I aSS . L 542
S S e S O At 543
TransterOD e Ct . 544
Val A UL . 545
ValE T Or 546
ValKeY Ty DO . 547
ValM e O AN S 548
ValOD IS 549
Val S e S S At e il 550
Chapter 12: CTEXTRA.H Library Reference 551
ADAA DUt e S S .. 553
At A S N . 554
ConcatAttributeSets . 555
CoPY AR DU . 556
DUP A UL S 557
DUP A DU SOt . 558
ExXtractAl AR DU eSS .. 559
O A 560

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 14

Free AUt SOt 562
FreeAttributesNOCIear .. . 563
FreeMechData ... il 564
genkMechanismTabFromMechanismTab 565
genkpMechanismTabFromMechanismTab 566
genMechanismTabFromMechanismTab ... 567
GetCryplOKIV eI SION 568
GetOD A N O 569
GetODbjectClassANAKEY TY P ... 570
aSIM BN L 571
IV AT . 572
I AT L OOKUD L 573
ISBOOIE AN AT L 574
ISENUMeErated A il 575
ISGENMECN . 576
SN UM B C A e 577
IS SN SV AT 578
KeYF rOM PN . 579
KM BN 580
KO BN 581
KEFrOMM O 582
LOOKUPM N . 583
MatCh At DUt e S et il 584
MeChDeriVeF rOMKE L 585
MECHF TOMKE 586
MEChF oM T OKKE 587
MeEChSIgNFrOMKt 588
MEeChSIgNRECF rOMKE 589
N WA DU e SOt 590
UM AT 591
NUM AL OOKUD 592
NUMI T EM S e 593
PVCF rOM PN 594
ReaO AT 595
SIOt D T OM S S . 596
TraNS O AT 597
UNWEaPDEC . .o 598
AP ENC L 599
VI AT il 600
Chapter 13: HEX2BIN.H Library Reference 601
X2 DI 602
DI 2N X 603
DI 2N e X 604
M MU D L 605
SetOdAParitY .. 606

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 1 5

ISOAAP AN Y 607

Chapter 14: HSMAdmin.H Library Reference 608
RetUrN GO . 608
HSMADM _GetTimeO DAy ... 610
HSMADM _AdJUSETIME . 611
HSMADM _SetRtCStatUS ... 612
HSMADM _ GetR S atUS 613
HSMADM _GetRtCAdJUSTAMOUNT .. 614
HSMADM_GetRtcAdjustCOUNt ... 615
HSMADM_GetHsmUsagelevel ... 616

Chapter 15: KMLib.H Library Reference 617
KM _EncodeECParams P . . 618
KM _EncodeECParams 2 620

Chapter 16: ctauth.h Library Reference 622
CT_Gen_AUTH_RESPONSE 622

Appendix A: Attribute Certificate 623
OID Used to Indicate Key Digest Algorithm L 625

Appendix B: GlOSSary .. 626

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 1 6

PREFACE:
About the SafeNet ProtectToolkit-C

Programming Guide

This document provides instructions for using the SafeNet ProtectToolkit-C Application Programming
Interface. It contains the following chapters and appendices:

” Introduction to PKCS#11 programming
Application, development, and configuration environments
Supported object types
Supported mechanism types
Sample programs included with the SDK
Development tips and techniques and best practice guidelines
ctbrowse application
Full tutorial with complete details on the FCrypt sample
Reference on how to use the PKCS#11 logger library
Full reference on the SafeNet ProtectToolkit-C implementation of the PKCS#11 API
Reference for the CTUTIL library
Reference for the CTEXTRA library
Reference for the HEX2BIN library

Reference for the HSMAdmin library

Partial reference for the KMLib library

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

17

Preface: Aboutthe SafeNet ProtectToolkit-C Programming Guide

Partial reference for the ctauth.h library
>

>

This preface also includes the following information about this document:

vV V V VvV V

For information regarding the document status and revision history, see

Customer Release Notes

The customer release notes (CRN) provide important information about this release thatis not included in the
customer documentation. It is strongly recommended that you read the CRN to fully understand the
capabilities, limitations, and known issues for this release. You can view or download the latest version of the
CRN for this release at the following location:

Gemalto Rebranding

In early 2015, Gemalto completed its acquisition of SafeNet, Inc. As part of the process of rationalizing the
product portfolios between the two organizations, the SafeNet name has been retained. As a result, the
product names for SafeNet HSMs have changed as follows:

Old product name New product name

ProtectServer External 2 (PSE2) SafeNet ProtectServer Network HSM
ProtectServer Internal Express 2 (PSI-E2) SafeNet ProtectServer PCle HSM
ProtectServer HSM Access Provider SafeNet ProtectServer HSM Access Provider
ProtectToolkit C (PTK-C) SafeNet ProtectToolkit-C

ProtectToolkit J (PTK-J) SafeNet ProtectToolkit-J

ProtectToolkit M (PTK-M) SafeNet ProtectToolkit-M

ProtectToolkit FM SDK SafeNet ProtectToolkit FM SDK

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 1 8

http://www.securedbysafenet.com/releasenotes/ptk/crn_ptk_5-4.pdf

Preface: Aboutthe SafeNet ProtectToolkit-C Programming Guide

NOTE These branding changes apply to the documentation only. The SafeNet HSM
software and utilities continue to use the old names.

Audience

This document is intended for personnel responsible for maintaining your organization's security
infrastructure. This includes SafeNet ProtectToolkit users and security officers, key manager administrators,
and network administrators.

All products manufactured and distributed by Gemalto are designed to be installed, operated, and maintained
by personnel who have the knowledge, training, and qualifications required to safely perform the tasks
assigned to them. The information, processes, and procedures contained in this document are intended for
use by trained and qualified personnel only.

Itis assumed that the users of this document are proficient with security concepts.

Document Conventions

This document uses standard conventions for describing the user interface and for alerting you to important
information.

Notes
Notes are used to alert you to important or helpful information. They use the following format:

I NOTE Take note. Contains important or helpful information.

Cautions

Cautions are used to alert you to important information that may help prevent unexpected results or data loss.
They use the following format:

Exercise caution. Contains important information that may help prevent
unexpected results or data loss.

Warnings

Warnings are used to alert you to the potential for catastrophic data loss or personal injury. They use the
following format:

*WARNING** Be extremely careful and obey all safety and security measures. In
this situation you might do something that could result in catastrophic data loss or
personal injury.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 1 9

Preface: Aboutthe SafeNet ProtectToolkit-C Programming Guide

Command Syntax and Typeface Conventions

Format Convention
bold The bold attribute is used to indicate the following:
> Command-line commands and options (Type dir /p.)
> Button names (Click Save As.)
> Check box and radio button names (Select the Print Duplex check box.)
> Dialog box titles (On the Protect Document dialog box, click Yes.)
> Field names (User Name: Enter the name of the user.)
> Menu names (On the File menu, click Save.) (Click Menu > Go To > Folders.)
> Userinput (In the Date box, type April 1.)

italics In type, the italic attribute is used for emphasis or to indicate a related document. (See the
Installation Guide for more information.)

<variable> In command descriptions, angle brackets represent variables. You must substitute a value for
command line arguments that are enclosed in angle brackets.

[optional] Represent optional keywords or <variables> in a command line description. Optionally enter the

[<optional>] keyword or <variable> that is enclosed in square brackets, if it is necessary or desirable to
complete the task.

{alb|c} Represent required alternate keywords or <variables> in a command line description. You must

{<a>||<c>} choose one command line argument enclosed within the braces. Choices are separated by vertical
(OR) bars.

[alb|c] Represent optional alternate keywords or variables in a command line description. Choose one

[<a>||<c>] command line argument enclosed within the braces, if desired. Choices are separated by vertical
(OR) bars.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 20

Preface: Aboutthe SafeNet ProtectToolkit-C Programming Guide

Support Contacts

If you encounter a problem while installing, registering, or operating this product, please refer to the
documentation before contacting support. If you cannot resolve the issue, contact your supplier or

Gemalto Customer Support operates 24 hours a day, 7 days a week. Your level of access to this service is
governed by the support plan arrangements made between Gemalto and your organization. Please consult
this support plan for further information about your entitlements, including the hours when telephone support is
available to you.

Customer Support Portal

The Customer Support Portal, at is where you can find solutions for most
common problems. The Customer Support Portal is a comprehensive, fully searchable database of support
resources, including software and firmware downloads, release notes listing known problems and
workarounds, a knowledge base, FAQs, product documentation, technical notes, and more. You can also use
the portal to create and manage support cases.

NOTE You require an account to access the Customer Support Portal. To create a new
account, go to the portal and click on the REGISTER link.

Telephone Support

If you have an urgent problem, or cannot access the Customer Support Portal, you can contact Gemalto
Customer Support by telephone. Calls to Gemalto Customer Support are handled on a priority basis.

Region Telephone number
(Subject to change. An up-to-date list is maintained on the Customer Support Portal)

Global +1410-931-7520
Australia 1800.020.183
China North: 10800-713-1971

South: 10800-1301-932

France 0800-912-857
Germany 0800-181-6374
India 000.800.100.4290
Israel 180-931-5798
Italy 800-786-421

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 21

https://supportportal.gemalto.com/
https://supportportal.gemalto.com/
https://supportportal.gemalto.com/

Preface: Aboutthe SafeNet ProtectToolkit-C Programming Guide

Region Telephone number
(Subject to change. An up-to-date list is maintained on the Customer Support Portal)

Japan 0066 3382 1699
Korea +82 23429 1055
Netherlands 0800.022.2996
New Zealand 0800.440.359
Portugal 800.863.499
Singapore 800.1302.029
Spain 900.938.717
Sweden 020.791.028
Switzerland 0800.564.849
United Kingdom 0800.056.3158
United States (800) 545-6608

SafeNet ProtectToolkit 5.6 Programming Guide

007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

22

CHAPTER 1:
An Introduction to PKCS#11

The PKCS#11 Cryptographic Token Interface Standard, also known as Cryptoki, is one of the Public Key
Cryptography Standards developed by RSA Security. PKCS#11 defines the interface between an application
and a cryptographic device. This chapter gives a general outline of PKCS#11 and some of its basic concepts. If
unfamiliar with PKCS#11, the reader is strongly advised to refer to PKCS #1711 Cryptographic Token Interface
Standard.

PKCS#11 is used as a low-level interface to perform cryptographic operations without the need for the
application to directly interface a device through its driver. PKCS#11 represents cryptographic devices using a
common model referred to simply as a token. An application can therefore perform cryptographic operations
on any device or token, using the same independent command set.

SafeNet ProtectToolkit-C is a cryptographic service provider using the PKCS #11 application programming
interface (API) standard, as specified by RSA Labs. It includes a lightweight, proprietary Java API to access
these PKCS #11 functions from Java.

The PKCS #11 API, also known as Cryptoki, includes a suite of cryptographic services for encryption,
decryption, signature generation, signature verification, and permanent key storage. The software found on
the installation DVD is compliant with PKCS #11 v. 2.20. The latest versions of the client software and HSM
firmware can be found on the Gemalto Technical Support Customer Portal. See

for more information.

To provide the highest level of security, SafeNet ProtectToolkit-C interfaces with SafeNet access provider
software and the SafeNet range of hardware security modules (HSMs):

> SafeNet ProtectServer Network HSM
> SafeNet ProtectServer PCle HSM

HSMs include high-speed DES and RSA hardware acceleration, as well as generic security processing.
Secure, persistent, tamper-resistant CMOS key storage is included. Multiple adapters may be used in a single
host computer to improve throughput or to provide redundancy. HSMs may be installed locally, on the same
host system as SafeNet ProtectToolkit-C or they may be located remotely across a network.

SafeNet ProtectToolkit-C can be used in one of three operating modes. These are:

> PCI mode in conjunction with a locally-installed SafeNet cryptographic services adapter.

PCI
Application f&— FTK-C = HSM Access |
Provider

PCle HSM

W

PC

> Network mode over a TCP/IP network, in conjunction with a compatible product such as the SafeNet
ProtectServer PCle HSM.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 23

Chapter 1: An Introduction to PKCS#11

Metwork
L Metwark:
Application — PTK-C HSM Access ||< ngﬂr
Provider Network
PC

A machine with a SafeNet ProtectServer PCle HSM installed may also be used as a server in network mode.

Metwork PCl
Applicationfe—=| PTK-C [< HSM Access | |< = HSM Net < HSM Access |« Eg:';
Provider Network emver Provider
FC Customer HSM Solution

> Software-only mode, on a local machine without access to a hardware security module.

Within the client/server runtime environment, the server performs cryptographic processing at the request of
the client. The server itself will only operate in one of the hardware runtime modes.

The software-only version is available for a variety of platforms, including Windows NT and Solaris, and is
typically used as a development and testing environment for applications that will eventually use the hardware
variant of SafeNet ProtectToolkit-C.

Runtime Licensing

All of the runtime software, including all applications and the software-only SafeNet ProtectToolkit-C runtime
supplied with this SDK, are licensed for development and testing purposes only. NO RUNTIME LICENSES ARE
INCLUDED. Therefore this software, or any component of it, must not be used for production systems.
Separate runtime licenses must be purchased for production systems deployed using any SafeNet
ProtectToolkit-C support.

Please refer to the readme.txt file found in the install directory of the SafeNet ProtectToolkit-C SDK for
licensing requirement details.

The PKCS#11 Model

The model for PKCS#11 can be seen illustrated below, demonstrating how an application communicates its
requests to a token via the PKCS#11 interface. The term slot represents a physical device interface. For
example, a smart card reader would represent a slot and the smart card would represent the token. Itis also
possible that multiple slots may share the same token.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 24

Chapter 1: An Introduction to PKCS#11

Figure 1: General PKCS#11 Model

Application k

v

Other Security Layers

v

Cryptoki

A

Application 1

v

Other Security Layers

'

Cryptoki

s

ra

Device Contention/Synchronisation

\.

Slot 1

I

Token 1
(Device 1)

Slot 2

i

Token n
(Device n)

Within PKCS#11, a token is viewed as a device that stores objects and can perform cryptographic functions.
Objects are generally defined in one of four classes:

> Data objects, which are defined by an application

> Certificate objects, which are digital certificates such as X.509

> Key objects, which can be public, private or secret cryptographic keys
> Vendor-defined objects

Objects within PKCS#11 are further defined as either a token object or a session object. Token objects are
visible by any application which has sufficient access permission and is connected to that token. An important
attribute of a token object is that it remains on the token until a specific action is performed to remove it.

A connection between a token and an application is referred to as a session. Session objects are temporary
and only remain in existence while the session is open. Session objects are only ever visible to the application
that created them.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 25

Chapter 1: An Introduction to PKCS#11

Access to objects within PKCS#11 is defined by the object type. Public objects are visible to any user or
application, whereas private objects require that the user must be logged into that token in order to view them.

PKCS#11 recognizes two types of users, namely a security officer (SO) or normal user. The security officer’s
only role is to initialize a token and set the normal user's access PIN.

NOTE The normal user, which manipulates objects and performs most operations, cannot
log in until the security officer has set that user’s PIN.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

26

CHAPTER 2:
Environments

This chapter provides details of how SafeNet ProtectToolkit-C is supplied in different environments. It contains
the following sections:

>
>

>

Application Environment

Win32™/Win64™ Environment

SafeNet ProtectToolkit-C is supplied as a Win32/64 Dynamic Link Library (cryptoki.dll) built with Microsoft
development tools (MSVC). cryptoki2.lib is an import library that should be linked against applications to
resolve function calls into cryptoki.dlil.

UNIX Environments

This is supplied as shared libraries. The hardware based SafeNet ProtectToolkit-C library is stored as the
shared library libcthsm.so (libcthsm.sl for HP-UX on PA-RISC, libcthsm.a for AlX) and the software-only
version as libctsw.so (libctsw.sl for HP-UX on PA-RISC, libctsw.a for AlX). The symbolic link
libecryptoki.so (libcryptoki.sl for HP-UX on PA-RISC, libcryptoki.a for AlX) is setup in the
lopt/safenet/protecttoolkit5/ptk/lib folder and should point to the appropriate library. Additionally these
libraries must be included in the LD_LIBRARY_PATH (SHLIB_PATH for HP-UX on PA-RISC, or LIBPATH for
AlX).

The libcthsm shared object requires the library libethsm.

For systems that support 32-bit and 64-bit, the 32-bit libraries and executables are the default.

Java™ Environments

A lightweight proprietary Java wrapper for PKCS#11 API, JCPROV, is provided to allow access to the SafeNet
ProtectToolkit-C functionality from Java, without the overhead of the JCA/JCE API. The aim of this APl is to be
as similar to the PKCS#11 as the Java language allows. This provides a high level of familiarity with the
PKCS#11 environment and allows for faster implementation of Java programs.

The Java APl is compatible with JDK 6, 7, and 8. The library is implemented in jeprov.jar, under the
namespace safenet_tech.jcprov. An accompanying shared library “jcprov” (jcprov.dil in Win32/64
environments, and libjcprov.so in UNIX environments (libjcprov.sl for HP-UX on PA-RISC, libjcprov.a for
AIX) provides the native methods used to access the appropriate PKCS#11 library.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 27

Chapter 2: Environments

JCPROV Java JNI Support (AIX Only)

The Java VM on AlX does not support mixed mode JNI libraries. Mixed mode libraries are shared libraries that
provide both 32-bit and 64-bit interfaces. Itis therefore essential that the correct JNI library is selected for use
with Java VM being used.

If using a 32-bit Java VM:

> The /opt/safenet/protecttoolkit5/ptk/lib/libjcprov.a symbolic link must point to a 32-bit version of the
library (libjcprov_32.a).

For example: /opt/safenet/protecttoolkit5/ptk/lib/libjcprov_32.a

> The /opt/safenet/protecttoolkit5/ptk/lib/libjcryptoki.a symbolic link must point a 32-bit version of the
library (libjcryptoki_32.a).

For example: /opt/safenet/protecttoolkit5/ptki/lib/libjcryptoki_32.a

If using a 64-bit Java VM:

> The /opt/safenet/protecttoolkit5/ptk/lib/libjcprov.a symbolic link must point to a 64-bit version of the
library (libjcprov_64.a).

Forexample: /opt/safenet/protecttoolkit5/ptk/lib/libjcprov_64.a

> The /opt/safenet/protecttoolkit5/ptk/lib/libjcryptoki.a symbolic link must point a 64-bit version of the
library (libjcryptoki_64.a).

For example: /opt/safenet/protecttoolkit5/ptki/lib/libjcryptoki_64.a

NOTE When installing the SafeNet ProtectToolkit-C Runtime package, the above links are
automatically created to use the 32-bit versions of the JNI libraries.

Development Environment Guidelines

This manual gives a number of application development guidelines that can be of benefit for both novice and
advanced developers using SafeNet ProtectToolkit-C.

An API tutorial is provided in

Further sample programs, for which source code has been provided, may be compiled and linked against the
supplied libraries. Further details about the sample programs are covered in Chapter 5.

The additional libraries ctextra, ctutil, hex2bin and LMIib are static libraries that contain additional PKCS#11
support and helper functions that are not a part of the PKCS#11 standard. For full details on the content of
these libraries please refer to:

>

>
>
>

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 28

Chapter 2: Environments

The library HSMAdmin calls services on the HSM that are not part of the PKCS#11 standard — see
for details.

This development kit may be used to build applications for any variant of the SafeNet ProtectToolkit-C
runtimes.

I NOTE Itis assumed that the Native C/C++ compiler is being used.

Compiling and Linking Applications on AlX

Itis important that new applications link against libraries in the /opt/safenet/protecttoolkit5/ptk/lib directory
instead of the libraries in the /opt/safenet/protecttoolkit5/ptk/lib/legacy directory. This can be achieved by
using the -L/opt/safenet/protecttoolkits/SafeNet ProtectToolkit/lib argument to the compiler or linker. Do
not specify the /opt/safenet/protecttoolkit5/ptk/lib/legacy library path, since the legacy shared libraries are
deprecated, and support is to be removed in a future release.

You may also want to explicitly specify an embedded library path when linking your own applications and
libraries, so that your applications automatically find the required libraries without requiring the LIBPATH
environment variable to be set. Do this by using the -
blibpath:/usr/lib:/lib:/opt/safenet/protecttoolkit5/ptk/lib option to the linker (Id), or alternatively (if using
the compiler to link):

-Wl,-blibpath:/usr/lib:/1lib:/opt/safenet/protecttoolkit5/ptk/1lib

Compiling and Linking 64-bit Applications on AIX
To compile 64-bit applications for AlX specify the following compiler and linker flags:
-q64

Compiling and Linking 64-bit Applications for Solaris SPARC
To compile 64 bit applications for Solaris SPARC specify the following compiler flags:
-Xarch = v9

-DBITS64

The 64-bit libraries are to be found in the /opt/safenet/protecttoolkit5/ptk/lib/sparcv9 directory. To link
against them instead of the libraries in the directory /opt/safenet/protecttoolkit5/ptk/lib, add the following
argument to the compiler or linker:

-L /opt/safenet/protecttoolkit5/ptk/lib/sparcv9

I NOTE Itis assumed that the Sun C/C++ compiler is being used.

Compiling and Linking 64-bit Applications for HP-UX
To compile 64-bit applications for HP-UX, specify the following compiler flags:
+DD64

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 29

Chapter 2: Environments

The 64 bit libraries are to be found in the /opt/safenet/protecttoolkit5/ptk/lib/64 directory. To link against
them instead of the libraries in the directory lopt/safenet/protecttoolkit5/ptk/lib, add the following argument
to the compiler or linker:

-L /opt/safenet/protecttoolkit5/ptk/1lib/64

MSVC Project Settings

In order to remove link errors when linking to the additional libraries ctextra and ctutil etc, you need to set the
MSVC project settings to Multithreaded under the C/C++ tab of the Code generation category, since this is
what the libraries were compiled with.

Also add “_WINDOWS” to the Preprocessor definitions under the C/C++ tab of the General category.

Modes of Operation

To switch the SafeNet ProtectToolkit-C operational mode, you will need to ensure that you are linking to the
correct cryptoki.dil. As of version 5.3, the setmode tool has been provided for this purpose. Refer to the
SafeNet ProtectToolkit-C Administration Guide for more information.

Configuration / Setup

For full details regarding setup and configuration of SafeNet ProtectToolkit-C and/or SafeNet ProtectServer
hardware security modules (HSMs), please refer to:

SafeNet ProtectServer PCle HSM Installation Guide

SafeNet ProtectServer Network HSM Installation/Configuration Guide
SafeNet HSM Access Provider Installation Guide

SafeNet ProtectToolkit-C Administration Guide

\"

VvV VvV V

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 30

CHAPTER 3:
Object Classes

Cryptoki recognizes a number of object classes, as defined inthe CK_ OBJECT CLASS data type. An object
consists of a set of attributes, each of which has a given value. Each object attribute has precisely one value.
illustrates the high-level hierarchy of the Cryptoki objects and some of the

attributes they support:
Figure 2: Object Attribute Hierarchy
Object
Class
Token
Private
Label
Modifiable
Extractable
Deletable
Storage HW Feature
TimeStamp Feature Type
4 4 v Y v
Certificate Certificate Req Data Key Key Gen Params
Subject Application Key Type
Value Object Identifier Prime
Key Type Value Subprime
Derive Base

Cryptoki provides functions for creating, destroying, and copying objects and for obtaining or modifying their

attribute values. Some of the cryptographic functions (for example, C_GenerateKey) also create key objects
to hold their results.

Objects are always “well-formed” in Cryptoki—that is, an object always contains a minimum set of attributes for
its proper operation, and the attributes are always consistent with one another from the time the object is
created. Itis possible, however, for an object to have one or more optional attributes missing.

Atoken can hold several identical objects. Thatis, it is permissible for two or more objects to have exactly the
same values for all of their attributes.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 31

Chapter 3: Object Classes

Some object attributes possess default values, and need not be specified when creating an object. Some of
these default values may even be the empty string (“”). Nevertheless, the object possesses these attributes. A
given object has a single value for each attribute it possesses. Optional attributes are, by default, not created.

In addition to possessing Cryptoki attributes, objects may possess additional vendor-specific attributes. The
meanings and values of the attributes not specified by Cryptoki are described below.

This chapter contains the following sections:

V V. V V vV V V V VvV V V

Creating, Modifying, Copying, and Deleting Objects

Cryptoki functions that create, modify, or copy objects, take a template as one of their arguments, where the
template specifies attribute values. Cryptographic functions that create objects may also contribute some
additional attribute values themselves. Which attributes have values contributed by a cryptographic function
call depends on which cryptographic mechanism is being performed.

In any case, all the required attributes supported by an object class that do not have default values must be
specified when an object is created, either in the template or by the function itself.

Creating Objects

Objects may be created with the Cryptoki functions C_CreateObject, C_GenerateKey, C_
GenerateKeyPair, C_UnwrapKey, and C_DeriveKey. In addition, copying an existing object, with the
function C_CopyObject or CT_CopyObject, also creates a new object.

Attempting to create an object with any of these functions requires an appropriate template to be supplied.

> Ifthe supplied template specifies a value for an unrecognized attribute, then the attribute is stored but
ignored.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 32

Chapter 3: Object Classes

> Ifthe supplied template specifies an inappropriate value for a valid attribute, then the attribute is stored,
except when itis the value attribute for a key, in which case the length is checked. Checks are made on the
validity of attributes when the object is used in later operations.

> When a token hasthe CKF_ LOGIN REQUIRED flag setin the flags field of the CK_TOKEN INFO
structure, the token is read-only until the user (or SO) has been authenticated to the token.

> |Ifthe attribute values in the supplied template, any default attribute values, and any attribute values
contributed by the object-creation function itself are insufficient to fully specify the object to be created, then
the attempt will fail with the error code CKR_ TEMPLATE INCOMPLETE.

> Ifthe supplied template specifies the same value for a particular attribute more than once (or the template
specifies the same value for a particular attribute that the object-creation function itself contributes to the
object), then the duplicate attribute is ignored.

Modifying Objects
If the “Increased Security” flag is set as part of the security policy, then C_CopyObject does not allow

changing the CKA MODIFIABLE flag from FALSE to TRUE (See SafeNet ProtectToolkit-C Administration
Manual for details on setting HSM security policy).

Apart from the above exception, all PKCS#11 version 2.20 rules for object modification are applied.

Copying Objects
All PKCS#11 version 2.20 rules for copying objects are applied.

Deleting Objects

In addition to standard object deletion rules, there is support for the CKA DELETABLE attribute. Thisis an
optional attribute that may be specified for token objects. For token objects with CKA DELETABLE set to
FALSE, the C_DestroyObject function will not delete the object and will instead return the error CKR
OBJECT READ ONLY.

Additional Attribute Types

There are a number of additional vendor-defined attribute types:

CKA KEY_SIZE

The key size for key type CKK_EC can be any arbitrary bit length. That is, not within the byte boundary (for
example: the key size for a P-521 curve).

The CKA_KEY SIZE attribute has the following additional properties:
> Sizeisin bits

> Read-only attribute

> Assigned at object creation time

>

Applicable to both private and public keys

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 33

Chapter 3: Object Classes

I NOTE This attribute is applicable only to CKK_EC.

CKA_TIME_STAMP

Every object created is assigned a value for the CKA_ TIME STAMP attribute. This value is always read-only
and may not be included in a template for a new object. However, when an object is duplicated using the C_
CopyObject function or the object is a key derived using the C_DeriveKey, the new object will inherit the
same creation time as the original object.

The value of this attribute is a text string encoding of the time. The encoding format is
"YYYYMMDDHHMMSSO00".

CKA_TRUSTED

This attribute may be included in a template for the creation of a Certificate object. It indicates whether or not
the certificate is trusted by the application. Once set, the value of this attribute may not be modified.

The following values are defined for this attribute:

CKA_TRUSTED Description
TRUE (1) The certificate is trusted.
FALSE (0) The certificate is not trusted and must be verified.

The value of CKA_ TRUSTED may be set to TRUE only when the Security Officer is logged in. That s, the state
of the session mustbe CKS RW SO FUNCTIONS. Once a Certificate object has the CKA_ TRUSTED attribute
equal to TRUE, the Certificate is considered a trusted root certificate. The certificate validation code will stop
once it reaches a trusted root certificate.

The certificate validation algorithm will locate the certificate’s issuer by searching for a Certificate object with
the CKA SUBJECT attribute equal to the issuer’s distinguished name. If located, it will then verify the signature
on the certificate. If the signature is invalid it will return false, otherwise it will check the CKA TRUSTED
attribute on the issuer’s certificate. If not equal to TRUE it will search for the issuer of that certificate. The
algorithm will continue until a trusted certificate is found, the signature verification fails or the certificate chain is
broken. The chain is broken when a certificate for the issuer cannot be found.

Once a certificate is marked as trusted, the object’'s CKA VALUE attribute may no longer be modified.

NOTE The other attributes of the certificate will remain modifiable unless the CKA
MODIFIABLE attribute is setto FALSE.

CKA_USAGE_COUNT

The value of this attribute maintains a count of the number of times a key object is used for a cryptographic
operation. Itis possible to set the value of this attribute for a key. Afterwards it is automatically incremented
each time the key is used in a Cryptoki initialization routine (that is, C_Signlinit).

Also see description for CKA USAGE LIMIT.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 34

Chapter 3: Object Classes

When generating Certificate objects with the CKM_ENCODE X 509 mechanism, the CKA SERIAL NUMBER
attribute for the new certificate object is taken from the certificate signing key’s CKA_ USAGE COUNT attribute.
The usage count from the private key is used only if the serial number is not already included in the template for
the new certificate.

CKA_USAGE_LIMIT

This attribute represents the highest possible CKA USAGE COUNT value allowed on this object - the
maximum number of times the object can be used.

This attribute may be specified when the object is created, or added to an object when CKA MODIFIABLE is
true. Once the attribute is added, it cannot be changed by the C_SetAttributeValue function.

Only the CKM SET ATTRIBUTES ticket mechanism can change this attribute. The Ticket can modify the
attribute even if MODIFABLE=False.

CKA_START DATE, CKA_END DATE

These attributes control the period in which the object can be used.

These attributes may be specified when the object is created or added to an object when CKA MODIFIABLE
is true. Once the attribute is added it cannot be changed by the C_SetAttributeValue function.

Onlythe CKM SET ATTRIBUTES ticket mechanism can change these attributes. The Ticket can modify the
attributes even if MODIFABLE=False.

Attribute validation is performed if these attributes are supplied during a C_CreateObject or C_UnWrapkey
or C_DeriveKey operation. One or both of these attributes may be missing, or present but with an empty
value. In this case the attribute is interpreted as "No restriction applies". For example if START DATE is
specified, but END DATE is not, then the object will be usable from the start date onwards.

If the attribute is specified, it must have a valid data structure (year is between 1900 and 9999, month from 01
to 12 and day from 01 to 31).

CKA_ADMIN_CERT

The CKA ADMIN CERT is a new Vendor-defined Attribute.

This attribute is used to hold the certificate of an entity that can perform certain management operations on the
object.

The value of the attribute is the DER encoding of an X509 v3 Public Key Certificate.
Rules for validation of the Certificate are:
> Ifitis self signed, itis implicitly trusted

> Ifitis signed by another entity, that entity's PKC must be present on the Token and be part of a chain
terminating in a Cert marked CKA TRUSTED=True

> It may be specified in the template when the Object is created, generated or imported.

> It may be added to an object with the C_SetAttributeValue command only if the CKA MODIFIABLE is
True and the attribute does not already existi.e. once an object is created and made non-modifiable then
the CKA ADMIN CERT cannotbe added later.

The CKA ADMIN CERT isused withthe CKM SET ATTRIBUTES Ticket Mechanism.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 35

Chapter 3: Object Classes

So if an object is not Modifiable and has no CKA_ ADMIN CERT thenthe CKM SET ATTRIBUTES Ticket
Mechanism can never be applied to that object. Its attributes are forever locked.

CKA_ISSUER STR, CKA_SUBJECT STR, CKA SERIAL_ NUMBER_INT

These attributes mirror the standard attributes (without the _STR or _INT suffix) but present that attribute as a
printable value rather than as a DER encoding.

For the distinguished name attributes the string is encoded in the form: C=Country code, O=0Organization,
CN=Common Name, OU=0rganizational Unit, L=Locality name, ST=State name.

These attributes may be supplied by an application in place of the DER-encoded form and the other form of the
attribute shall be derived from the one supplied in the template.

I NOTE CKA SERIAL NUMBER INTisaCK_ULONG value andis an intrinsic integer type.

CKA_PKI_ATTRIBUTE_BER ENCODED

This attribute may be used to supply X.509 certificate extensions or PKCS#10 attribute values when creating
these objects using the CKM_ENCODE_X509 or CKM_ENCODE_PKCS10 mechanisms, respectively. Please
refer to the sections and

for full descriptions of these mechanisms.

The value of the CKA PKI ATTRIBUTE BER ENCODED is the BER-encoded attribute.

CKA_EXPORT, CKA_EXPORTABLE

These attributes are similar to the standard CKA_ WRAP and CKA EXTRACTABLE attributes, as they
determine if a given key can wrap other keys and be extracted from the token in an encrypted form. The
important difference between these attributes and their standard counterparts is that there are special controls
on who can setthe CKA EXPORT flag. This flag may be set to TRUE by the token’s Security Officer, or by the
User if certain conditions are met. Thus the normal user can specify that a key may be exported in an
encrypted form (by specifying that the CKA_ EXPORTABLE attribute is TRUE) but only by keys as determined
by the SO (for example, a key that has the CKA EXPORT attribute set to TRUE).

The user may also specify the CKA EXPORT attribute for keys that are generated internally and cannot be
extracted other than by another key marked with CKA_EXPORT. This class of key may be used for transport
keys where a master key encryption key (KEK) exists. In this case, the Security Officer would create the KEK,
and the user could then create transport keys that could be exported only under the master KEK.

All other key usage attributes that might allow such a key, or any key exported by it, to be known outside the
adapter must be set to FALSE. Specifically the template must specify FALSE for CKA_ EXTRACTABLE, CKA
DECRYPT, CKA SIGNand CKA MODIFIABLE, and TRUE for CKA SENSITIVE. The template may also not
specify TRUE for the CKA_DERIVE attribute.

CKA_DELETABLE

This attribute may be set on any token object (that is, where the CKA TOKEN attribute is TRUE) to specify that
the object is permanent and may not be deleted. Once created, an object with the CKA_ DELETABLE attribute
setto FALSE may be deleted only by re-initialization of the token (or during a hardware tamper process).

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 36

Chapter 3: Object Classes

CKA SIGN_LOCAL_CERT

This attribute must be set to TRUE on any private key that is used with the Proof of Origin mechanism (CKM _
ENCODE X 509 LOCAL_CERT). Signing keys that do not have this attribute may not be used with this
mechanism. Refer to and

for more information.

Keys with this attribute should have the CKA SIGNand CKA ENCRYPT attributes set to FALSE to ensure that
the key cannot be used to sign arbitrary data. Special precautions should be taken to ensure that the key
cannot leave the adapter — generally, CKA EXTRACTABLE and CKA EXPORTABLE should be FALSE and
CKA SENSITIVE should be TRUE.

CKA_CHECK_VALUE

This attribute is a key check value that is calculated as follows:
> Take a buffer of the cipher block size of binary zeros (0x00).
> Encrypt this block in ECB mode.

> Take the first three bytes of cipher text as the check value.

This attribute is calculated on all keys of class CKO SECRET, that is, all symmetric key types when they are
created or generated. The attribute is generated by default if it is not supplied in the key template. Ifit is
supplied in the template, the template value is used even if its value would conflict with the one calculated as
shown above. This is applicable when a customer wants to use an alternative method to validate a key.

NOTE The CKA ENCRYPT attribute is not required to be set to TRUE on the key object for
the CKA_CHECK VALUE attribute to be generated. This attribute cannot be changed once it

has been set.

CKA_IMPORT

This attribute is similar to the standard CKA_UNWRAP attribute, which determines if a given key can be used to
unwrap encrypted key material. The important difference between this attribute and CKA UNWRAP is that if
CKA IMPORT issetto TRUE and CKA UNWRAP attribute is set to FALSE, the only available unwrap
mechanism is CKM_WRAPKEY DES3 CBC. The error code CKR_ MECHANISM INVALID s returned forall
other mechanisms. CKA IMPORT is setto FALSE by default.

CKA_CERTIFICATE_START TIME; CKA_CERTIFICATE_END TIME

These attributes are used to specify a user-defined validity period for X.509 certificates. Without these, the
certificate validity period is 1 year from the date and time of creation. The formatis YYYYMMDDhhmmss00,
which is identical to that defined for utcTime in CK_ TOKEN INFO.

CKA_MECHANISM_LIST

These attributes hold an array of CK_ MECHANISM TYPE values.

The CKA MECHANISM LIST attribute restricts the operations that can be performed with any object
containing it.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 37

Chapter 3: Object Classes

The following functions will check the object for the attribute, and if it is found, the CK. MECHANISM TYPE
being requested must be present in the attribute, ora CKR_ MECHANISM INVALID errorisreturned:

> C_Wrapkey

> C_Unwrapkey

> C_Encryptinit

> C_Decryptinit

> C_Signlnit

> C_Verifylnit

> C_SignRecoverlnit
>

C_VerifyRecoverlnit

CKA_ENUM_ATTRIBUTE

This attribute is used to enumerate all the attributes of an object.

The attribute can only be passed in as part of a pTemplate parameter to the C_GetAttributeValue. It is never
stored on an object.

Each SafeNet ProtectToolkit-C session can hold an index value that is just used to support attribute
enumeration.

Each call to C_GetAttributeValue using CKA ENUM ATTRIBUTE will return the next object attribute.
The error CKR_ATTRIBUTE TYPE INVALID isreturned toindicate thatthe object has no more attributes.

A call to C_GetAttributeValue with the ulCount parameter set to zero will reset the index to zero.

CKA_BIP32_CHAINCODE

This read-only attribute is a 32-bit numeric value produced during BIP32 key derivation, part of the extended
key. Applicable to the CKK_BIP32 key type only.

CKA_BIP32 VERSION_BYTES

This attribute is a 32-bit numeric value used by client applications to determine the network the key should be
used in. By default, it is set to the main-net values. Applicable to the CKK_BIP32 key type only.

CKA_BIP32_CHILD INDEX

This read-only attribute is a 32-bit numeric value that defines the child number. Values over 0x80000000 are
considered hardened keys. The Master key node value is always 0. Applicable to the CKK_BIP32 key type
only.

CKA_BIP32 CHILD DEPTH

This read-only attribute is an 8 bit numeric value that defines the depth of the child. The Master key node depth
is always 0.Applicable to the CKK_BIP32 key type only.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 38

Chapter 3: Object Classes

CKA BIP32_ID

This read-only attribute provides a unique identifier for the BIP32 key pair. This value is generated by
calculating the HASH160 of the public key. Applicable to the CKK_BIP32 key type only.

CKA_BIP32_FINGERPRINT

This read-only attribute is defined by the first 32 bits of the CKA_ BIP32 ID. Applicable to the CKK_BIP32 key
type only.

CKA_BIP32_PARENT_FINGERPRINT

This read-only attribute is defined by the first 32 bits of the parent node's CKA BIP32 ID.For masterkeys,
the value is always 0. Applicable to the CKK_BIP32 key type only.

Common Attributes

The following table defines the attributes common to all objects:
Table 1: Common Object Attributes
Attribute Data Type Meaning

CKA CLASS! CK_OBJECT CLASS Object class (type)

1This attribute must be specified when the object is created

SafeNet ProtectToolkit-C supports the following Cryptoki version 2.20 values for CKA CLASS (thatis, the
following classes (types) of objects):

> CKO_HW FEATURE
> CKO_DATA,CKO_CERTIFICATE

> CKO_PUBLIC KEY

> CKO_PRIVATE KEY

> CKO SECRET KEY

The following CKA CLASS values are SafeNet ProtectToolkit-C extensions:
> CKO_CERTIFICATE REQUEST

> CKO_CRL

Hardware Feature Objects

Hardware feature objects (CKO _HW FEATURE) represent features of the device. They are created by the
firmware on boot-up. The following figure illustrates the hierarchy of hardware feature objects and the
attributes they support:

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 39

Chapter 3: Object Classes

Figure 3: Hardware Feature Object Attribute Hierarchy

HW Feature
Feature Type
Monotonic Counter Clock HW Feature
Reset By Init Value Auth challenge
Has Been Reset Temp Pin
Value

Hardware feature objects act as an interface to a hardware feature, existing independent of the feature being
represented. For example, creating two clock objects does not imply that there are two clocks, just two
interfaces to the one clock. Further, deleting the clock object does not affect the clock device in any way.
However hardware feature objects may contain information independent of the feature being represented,
which may affect the behavior of the object. The slot in which the object is created and the state of the session
may also affect the behavior of the object.

Table 1: Hardware Feature Common Attributes

Attribute Data Type Meaning

CKA HW FEATURE TYPE CK HW FEATURE Hardware feature (type)

SafeNet ProtectToolkit-C supports the following values for CKA HW FEATURE TYPE:
> CKH CLOCK

> CKH_MONOTONIC COUNTER

> CKH VD USER

Clock Objects

Clock objects represent real-time clocks that exist on the device. This represents the same clock source as the
utcTime field in the CK_ TOKEN INFO structure.

Table 1: Clock Object Attributes

Attribute Data Type Meaning

CKA VALUE CK_CHAR[16] Current time as a character-string of length 16, represented in the format
YYYYMMDDhhmmss00 (the last two reserved characters are set to 0).

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 40

Chapter 3: Object Classes

The CKA VALUE attribute may be set using the C_SetAttributeValue function if the object exists in the
Admin Token and the session is in RW User Mode.

C_SetAttributeValue returns the error CKR_ USER NOT LOGGED_IN to indicate that a different user type is
required to set the value.

One object of this type is automatically created in the Admin token.

Monotonic Counter Objects

Monotonic counter objects represent hardware counters that exist on the device. Also:
> The value of the counter is guaranteed to increase by 1 each time itis read.

> The monotonic counter is supported only on soft (non-smart card based) tokens and the value of the
counter on each different token is the same.

> There is only one monotonic counter per token.

> The monotonic counter is automatically created whenever a token is initialized and exists by default on the
Admin Token.

> The value is interpreted as a 160-bit big-endian binary integer (MSB on left).
> The Token SO may change the count value by setting the CKA VALUE attribute.

Table 1: Monotonic Counter Attributes

Attribute Data Type Meaning

CKA RESET CK_BBOOL The value of the counter will reset to a previously returned value if the token
ON_ INITI is initialized using C_lInitializeToken.

CKA HAS CK_BBOOL The value of the counter has been reset at least once at some point in time.
RESET1

CKA VALUE Byte Array The current version of the monotonic counter. The value is returned in big

endian order. This value must be 20 bytes in size. Any attempt to set a value
less than 20 bytes will fail.

TRead Only. The CKA VALUE attribute may not be set by the client.

User Objects

User objects provide a means to obtain Authentication values (these objects can be used when logging into a
Token). The User object is supported only on soft (non-smart card based) tokens. It is automatically created
whenever a Token is initialized.

The attributes of the User Object may be read to obtain an Authentication Challenge or to get a Temporary
PIN.

For more details on the use of the User Object, refer to the description of

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 41

Chapter 3: Object Classes

Table 1: User Attributes

Attribute Data Type
CKA AUTH CK CHARI[16]
CHALLENGE

CKA TEMP PIN CK_CHAR[32]

Storage Objects

Meaning

The current challenge value. Each time this attribute is read a new
challenge value will be returned.

The current Temporary PIN value. Each time this attribute is read a
new PIN value will be returned. A CKU USER or CKU_ SO must be
logged in or else a read of this attribute will return CKR_USER_NOT
LOGGED_IN error. The PIN returned can only be used to authenticate
the same user that is currently logged in.

Table 1: Common Storage Object Attributes

Attribute Data Type Meaning

CKA TOKEN CK_BBOOL TRUE if object is a token object. FALSE if object is a session object.
Default is FALSE.

CKA PRIVATE CK_BBOOL TRUE if object is a private object. FALSE if object is a public object.
Default value is token-specific, and may depend on the values of other
attributes of the object.

CKA CK_BBOOL TRUE if object can be modified. FALSE if object can not be modified.
MODIFIABLE Default is TRUE.
CKA LABEL RFC2279 string =~ Description of the object. Default is empty.

Only the CKA LABEL attribute can be modified after the object is created. The CKA TOKEN, CKA PRIVATE,
and CKA MODIFIABLE attributes can be changed in the process of copying an object.

The CKA_ TOKEN attribute identifies whether the object is a token object or a session object.

When the CKA PRIVATE attribute is TRUE, a user may not access the object until the user has been

authenticated to the token.

The value of the CKA_ MODIFIABLE attribute determines whether or not an object is read-only.

SafeNet ProtectToolkit-C unmodifiable objects can be deleted. Objects may, however, specify CKA
DELETABLE to FALSE, for token objects only, in which case the object may not be deleted using the C_
DestroyObject function. Only by re-initializing the token can the object be destroyed.

The CKA LABEL attribute is intended to assist users in browsing.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

42

Chapter 3: Object Classes

Data Objects

Data objects (object class CKO DATA) hold information defined by an application. Other than providing access
to it, Cryptoki does not attach any special meaning to a data object. The following table lists the attributes
supported by data objects, in addition to the common attributes listed in

and

Table 1: Data Object Attributes

Attribute Data Type Meaning

CKA RFC2279 string = Description of the application that manages the object (default empty)
APPLICATION

CKA OBJECT Byte Array DER-encoding of the object identifier indicating the data object type (default
ID empty)

CKA VALUE Byte array Value of the object (default empty)

Each of these attributes may be modified after the object is created.

The CKA_ APPLICATION attribute provides a means for applications to indicate ownership of the data
objects they manage. However, Cryptoki does not provide a means of ensuring that only a particular
application has access to a data object.

The CKA OBJECT_ID attribute provides an independent and expandable way for an application to indicate
the type of a data object. Cryptoki does not provide a means of ensuring that the data object identifier matches
the data object type.

Certificate Objects

The following figure illustrates details of certificate objects:
Figure 4: Certificate Object Attribute

Certificate

Certificate X.509 Public X.509 Attribute Certificate
Revocation List Key Certificate Certificate Request
Value Subject (not supported) Subject

Subject Str Subject Str
ID Value
Issuer

Serial Number

Value

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 43

Chapter 3: Object Classes

Hierarchy Certificate objects (object class CKO_CERTIFICATE) hold public-key or attribute certificates. Other
than providing access to certificate objects, Cryptoki does not attach any special meaning to certificates.
SafeNet ProtectToolkit-C, however, does include a number of extensions to Cryptoki that allows for more
sophisticated certificate processing.

In addition to a number of extension attributes, it is possible to use a certificate object in place of a public key
object. Itis also possible to generate certificates (or certification requests) from public keys. Finally, itis
possible to introduce trusted certificates that allow for certificate path verification.

The following table defines the common certificate object attributes, in addition to the common attributes listed
in and ;

Table 1: Common Certificate Object Attributes

Attribute Data Type Meaning

CKA CERTIFICATE CK CERTIFICATE Type of certificate

TYPE TYPE

CKA_ TRUSTEDZ3 CK_BBOOL Trust state of the object; see above description

CKA DERIVEZ2 CK_BBOOL Indicates if certificate can be used in derive mechanisms

1 Must be specified when the object is created.

2 safeNet Extension

3 May be specified as TRUE only by the Security Officer.

The CKA_CERTIFICATE_TYPE attribute may not be modified after an object is created.

X.509 Public Key Certificate Objects

X.509 certificate objects (certificate type CKC_X_509) hold X.509 public key certificates. The following table
defines the X.509 certificate object attributes, in addition to the common attributes listed in

, and
Table 2: X.509 Certificate Object Attributes
Attribute Data Type Meaning
CKA_ SUBJECT! Byte array DER-encoding of the certificate subject name
CKA SUBJECT STR? Bytearray Printable representation of CKA SUBJECT attribute
CKA ID Byte array Key identifier for public/private key pair (default empty)
CKA ISSUER Byte array DER-encoding of the certificate issuer name (default empty)
CKA_ ISSUER_STR2 Byte array Printable representation of CKA ISSUER attribute

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 44

Chapter 3: Object Classes

Attribute Data Type Meaning

CKA SERIAL Byte array DER-encoding of the certificate serial number (default empty)
NUMBER

CKA SERIAL Big Integer Certificate serial number as an integer (default empty)

NUMBER_INT2
CKA VALUE! Byte array BER-encoding of the certificate

1 Must be specified when the object is created.
2 safeNet Extension

Onlythe CKA ID,CKA ISSUERand CKA SERIAL NUMBER attributes may be modified after the object is
created.

The CKA ID attribute is intended to be a means of distinguishing multiple public/private key pairs held by the
same subject (whether stored in the same token or not). Since subject names, as well as identifiers, distinguish
keys, it is possible that keys that have different subjects may have the same CKA_ID value without
introducing any ambiguity.

Itis intended, in the interests of interoperability, that the subject name and key identifier for a certificate is to be
the same as those for the corresponding public and private keys (though it is not required that all be stored in
the same token). Cryptoki does not enforce this association or even the uniqueness of the key identifier for a
given subject. In fact, an application may leave the key identifier empty.

The CKA ISSUER and CKA SERIAL NUMBER attributes are for compatibility with PKCS #7 and Privacy
Enhanced Mail (RFC1421).

NOTE With the version 3 extensions to X.509 certificates, the key identifier may be carried in
the certificate. Itis intended that the CKA_ID value be identical to the key identifier in such a
certificate extension, however Cryptoki will not enforce this.

Certificate Request Objects

Certificate request objects (object class CKO_CERTIFICATE REQUEST) hold a PKCS#10 certificate request.
There are mechanisms included to generate a Certificate Request object from an RSA public key (see
) or generate a Certificate from a Certificate Request (see
). This object class is a vendor-defined extension class. The following table
defines the Certificate request object attributes, in addition to the common attributes listed in

) and
Table 3: Certificate Request Object Attributes
Attribute Data Type Meaning
CKA SUBJECT Byte array DER-encoding of the certificate subject name
CKA SUBJECT Byte array Printable representation of CKA SUBJECT attribute
STR2

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 45

Chapter 3: Object Classes

Attribute Data Type Meaning
CKA VALUE! Byte array BER-encoding of the certificate
KEY TYPE CK _KEY TYPE Type of public key in request

1 Must be specified when the object is created.
2 safeNet Extension

Certificate Revocation List

Certificate Revocation List (CRL) objects (object class CKO_CRL) hold a certificate revocation list. This object
class is a vendor defined extension class.

The following table defines the CRL object attributes, in addition to the common attributes listed in

; and
Table 4: Certificate Revocation Object Attributes
Attribute Data Type Meaning
CKA SUBJECT Byte array DER-encoding of the certificate subject name
CKA SUBJECT Byte array Printable representation of CKA SUBJECT attribute
STR2
CKA VALUE! Byte array BER-encoding of the certificate

1 Must be specified when the object is created.
2 safeNet Extension

Key Objects

The following figure illustrates details of key objects:

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 46

Chapter 3: Object Classes

Figure 5: Key Attribute Detail

Key
Key Type
ID
Start Date
End Date
Derive
Local
r
Public Key Private Key
Subject Subject
Subject Str Subject Str
Encrypt Sensitive
Verify Decrypt
Verify Recover Sign
Wrap Sign Recover
Export Unwrap

Extractable
Always Sensitive
Never Extractable
Usage Count
Exportable

Import

Secret Key

Sensitive
Encrypt

Decrypt

Sign

Verify

Wrap

Unwrap
Extractable
Always Sensitive
Never Extractable
Exportable
Export

Import

Check Value

Key objects hold encryption or authentication keys, which can be public keys, private keys, or secret keys. The

following common footnotes apply to all the tables describing attributes of keys:

Table 1: Common footnotes for key attribute tables

T Must be specified when object is created with C_CreateObject.

2 Must not be specified when object is created with C_CreateObject.

3 Must be specified when object is generated with C_GenerateKey or C_GenerateKeyPair.

4 Must not be specified when object is generated with C_GenerateKey or C_GenerateKeyPair.

5 Must be specified when object is unwrapped with C_UnwrapKey.

6 Must not be specified when object is unwrapped with C_Unwrap.

7 Cannot be revealed if object has CKA_SENSITIVE attribute set to TRUE orits CKA_EXTRACTABLE attribute

set to FALSE.

8 May be modified after object is created with a C_SetAttributeValue call, or in the process of copying object with a
C_CopyObiject call. As mentioned previously, however, it is possible that a particular token may not permit
modification of the attribute.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

47

Chapter 3: Object Classes

9 Default value is token-specific, and may depend on the values of other attributes.
10 SafeNet Extension

The following table defines the attributes common to public key, private key and secret key classes, in addition
to the common attributes listed in and

Table 2: Common Key Attributes

Attribute Data Type Meaning

CKA KEY TYPE'35 CK KEY TYPE Type of key

CKka 1D8 Byte array Key identifier for key (default empty)

CKA START DATE8 = CK DATE Start date for the key (default empty). If not empty then the attribute

holds starting date for the key.

CKA END DATES CK_DATE End date for the key (default empty). If not empty then the attribute
holds expiry date for the key.

CKA ADMIN Byte array DER encoded certificate of the key administrator. See more details in
CcERT10 the discussion on Key Usage Limits.
CKA DERIVES CK_BBOOL TRUE if key supports key derivation (that is, if other keys can be

derived from this one (default FALSE)

CKA LOCAL248 CK_BBOOL TRUE only if key was either
> generated locally (that is, on the token) with a C_GenerateKey or
C_GenerateKeyPaircall
> created with a C_CopyObject call as a copy of a key which had its
CKA_LOCAL attribute set to TRUE

CKA MECHANISM CKA List of allowable mechanisms that can be used. For more information
L1sT10 MECHANISM see the entry for this attribute in
TYPE array

Public Key Obijects

Public key objects (object class CKO_PUBLIC_KEY) hold public keys. This version of Cryptoki recognizes
four types of public keys: RSA, DSA, Diffie-Hellman and Elliptic Curve. The following table defines the
attributes common to all public keys, in addition to the common attributes listed in

, ,and

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 48

Chapter 3: Object Classes

Table 1: Common Public Key Attributes

Attribute

CKA SUBJECTS
CKA_ SUBJECT_ STR10
CKA_ENCRYPT8

CKA VERIFYS®

CKA VERIFY RECOVERS®

CKA WRAPS

CKA_ EXPORT10

Data Type
Byte array
Byte array
CK_BBOOL

CK_BBOOL

CK_BBOOL

CK_BBOOL

CK_BBOOL

Meaning

DER-encoding of the key subject name (default empty)
Printable version of CKA_SUBJECT

TRUE if key supports encryption 9

TRUE if key supports verification where the signature is an
appendix to the data 9

TRUE if key supports verification where the data is recovered
from the signature 9

TRUE if key supports wrapping (that is, can be used to wrap
other keys)9

TRUE if the key may be used to export Exportable keys.

In the interests of interoperability, it is intended that the subject name and key identifier for a public key is to be
the same as those for the corresponding certificate and private key. However, this is not enforced, and it is not
required that the certificate and private key be stored on the same token.

To map between ISO/IEC 9594-8 (X.509) key usage flags for public keys and the PKCS #11 attributes for
public keys, use the following table. SafeNet ProtectToolkit-C does not enforce these usage flags. When a
certificate object is created, it may have any of the standard Cryptoki usage attributes, which is enforced.

Table 2: Mapping of X.509 key usage flags to Cryptoki attributes for public keys

Key Usage Flags for Public Keys in X.509 Public Key Corresponding Cryptoki Attributes for Public

Certificates

dataEncipherment

digitalSignature, keyCertSign, cRLSign

digitalSignature, keyCertSign, cRLSign

keyAgreement
keyEncipherment
nonRepudiation

nonRepudiation

Keys

CKA ENCRYPT

CKA VERIFY

CKA VERIFY RECOVER
CKA DERIVE

CKA WRAP

CKA VERIFY

CKA_VERIFY RECOVER

SafeNet ProtectToolkit 5.6 Programming Guide

007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

49

Chapter 3: Object Classes

RSA Public Key Objects

RSA public key objects (object class CKO_PUBLIC KEY, keytype CKK RSA) hold RSA public keys. The
following table defines the RSA public key object attributes, in addition to the common attributes listed in

’ ’

,and
Table 3: RSA Public Key Object Attributes

Attribute Data Type Meaning

CKA MODULUS!4.6 Big integer Modulus n

CKA MODULUS BITS23.6 CK_ULONG Length in bits of modulus n
CKA_ PUBLIC_ EXPONENT!.3.6 Big integer Public exponent e

Depending on the token, there may be limits on the length of key components. See PKCS #1 for more
information on RSA keys.

DSA Public Key Objects

DSA public key objects (object class CKO_PUBLIC KEY, key type CKK_DSA) hold DSA public keys. The
following table defines the DSA public key object attributes, in addition to the common attributes listed in

, , ,and
Table 4: DSA Public Key Attributes
Attribute Data Type Meaning
CKA PRIME!36 Big integer Prime p (512 to 1024 bits, in steps of 64 bits)
CKA SUBPRIME!36 Big integer Subprime g (160 bits)
CKA BASE!3.6 Big integer Base g
CKA VALUE!46 Big integer Public value y

The CKA PRIME, CKA SUBPRIME and CKA BASE attribute values are, collectively, the “DSA parameters”.

Diffie-Hellman Public Key Objects

Diffie-Hellman public key objects (object class CKO PUBLIC_ KEY, key type CKK_DH) hold Diffie-Hellman
public keys. The following table defines the Diffie-Hellman public key object attributes, in addition to the
common attributes listed in ,

, ,and

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 50

Chapter 3: Object Classes

Table 5: Diffie-Hellman Public Key Object Attributes

Attribute Data Type Meaning

CKA PRIME!36 Big integer Prime p

CKA BASET3.6 Big integer Baseg

CKA VALUE!46 Big integer Public value y

The CKA_ PRIME and CKA BASE attribute values are collectively the “Diffie-Hellman parameters”. Depending
on the token, there may be limits on the length of the key components. See PKCS #3 for more information on
Diffie-Hellman keys.

Elliptic Curve Public Key Objects

EC (also related to ECDSA) public key objects (object class CKO_PUBLIC_KEY, key type CKK_EC or CKK_
ECDSA in PKCS#11 v2.20) hold EC public keys. The following table defines the EC public key object attributes,
in addition to the common attributes listed in

; ,and
Table 6: Elliptic Curve Public Key Object Attributes
Attribute Data Type Meaning
CKA EC_PARAMSTS3 Byte Array DER-encoding of an ANSI X9.62 Parameters value
(CKA_ECDSA PARAMS)
CKA POINT!4 Byte Array DER-encoding of an ANSI X9.62 ECPoint value Q

The CKA EC_ PARAMS or CKA ECDSA PARAMS attribute value is known as the “EC domain parameters” and
is defined in ANSI X9.62 as a choice of three parameter representation methods with the following syntax:
Parameters ::= CHOICE {

ecParameters ECParameters,

namedCurve CURVES. &id ({CurveNames}),

implicitlyCA NULL

}

This allows detailed specification of all required values using choice ecParameters, the use of a namedCurve
as an object identifier substitute for a particular set of elliptic curve domain parameters, or implicitlyCA to
indicate that the domain parameters are explicitly defined elsewhere. The use of a namedCurve is
recommended over ecParameters. The choice implicitlyCA must not be used in Cryptoki.

Both the namedCurve and ecParameters methods are supported in SafeNet ProtectToolkit-C. See
for details.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 51

Chapter 3: Object Classes

BIP32 Public Key Obijects

BIP32 public key objects (object class CKO_ PUBLIC_ KEY, key type CKK_BIP32) hold EC public keys with a
set of additional attributes. The following table defines the BIP32 public key attributes, in addition to the
common attributes listed in ,

, ; ,and
Table 7: BIP32 Public Key Object Attributes

Attribute Data Type Meaning

CKA BIP32 Byte Array 32 byte numeric value produced during key derivation. Part of the extended

CHAINCODE key. Read-only.

CKA BIP32 CK_ULONG 32 bit numeric value that is used by client applications to determine the

VERSION BYTES network the key should be used in. By default, it is set to the main-net
values.

CKA BIP32 CK_ULONG 32 bit numeric value that defines the child number. Values over 0x80000000

CHILD INDEX are considered hardened keys. The Master key node value is always 0.
Read-only.

CKA BIP32 CK_ULONG 8 bit numeric value that defines the depth of the child. The Master key node

CHILD DEPTH depth is always 0. Read-only.

CKA BIP32 ID Byte Array Unique identifier for the key pair. Generated by calculating the HASH160 of
the public key. Read-only.

CKA BIP32 Byte Array The first 32 bits of the CKA BIP32 ID. Read-only.

FINGERPRINT

CKA_BIP32_ Byte Array The first 32 bits of the parent node’s CKA BIP32 ID. For masterkeys the

PARENT _ value is always 0. Read-only.

FINGERPRINT

The chain code and index play an important role in the key derivation mechanism, so they need to be stored
alongside the key value. The other fields (version bytes, child depth, ID and fingerprints) are generated during
derivation and are kept as a courtesy for the client applications, which might have a use for them.

See and for
details on the mechanisms used to create BIP32 objects.

Private Key Objects

Private key objects (object class CKO PRIVATE KEY) hold private keys. This version of SafeNet
ProtectToolkit-C recognizes four types of private key: RSA, DSA, Diffie-Hellman and Elliptic Curve. The

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 52

Chapter 3: Object Classes

following table defines the attributes common to all private keys, in addition to the common attributes listed in

,and

Table 1: Common Private Key Attributes

Attribute

CKA_ SUBJECT8

CKA SUBJECT
sTR10

CKA SENSITIVES
(see below)

CKA SECONDARY
AUTH

CKA AUTH PIN
FLAGS2:4.6

CKA_ DECRYPT8

CKA SIGNS
CKA SIGN
RECOVERS

CKA UNWRAPS

CKA
EXTRACTABLES
(see below)

CKA ALWAYS
SENSITIVEZ4.6

CKA NEVER
EXTRACTABLEZ24.6

CKA USAGE_
count10

CKA
EXPORTABLE10

Data Type

Byte array

Byte array

CK_BBOOL

CK_BBOOL

CK_FLAGS

CK_BBOOL

CK_BBOOL

CK_BBOOL

CK_BBOOL

CK_BBOOL

CK_BBOOL

CK_BBOOL

CK_ULONG

CK_BBOOL

Meaning
DER-encoding of certificate subject name (default empty)

Printable version of CKA SUBJECT (default empty)

TRUE if key is sensitive®

This is not supported.

This is not supported.

TRUE if key supports decryption9

TRUE if key supports signatures where the signature is an appendix to
the data®

TRUE if key supports signatures where the data can be recovered from
the signature®

TRUE if key supports unwrapping (that is, can be used to unwrap other
keys)?

TRUE if key is extractable®

TRUE if key has always had the CKA SENSITIVE attribute set to TRUE
TRUE if key has never had the CKA EXTRACTABLE attribute set to
TRUE

This optional field will hold a usage counter. The numeric value is
incremented each time the key is used.

TRUE if key may be wrapped with a key that has the CKA_ EXPORT
attribute set.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

53

Chapter 3: Object Classes

Attribute Data Type Meaning

CKA TMPORT10 CK_BBOOL If TRUE and CKA UNWRAP is FALSE supports unwrapping only using
CKM_WRAPKEY DES3 CBC.

RSA Private Key Objects

RSA private key objects (object class CKO PRIVATE KEY, key type CKK_RSA) hold RSA private keys. The
following table defines the RSA private key object attributes, in addition to the common attributes listed in

’

,and
Table 2: RSA Private Key Object Attributes
Attribute Data Type
CKA_ MODULUS14.6 Big integer
CKA PUBLIC EXPONENT46 Big integer
CKA_ PRIVATE EXPONENT'4.6.7 Big integer
CKA PRIME 1467 Big integer
CKA PRIME 2467 Big integer
CKA EXPONENT 1467 Big integer
CKA EXPONENT 2467 Big integer
CKA COEFFICIENT46.7 Big integer

’

Meaning

Modulus n

Public exponent e

Private exponent d

Prime p

Prime g

Private exponent d modulo p-1
Private exponent d modulo g-1

CRT coefficient -1 mod p

RSA modulus size may range from 512 to 4096 bits (or 1024 to 4096 bits in FIPS mode). RSA private keys can
include all CRT components or just the modulus and exponent. Performance is greatly enhanced by providing
all CRT components so this is advised. Any RSA keys generated locally will always include all components.

NOTE When generating an RSA private key, there isno CKA MODULUS_BITS attribute
specified. This is because RSA private keys are only generated as part of an RSA key pair,
and the CKA_MODULUS_ BITS attribute for the pair is specified in the template for the public

key.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

54

Chapter 3: Object Classes

DSA Private Key Objects

DSA private key objects (object class CKO_ PRIVATE KEY, key type CKK_DSA) hold DSA private keys. The
following table defines the DSA private key object attributes, in addition to the common attributes listed in

’ ’

,and
Table 3: DSA Private Key Object Attributes

Attribute Data Type Meaning

CKA PRIME!46 Big integer Prime p (512 to 1024 bits, in steps of 64 bits)
CKA SUBPRIMET46 Big integer Subprime q (160 bits)

CKA BASE!4.6 Big integer Base g

CKA VALUE!4.67 Big integer Private value x

The CKA PRIME, CKA SUBPRIME and CKA BASE attribute values are collectively the “DSA parameters”.
See FIPS PUB 186 for more information on DSA keys.

NOTE When generating a DSA private key, the DSA parameters are not specified in the
key’s template. Thisis because DSA private keys are only generated as part of a DSA key
pair, and the DSA parameters for the pair are specified in the template for the public key. If
they are present in the private key template they are ignored.

Diffie-Hellman Private Key Objects
Diffie-Hellman private key objects (object class CKO PRIVATE KEY, key type CKK_DH) hold Diffie-Hellman
private keys. The following table defines the Diffie-Hellman private key object attributes, in addition to the
common attributes listed in ,

) ,and

Table 4: Diffie-Hellman Private Key Object Attributes

Attribute Data Type Meaning

CKA PRIME!46 Big integer Prime p

CKA BASET46 Big integer Baseg

CKA VALUE1467 Big integer Private value x

CKA VALUE BITS26 CK_ULONG Length in bits of private value x

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 55

Chapter 3: Object Classes

The CKA PRIME and CKA BASE attribute values are collectively the “Diffie-Hellman parameters”. Depending
on the token, there may be limits on the length of the key components. See PKCS #3 for more information on
Diffie-Hellman keys.

NOTE When generating a Diffie-Hellman private key, the Diffie-Hellman parameters are not
specified in the key’s template. This is because Diffie-Hellman private keys are only
generated as part of a Diffie-Hellman key pair, and the Diffie-Hellman parameters for the pair
are specified in the template for the public key. If they are presentin the private key template,
they are ignored.

Elliptic Curve Private Key Objects

EC (also related to ECDSA) private key objects (object class CKO PRIVATE KEY, key type CKK_EC or CKK__
ECDSA in PKCS#11 v2.20) hold EC private keys. The following table defines the EC private key object
attributes, in addition to the common attributes listed in ,

' ,and
Table 5: Elliptic Curve Private Key Object Attributes
Attribute Data Type Meaning
CKA EC_PARAMS!4.6 Byte Array DER-encoding of an ANSI X9.62 Parameters value

(CKA_ECDSA_PARAMS)

CKA POINT1467 Byte Array ANSI X9.62 private value d

The CKA_EC_ PARAMS or CKA ECDSA PARAMS attribute value is known as the “EC domain parameters” and
is defined in ANSI X9.62 as a choice of three parameter representation methods with the following syntax:
Parameters ::= CHOICE {

ecParameters ECParameters,

namedCurve CURVES. &id ({CurveNames}),

implicitlyCA NULL

}

This allows detailed specification of all required values using choice ecParameters, the use of a namedCurve
as an object identifier substitute for a particular set of elliptic curve domain parameters, or implicitlyCA to
indicate that the domain parameters are explicitly defined elsewhere. The use of a namedCurve is
recommended over the choice ecParameters. The choice implicitlyCA must not be used in Cryptoki.

Both the ecParameters and the namedCurve method are supported in SafeNet ProtectToolkit-C. See
for details.

NOTE When generating an EC private key, the EC domain parameters are not specified in
the key’s template. This is because EC private keys are generated only as part of an EC key
pair, and the EC domain parameters for the pair are specified in the template for the public
key.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 56

Chapter 3: Object Classes

BIP32 Private Key Objects

BIP32 private key objects (object class CKO_ PRIVATE KEY, key type CKK_BIP32) hold EC private keys with
a set of additional attributes. The following table defines the BIP32 private key attributes, in addition to the
common attributes listed in ,

, ; ,and
Table 6: BIP32 Private Key Object Attributes

Attribute Data Type Meaning

CKA BIP32 Byte Array 32 byte numeric value produced during key derivation. Part of the extended

CHAINCODE key. Read-only.

CKA BIP32 CK_ULONG 32 bit numeric value that is used by client applications to determine the

VERSION BYTES network the key should be used in. By default, it is set to the main-net
values.

CKA BIP32 CK_ULONG 32 bit numeric value that defines the child number. Values over 0x80000000

CHILD INDEX are considered hardened keys. The Master key node value is always 0.
Read-only.

CKA BIP32 CK_ULONG 8 bit numeric value that defines the depth of the child. The Master key node

CHILD DEPTH depth is always 0. Read-only.

CKA BIP32 ID Byte Array Unique identifier for the key pair. Generated by calculating the HASH160 of
the public key. Read-only.

CKA BIP32 Byte Array The first 32 bits of the CKA BIP32 ID. Read-only.

FINGERPRINT

CKA_BIP32_ Byte Array The first 32 bits of the parent node’s CKA BIP32 ID. For masterkeys the

PARENT _ value is always 0. Read-only.

FINGERPRINT

The chain code and index play an important role in the key derivation mechanism, so they need to be stored
alongside the key value. The other fields (version bytes, child depth, ID and fingerprints) are generated during
derivation and are kept as a courtesy for the client applications, which might have a use for them.

See and for
details on the mechanisms used to create BIP32 objects.

Secret Key Objects

Secret key objects (object class CKO SECRET KEY) hold secret keys. This version of Cryptoki recognizes the
following types of secret key: generic, RC2, RC4, DES, DES2, DES3, CAST128 (also known as CAST5),

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 57

Chapter 3: Object Classes

IDEA, and AES. The following table defines the attributes common to all secret keys, in addition to the
common attributes listed in ,

Table 1: Common Secret Key Attributes

Attribute Data Meaning
Type
CKA SENSITIVES CK_ TRUE, if object is sensitive (default FALSE)
(see below) BBOOL
CKA ENCRYPT8 CK TRUE, if key supports encryption9
BBOOL
CKA_DECRYPT8 CK_ TRUE, if key supports decryption9
BBOOL
CKA SIGN® CK TRUE, if key supports signatures (that is, authentication codes) where the

BBOOL signature is an appendix to the data®

CKA_VERIFY8 CK TRUE, if key supports verification (that is, of authentication codes) where the
BBOOL signature is an appendix to the data®

CKA WRAPS® CK_ TRUE, if key supports wrapping (that is, can be used to wrap other keys)9
BBOOL

CKA_UNWRAPS CK TRUE, if key supports unwrapping (that is, can be used to unwrap other keys)?
BBOOL

CKA EXTRACTABLE® = CK_ TRUE, if key is extractable®

(see below) BBOOL

CKA_ALWAYS CK_ TRUE if key has always had the CKA SENSITIVE attribute setto TRUE

SENSITIVE24.6 BBOOL

CKA NEVER CK TRUE, if key has never had the CKA EXTRACTABLE attribute set to TRUE

EXTRACTABLEZ24.6 BBOOL

CKA_SUBJECT8 Byte DER-encoding of certificate subject name (default empty)
array

CKA EXPORT10 CK TRUE, if the key may be used to wrap Exportable keys. Restrictions apply on

BBOOL who can set this attribute to TRUE.

CKA_EXPORTABLE10 CK TRUE, if key may be wrapped with a key attribute set with CKA EXPORT.
BBOOL
CKA TIMPORT10 CK If TRUE and CKA UNWRAP is FALSE supports unwrapping only using CKM

BBOOL WRAPKEY DES3 CBC.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 58

Chapter 3: Object Classes

Attribute Data Meaning
Type

CKA CHECK VALUE Byte A calculated key check value. Fixed size of 3 bytes.
Array

After an object is created, the CKA_ SENSITIVE attribute may be changed, but only to the value TRUE.
Similarly, after an object is created, the CKA_EXTRACTABLE attribute may be changed, but only to the value
FALSE. Attempts to make other changes to the values of these attributes should return the error code CKR
ATTRIBUTE READ ONLY.

Ifthe CKA_ SENSITIVE attribute is TRUE, or if the CKA_ EXTRACTABLE attribute is FALSE, then certain
attributes of the secret key cannot be revealed in plain text outside the token. The attributes that are affected
by the sensitive and extractable attributes are specified by the 7-superscript in the attribute table, in the section
describing that type of key.

Ifthe CKA EXTRACTABLE and CKA EXPORTABLE attribute is FALSE, then the key cannot be wrapped.

Generic Secret Key Objects

Generic secret key objects (object class CKO_SECRET_ KEY, key type CKK_GENERIC SECRET) hold generic
secret keys. These keys do not support encryption, decryption, signatures or verification (other than HMAC
algorithms); however, other keys can be derived from them. The following table defines attributes of generic
secret key objects, in addition to the common attributes listed in ,

, ,and
Table 2: Generic Secret Key Object Attributes
Attribute Data Type Meaning
CKA VALUE!4.67 Byte array Key value (arbitrary length)
CKA_VALUE_ LENZ2:38 CK_ULONG Length in bytes of key value
RC2 Secret Key Objects

RC2 secret key objects (object class CKO _SECRET KEY, key type CKK_RC2) hold RC2 keys. The following
table defines the RC2 secret key object attributes, in addition to the common attributes listed in

,and
Table 3: RC2 Secret Key Object Attributes

Attribute Data Type Meaning

CKA VALUE!467 Byte array Key value (1to 128 bytes)

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 59

Chapter 3: Object Classes

Attribute Data Type Meaning
CKA VALUE LEN23.6 CK_ULONG Length in bytes of key value
RC4 Secret Key Objects

RC4 secret key objects (object class CKO_SECRET KEY, key type CKK_RC4) hold RC4 keys. The following
table defines the RC4 secret key object attributes, in addition to the common attributes listed in

,and
Table 4: RC4 Secret Key Object Attributes

Attribute Data Type Meaning

CKA VALUE!46.7 Byte array Key value (1 to 256 bytes)

CKA_VALUE LEN2:3.6 CK_ULONG Length in bytes of key value
AES Secret Key Objects

AES secret key objects (object class CKO SECRET KEY, key type CKK_AES) hold AES keys. The following
table defines the AES secret key object attributes, in addition to the common attributes listed in

, ,and
Table 5: AES Secret Key Object Attributes
Attribute Data Type Meaning
CKA VALUE!4.6.7 Byte array Key value (16 to 32 bytes)
CKA_VALUE LENZ23.06 CK_ULONG Length in bytes of key value

DES Secret Key Objects

DES secret key objects (object class CKO_SECRET KEY, key type CKK_DES) hold single-length DES keys.
The following table defines the DES secret key object attributes, in addition to the common attributes listed in

,and

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 60

Chapter 3: Object Classes

Table 6: DES Secret Key Object
Attribute Data Type Meaning

CKA VALUE1467 Byte array Key value (always 8 bytes long)

DES keys should always have their parity bits properly set as described in FIPS PUB 46-2. However,
attempting to create or unwrap a DES key with incorrect parity will not return an error as the key will still function
correctly.

DES2 Secret Key Objects

DES2 secret key objects (object class CKO SECRET KEY, key type CKK_DES2) hold double-length DES
keys. The following table defines the DES2 secret key object attributes, in addition to the common attributes
listed in , ,

,and

Table 7: DES2 Secret Key Object Attributes
Attribute Data Type Meaning

CKA VALUE!467 Byte array Key value (always 16 bytes long)

DES2 keys should have their parity bits properly set as described in FIPS PUB 46-2 (that is, each of the DES
keys comprising a DES2 key should have its parity bits properly set). However, attempting to create or unwrap
a DES2 key with incorrect parity will not return an error as the key will still function correctly.

DESS3 Secret Key Objects

DES3 secret key objects (object class CKO_SECRET KEY, key type CKK_DES 3) hold triple-length DES keys.
The following table defines the DES3 secret key object attributes, in addition to the common attributes listed in

) ’

,and
Table 8: DES3 Secret Key Object Attributes

Attribute Data Type Meaning

CKA VALUE!46.7 Byte array Key value (always 24 bytes long)

DES3 keys should always have their parity bits properly set as described in FIPS PUB 46-2 (that is, each of the
DES keys comprising a DES3 key should have its parity bits properly set). However, attempting to create or
unwrap a DES3 key with incorrect parity will not return an error as the key will still function correctly.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 61

Chapter 3: Object Classes

CAST128 (CAST5) Secret Key Objects

CAST128 (also known as CAST5) secret key objects (object class CKO_SECRET KEY, key type CKK
CAST128 or CKK_CAST5)hold CAST128 keys. The following table defines the CAST 128 secret key object
attributes, in addition to the common attributes listed in ,

, ,and
Table 9: CAST128 (CAST5) Secret Key Object Attributes
Attribute Data Type Meaning
CKA VALUE!46.7 Byte array Key value (1to 16 bytes)
CKA_VALUE LEN2:3.6 CK_ULONG Length in bytes of key value
IDEA Secret Key Objects

IDEA secret key objects (object class CKO SECRET KEY, key type CKK IDEA) hold IDEA keys. The following
table defines the IDEA secret key object attributes, in addition to the common attributes listed in

,and
Table 10: IDEA Secret Key Object
Attribute Data Type Meaning
CKA VALUE!4.6.7 Byte array Key value (always 16 bytes long)
SEED Secret Key Objects

SEED secret key objects (object class CKO_ SECRET KEY, key type CKK _SEED) hold SEED keys. The
following table defines the SEED secret key object attributes, in addition to the common attributes listed in

’ ’

,and
Table 11: SEED Secret Key Object

Attribute Data type Meaning

CKA VALUE!46.7.10 Byte array Key value (always 16 bytes long)

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 62

Chapter 3: Object Classes

Key Parameter Objects

SafeNet ProtectToolkit-C includes support for key parameter objects (as specified in PKCS#11 2.11 draft 3).
These objects are used to store parameters associated with DSA or DH keys. Itis possible to generate new
objects of this type using the C_GenerateKey function.

Key parameter objects (object class CKO_ DOMAIN PARAMETERS) hold public key generation parameters.
This version of Cryptoki recognizes the following types of key parameters: DSA and Diffie-Hellman. The
following table defines the footnotes that apply to each of the following attribute tables:

Table 1: Common footnotes for key parameter attribute tables

T Must be specified when object is created with C_CreateObject.
2 Must not be specified when object is created with C_CreateObject.
3 Must be specified when object is generated with C_GenerateKey or C_GenerateKeyPair.

4 Must not be specified when object is generated with C_GenerateKey or C_GenerateKeyPair.

The following table defines the attributes common to key attribute objects in addition to the common attributes
listed in and :

Table 2: Common Key Parameter Attributes

Attribute Data Type Meaning

CKA KEY CK _KEY Type of key the parameters can be used to generate.

TYPE! TYPE

CKA CK _BBOOL = TRUE only if key parameters were either:

LOCAL24 > generated locally (that is, on the token) with a C_GenerateKey

> created with a C_CopyObiject call as a copy of key parameters which had its
CKA LOCAL attribute set to TRUE

The rules applying to the CKA LOCAL mean that this attribute has the value TRUE if and only if the key was
originally generated on the token by a C_GenerateKey call.

DSA Public Key Parameter Objects

DSA public key parameter objects (object class CKO DOMAIN PARAMETERS, key type CKK DSA) hold DSA
public key parameters. The following table defines the DSA public key parameter object attributes, in addition
to the common attributes listed in ,

,and

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 63

Chapter 3: Object Classes

Table 3: DSA Public Key Parameter Object Attributes

Attribute Data Type Meaning

CKA PRIME'4 Big integer Prime p (512 to 1024 bits, in steps of 64 bits)
CKA SUBPRIME!4 Big integer Subprime g (160 bits)

CKA BAsEl4 Big integer Base g

CKA PRIME BITS23 CK_ULONG Length of the prime value

The CKA PRIME, CKA SUBPRIME and CKA BASE attribute values are collectively the “DSA parameters”.
See FIPS PUB 186 for more information on DSA key parameters.

Objects of this type may be generated by using the C_GenerateKey with the CKkM_DSA PARAMETER GEN
mechanism.

Diffie-Hellman Public Key Parameter Objects

Diffie-Hellman public key parameter objects (object class CKO_ DOMAIN PARAMETERS, key type CKK_DH)
hold Diffie-Hellman public key parameters. The following table defines the Diffie-Hellman public key parameter
object attributes, in addition to the common attributes listed in ,

,and

Table 4: Diffie-Hellman Public Key Parameter Object Attributes

Attribute Data Type Meaning

CKA PRIME!4 Big integer Prime p

CKA BAsE'l4 Big integer Base g

CKA PRIME BITS23 CK_ULONG Length of the prime value

The CKA PRIME and CKA_ BASE attribute values are collectively the “Diffie-Hellman parameters”. Depending
on the token, there may be limits on the length of the key components. See PKCS #3 for more information on
Diffie-Hellman key parameters.

Objects of this type may be generated by using the C_GenerateKey with the CKM_DH PKCS PARAMETER
GEN mechanism.

Elliptic Curve Public Key Parameter Objects

Elliptic Curve public key parameter objects (object class CKO DOMAIN PARAMETERS, key type CKK_EC)
hold Elliptic Curve public key parameters.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 64

Chapter 3: Object Classes

The following table defines the Elliptic Curve public key parameter object attributes, in addition to the common
attributes listed in ,
and

Table 5: Elliptic Curve Public Key Parameter Object Attributes

Attribute Data Type Meaning

CKA EC_PARAMST.3.6 Byte Array DER encoding of ANS/ X9.62 Parameters value

The CKA EC PARAMS attribute values is the “Elliptic Curve parameters”. Depending on the token, there may
be limits on the length of the key components.

SafeNet ProtectToolkit-C does not support generation of this type of object.

When objects of this type are stored using the C_CreateObject then the domain parameters are verified.

Key Generation Parameter Objects
This object type is used to hold DSA or DH key generation parameters.

The CKA_KEY_TYPE attribute indicates which type of parameters it is holding.
Where the key type is CKK_DSA the attributes should be as follows:

Attribute Data Type Meaning

CKA_KEY_TYPE CK_KEY_TYPE Type of key. Must be CKK_DSA
CKA_PRIME Big integer Prime

CKA_SUBPRIME Big integer Prime

CKA_BASE Big integer Prime

Where the key type is CKK_DH the attributes should be as follows:

Attribute Data Type Meaning
CKA_KEY_TYPE CK_KEY_TYPE Type of key. Must be CKK_DH
CKA_PRIME Big integer Prime
CKA_BASE Big integer Prime
See for more details on the Parameter value.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 65

CHAPTER 4:
SafeNet ProtectToolkit-C Mechanisms

Characteristics of all SafeNet ProtectToolkit-C mechanisms are summarized in the pages that follow. Both
PKCS #11 standard mechanisms and Gemalto-proprietary mechanisms are included.

contains a full list of available mechanisms and a secondary list of mechanisms
that are available in FIPS Mode. Continue to the individual mechanism pages for full descriptions.

NOTE Functions in bold are Gemalto-proprietary. See also

Table 1: Available Mechanisms

All Mechanisms FIPS Mode Mechanisms

Not available

Not available

Not available

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 66

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

All Mechanisms FIPS Mode Mechanisms

Not available

Not available

Not available

Not available

Not available

Not available

Not available

Not available

Not available

Not available

Not available

Not available

Not available

Not available

Not available

Not available

Not available

Not available

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 67

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

All Mechanisms FIPS Mode Mechanisms

Not available

Not available

Not available

Not available

Not available

Not available

Not available

Not available

Not available

Not available

Not available

Not available

Not available

Not available

Not available

Not available

Not available

Not available

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 68

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

All Mechanisms FIPS Mode Mechanisms

Not available

Not available

Not available

Not available

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 69

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

All Mechanisms FIPS Mode Mechanisms

Not available

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 70

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

All Mechanisms FIPS Mode Mechanisms

Not available

Not available

Not available

Not available

Not available

Not available

Not available

Not available

Not available

Not available

Not available

Not available

Not available

Not available

Not available

Not available

Not available

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 71

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

All Mechanisms FIPS Mode Mechanisms

Not available

Not available

Not available

Not available

Not available

Not available

Not available

Not available

Not available

Not available

Not available

Not available

Not available

Not available

Not available

Not available

Not available

Not available

Not available

Not available

Not available

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 72

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

All Mechanisms FIPS Mode Mechanisms

Not available

Not available

Not available

Not available

Not available

Not available

Not available

Not available

Not available

Not available

Not available

Not available

Not available

Not available

Not available

Not available

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 73

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

All Mechanisms FIPS Mode Mechanisms

Not available

Not available

Not available

Not available

Not available

Not available

Not available

Not available

Not available

Not available

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 74

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

All Mechanisms FIPS Mode Mechanisms

Not available

Not available

Not available

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 75

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

All Mechanisms FIPS Mode Mechanisms

Not available

Not available

Not available

Not available

Not available

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 76

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

All Mechanisms FIPS Mode Mechanisms

Not available

Not available

Not available

Not available

Not available

Not available

Not available

NOTE Key size limitations specified above may be further limited, depending on the specific
operation being performed. For example: CKM_DES3_CBC specifies a 16-byte key as a
lower limit, but in FIPS mode, such keys are only allowed for legacy decryption operations and
not new encryptions. See the section detailing the relevant mechanism for more information.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 77

Chapter 4:

SafeNet ProtectToolkit-C Mechanisms

CKM_AES_CBC

Supported Operations
Encrypt and Decrypt
Sign and Verify
SignRecover and VerifyRecover
Digest
Generate Key/Key-Pair
Wrap and Unwrap
Derive
Available in FIPS Mode

Restrictions in FIPS Mode

Key Size Range (bytes) and Parameters
Minimum
FIPS Minimum
Maximum

Parameter

Description

Yes
No
Yes
No
No
Yes
No
Yes

No Wrapping

16
16
32

16 bytes

For a full description of this mechanism, refer to the PKCS#11 version 2.20 documentation from RSA

Laboratories.

CKM_AES CBC ENCRYPT_DATA

Supported Operations
Encrypt and Decrypt

Sign and Verify

No

No

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

78

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive Yes
Available in FIPS Mode No

Key Size Range (bytes) and Parameters

Minimum 16

Maximum 32

Parameter CK_AES CBC_ENCRYPT DATA PARAMS
Description

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 79

Chapter 4:

SafeNet ProtectToolkit-C Mechanisms

CKM_AES_CBC_PAD

Supported Operations
Encrypt and Decrypt
Sign and Verify
SignRecover and VerifyRecover
Digest
Generate Key/Key-Pair
Wrap and Unwrap
Derive
Available in FIPS Mode

Restrictions in FIPS Mode

Key Size Range (bytes) and Parameters
Minimum
FIPS Minimum
Maximum

Parameter

Description

Yes
No
No
No
No
Yes
No
Yes

No Wrapping

16
16
32

16 bytes

For a full description of this mechanism, refer to the PKCS#11 version 2.20 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

80

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_AES_CMAC
Supported Operations
Encrypt and Decrypt No
Sign and Verify Yes
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive No
Available in FIPS Mode Yes
Restrictions in FIPS Mode None
Key Size Range (bytes) and Parameters
Minimum 16
FIPS Minimum 16
Maximum 32
Parameter None
Description

For a full description of this mechanism, refer to the PKCS#11 version 2.30 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

81

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_AES CMAC_GENERAL
Supported Operations
Encrypt and Decrypt No
Sign and Verify Yes
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive No
Available in FIPS Mode Yes
Restrictions in FIPS Mode None
Key Size Range (bytes) and Parameters
Minimum 16
FIPS Minimum 16
Maximum 32
Parameter None
Description

For a full description of this mechanism, refer to the PKCS#11 version 2.30 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

82

Chapter 4:

SafeNet ProtectToolkit-C Mechanisms

CKM_AES_ECB

Supported Operations
Encrypt and Decrypt
Sign and Verify
SignRecover and VerifyRecover
Digest
Generate Key/Key-Pair
Wrap and Unwrap
Derive
Available in FIPS Mode

Restrictions in FIPS Mode

Key Size Range (bytes) and Parameters

Minimum
FIPS Minimum
Maximum

Parameter

Description

Yes
No
No
No
No
Yes
No
Yes

No Wrapping

16
16
32

None

For a full description of this mechanism, refer to the PKCS#11 version 2.20 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

83

Chapter 4:

SafeNet ProtectToolkit-C Mechanisms

CKM_AES ECB_ENCRYPT_DATA

Supported Operations
Encrypt and Decrypt
Sign and Verify
SignRecover and VerifyRecover
Digest
Generate Key/Key-Pair
Wrap and Unwrap
Derive

Available in FIPS Mode

Key Size Range (bytes) and Parameters
Minimum
Maximum

Parameter

Description

No

No

No

No

No

No

Yes

No

16

32

Data to be encrypted

This mechanism functions as described in the PKCS#11 version 2.20 documentation from RSA Laboratories,

with the following exception:

PKCS#11 version 2.20 points to a CK_KEY_DERIVATION_STRING_DATA
structure. If this structure is passed as a parameter, it contains pointers to the data located in
host memory, and the HSM will crash during execution.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

84

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

Figure 6: CKM_AES_ECB_ENCRYPT_DATA mechanism

Data to be encrypted

Base AES key

Encrypt Data

Get cipher text

Y

Create new AES object

Y

Get derived key handle

SafeNet ProtectToolkit 5.6 Programming Guide

007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

85

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_AES GCM

Supported Operations

Encrypt and Decrypt Yes
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive No
Available in FIPS Mode Yes
Restrictions in FIPS Mode None

Key Size Range (bytes) and Parameters

Minimum 16

FIPS Minimum 16

Maximum 32

Parameter CK_GCM_ PARAMS
Description

For a full description of this mechanism, refer to the PKCS#11 version 2.30 documentation from RSA
Laboratories.

AES GCM is a single part encrypt/decrypt operation; the following sequence of PKCS#11 function calls may be
used in applications:

C EncryptInit(...)
C Encrypt(...)

C DecryptInit(...)
C Decrypt(...)

PTK's implementation of AES GCM assumes the following limitations:

> |V maximum length is 128 octets (max value from NIST test vectors),

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 86

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

> AAD maximum length is 90 octets(max value from NIST test vectors),

> message maximum length is 126K (129024) octets.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 87

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_AES _KEY_GEN
Supported Operations
Encrypt and Decrypt No
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair Yes
Wrap and Unwrap No
Derive No
Available in FIPS Mode Yes
Restrictions in FIPS Mode None
Key Size Range (bytes) and Parameters
Minimum 16
FIPS Minimum 16
Maximum 32
Parameter None
Description

For a full description of this mechanism, refer to the PKCS#11 version 2.20 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

88

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_AES _KEY WRAP

Supported Operations

Encrypt and Decrypt No
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap Yes
Derive No
Available in FIPS Mode Yes
Restrictions in FIPS Mode None

Key Size Range (bytes) and Parameters

Minimum 16

FIPS Minimum 16

Maximum 32

Parameter Multiple of 8 bytes (optional)
Description

For a full description of this mechanism, refer to the PKCS#11 version 2.30 documentation from RSA
Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 89

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_AES_KEY WRAP_PAD

Supported Operations

Encrypt and Decrypt No
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap Yes
Derive No
Available in FIPS Mode Yes
Restrictions in FIPS Mode None

Key Size Range (bytes) and Parameters

Minimum 16

FIPS Minimum 16

Maximum 32

Parameter Multiple of 8 bytes (optional)
Description

For a full description of this mechanism, refer to the PKCS#11 version 2.30 documentation from RSA
Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 90

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_AES MAC
Supported Operations
Encrypt and Decrypt No
Sign and Verify Yes
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive No
Available in FIPS Mode No
Key Size Range (bytes) and Parameters
Minimum 16
Maximum 32
Parameter None
Description

For a full description of this mechanism, refer to the PKCS#711 version 2.20 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

91

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_AES MAC_ GENERAL

Supported Operations
Encrypt and Decrypt No
Sign and Verify Yes
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive No
Available in FIPS Mode No

Key Size Range (bytes) and Parameters

Minimum 16

Maximum 32

Parameter CK_MAC GENERAL PARAMS
Description

For a full description of this mechanism, refer to the PKCS#711 version 2.30 documentation from RSA
Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 92

Chapter 4:

SafeNet ProtectToolkit-C Mechanisms

CKM_AES OFB

Supported Operations
Encrypt and Decrypt
Sign and Verify
SignRecover and VerifyRecover
Digest
Generate Key/Key-Pair
Wrap and Unwrap
Derive
Available in FIPS Mode

Restrictions in FIPS Mode

Key Size Range (bytes) and Parameters

Minimum
FIPS Minimum
Maximum

Parameter

Description

Yes
No
Yes
No
No
Yes
No
Yes

No Wrapping

16
16
32

16 bytes

For a full description of this mechanism, refer to the PKCS#11 version 2.20 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

93

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_ARDFP
Supported Operations
Encrypt and Decrypt No
Sign and Verify No
SignRecover and VerifyRecover No
Digest Yes
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive No
Available in FIPS Mode No
Key Size Range (bytes) and Parameters
Minimum 0
Maximum None
Parameter None
Description

Available in Software Emulation mode only.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

94

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_ARIA _CBC
Supported Operations
Encrypt and Decrypt Yes
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap Yes
Derive No
Available in FIPS Mode No
Key Size Range (bytes) and Parameters
Minimum 16
Maximum 32
Parameter 16 bytes
Description

For a full description of this mechanism, refer to the PKCS#711 version 2.20 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

95

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_ARIA CBC _PAD
Supported Operations
Encrypt and Decrypt Yes
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap Yes
Derive No
Available in FIPS Mode No
Key Size Range (bytes) and Parameters
Minimum 16
Maximum 32
Parameter 16 bytes
Description

For a full description of this mechanism, refer to the PKCS#711 version 2.20 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

96

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_ARIA _ECB
Supported Operations
Encrypt and Decrypt Yes
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap Yes
Derive No
Available in FIPS Mode No
Key Size Range (bytes) and Parameters
Minimum 16
Maximum 32
Parameter None
Description

For a full description of this mechanism, refer to the PKCS#711 version 2.20 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

97

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_ARIA _KEY_GEN
Supported Operations
Encrypt and Decrypt No
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair Yes
Wrap and Unwrap No
Derive No
Available in FIPS Mode No
Key Size Range (bytes) and Parameters
Minimum 16
Maximum 32
Parameter None
Description

For a full description of this mechanism, refer to the PKCS#711 version 2.20 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

98

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_ARIA MAC
Supported Operations
Encrypt and Decrypt No
Sign and Verify Yes
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive No
Available in FIPS Mode No
Key Size Range (bytes) and Parameters
Minimum 16
Maximum 32
Parameter None
Description

For a full description of this mechanism, refer to the PKCS#711 version 2.20 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

99

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_ARIA MAC_GENERAL

Supported Operations
Encrypt and Decrypt No
Sign and Verify Yes
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive No
Available in FIPS Mode No

Key Size Range (bytes) and Parameters

Minimum 16

Maximum 32

Parameter CK_MAC GENERAL PARAMS
Description

For a full description of this mechanism, refer to the PKCS#711 version 2.20 documentation from RSA
Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 100

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_BIP32_CHILD DERIVE

Supported Operations
Encrypt and Decrypt Yes
Sign and Verify Yes
SignRecover and VerifyRecover Yes
Digest Yes
Generate Key/Key-Pair No
Wrap and Unwrap Yes
Derive Yes
Available in FIPS Mode No

Key Size Range (bytes) and Parameters

Minimum 64

Maximum 571

Parameter CKM BIP32 CHILD DERIVE PARAMS
Description

Generates a BIP32 Child node key pair from a BIP32 key.

The child derived keys need a BIP32 key as the base key to be effective. Private and hardened keys can only
be derived using private keys.

When generating the child key, you need to specify the depth of the derived key with respect to the base key,
as well as the index value at each level. The base key must have the following characteristics:

> CKK_BIP32 -- using any other key type as a base key will resultin an error (CKR_KEY TYPE
INCONSISTENT)

> 128-512 bits of data -- using a seed outside of this range will result in an error (CKR_BIP32 MASTER
SEED_LEN_INVALID)

This mechanism has a parameter, a CKM_BIP32_CHILD_DERIVE_PARAMS structure, defined as follows:

typedef struct CK BIP32 CHILD DERIVE PARAMS {
CK_ATTRIBUTE PTR pPublicKeyTemplate;
CK ULONG ulPublicKeyAttributeCount;
CK_ATTRIBUTE PTR pPrivateKeyTemplate;
CK ULONG ulPrivateKeyAttributeCount;

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 101

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CK_ULONG_PTR pulPath;
CK ULONG ulPathLen;
CK_OBJECT HANDLE hPublicKey;
CK_OBJECT HANDLE hPrivateKey;
CK ULONG ulPathErrorIndex;

} CK BIP32 CHILD DERIVE PARAMS;

The fields of this structure are defined as follows:

pPublicKeyTemplate Points to the key attributes for the public key.
ulPublicKeyAttributeCount States the number of attributes in the public key template.
pPrivateKeyTemplate Points to the key attributes for the private key.
ulPrivateKeyAttributeCount States the number of key attributes in the private key template.
pulPath

ulPathLen

hPublicKey Returns the public object handle after a successful key derivation.
hPrivateKey Returns the private object handle after a successful key derivation.

If the attribute count is set to zero or the template is set to NULL, the public or private key will not be generated.

If both attribute count properties are set to zero and/or both key templates are set to NULL, an error will result
(CKR_MECHANISM_PARAM_INVALID)

If ulPathLen is set to zero and/or pulPath is set to NULL, an error will result (CKR_MECHANISM PARAM
INVALID).

The following restrictions apply to both templates:

> The CKA_KEY_TYPE value must be CKK_BIP32. Using any other key type will resultin an error (CKR _
TEMPLATE_INCONSISTENT)

> The only allowable curve for BIP32 is secp256k1. Setting an ECC curve will result in an error (CKR
TEMPLATE INCONSISTENT).

If a step fails during the derivation, the depth at which the failure occurred will be stored in the ulPathErrorindex
parameter.

If a private key cannot be produced due to passing an invalid index, an error will result (CKR_BIP32 CHILD
INDEX INVALID).

If a base public key is used to derive a private key, an error will result (CKR ARGUMENTS BAD).

If a base public key is used to derive a hardened key, an error will result (CKR_BIP32 INVALID
HARDENED DERIVATION).

NOTE For leaf children nodes, both the public and private keys must have the CKA _
DERIVE attribute disabled to prevent further key derivations.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 102

Chapter 4:

SafeNet ProtectToolkit-C Mechanisms

Sample

CK RV generateChildKeyPair (
CK_SESSION HANDLE hPrivateSession
, CK OBJECT HANDLE hParent
, CK OBJECT HANDLE& hPubKey
, CK OBJECT HANDLE& hPriKey

CK RV retCode = CKR OK;

CK_BYTE no = 0;

CK_BYTE yes = 1;

CK_ULONG indexPath[] = {0,1,4};

CK _NUMERIC kt = CKK BIP32;
CK OBJECT HANDLE tmpHandle;

CK ATTRIBUTE pubKeyTemplate[] = {
{CKA DERIVE, &yes,
{CKA KEY TYPE, skt,sizeof(kt) }

sizeof (yes) },
bi
CK_ATTRIBUTE priKeyTemplate[] = {

{CKA DERIVE, &yes,
{CKA KEY TYPE, &kt,sizeof (kt) }

sizeof (yes) },

}i

CK MECHANISM deriveMech = { CKM BIP32 CHILD DERIVE, NULL PTR, 0 };

CK BIP32 CHILD DERIVE PARAMS BIP32 Params;

BIP32 Params.pPrivateKeyTemplate = priKeyTemplate;

BIP32 Params.ulPrivateKeyAttributeCount = (sizeof (priKeyTemplate) / sizeof (CK_ATTRIBUTE)) ;

BIP32 Params.pPublicKeyTemplate = pubKeyTemplate;

BIP32 Params.ulPublicKeyAttributeCount = (sizeof (pubKeyTemplate) / sizeof (CK ATTRIBUTE));

BIP32 Params.pulPath = indexPath;
BIP32 Params.ulPathLen = 3;

deriveMech.pParameter = &BIP32 Params;
deriveMech.usParameterLen = sizeof (BIP32 Params);

retCode = C DeriveKey (hPrivateSession, (CK MECHANISM PTR)&deriveMech, hParent,
(CK_ATTRIBUTE PTR)priKeyTemplate, (sizeof (priKeyTemplate) / sizeof (CK ATTRIBUTE)),

&tmpHandle) ;
hPubKey = BIP32 Params.hPublicKey;
hPriKey = BIP32 Params.hPrivateKey;
return retCode;

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

103

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_BIP32_MASTER DERIVE

Supported Operations
Encrypt and Decrypt Yes
Sign and Verify Yes
SignRecover and VerifyRecover Yes
Digest Yes
Generate Key/Key-Pair No
Wrap and Unwrap Yes
Derive Yes
Available in FIPS Mode No

Key Size Range (bytes) and Parameters

Minimum 64

Maximum 571

Parameter CKM BIP32 MASTER DERIVE PARAMS
Description

Generates a BIP32 Master node key pair from a generic secret.

The BIP algorithm requires a random input for the key generation mechanism. This is provided by the C_
DeriveKey's base key, which must have the following characteristics:

> CKK_GENERIC_SECRET -- using any other base key will result in an error (CKR_KEY_TYPE_
INCONSISTENT)

> 128-512 bits of random data -- using a seed outside of this range will result in an error (CKR_BIP32_
MASTER_SEED_LEN_INVALID)

This mechanism has a parameter, a CKM_BIP32_MASTER_DERIVE_PARAMS structure, defined as follows:

typedef struct CK BIP32 MASTER DERIVE PARAMS
{
CK_ATTRIBUTE PTR pPublicKeyTemplate;
CK _ULONG ulPublicKeyAttributeCount;
CK_ATTRIBUTE PTR pPrivateKeyTemplate;
CK ULONG ulPrivateKeyAttributeCount;
CK_OBJECT HANDLE hPublicKey;
CK OBJECT HANDLE hPrivateKey;

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 104

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

} CK BIP32 MASTER DERIVE PARAMS;

The fields of this structure are defined as follows:

pPublicKeyTemplate Points to the key attributes for the public key.
ulPublicKeyAttributeCount States the number of attributes in the public key template.
pPrivateKeyTemplate Points to the key attributes for the private key.
ulPrivateKeyAttributeCount States the number of key attributes in the private key template.
hPublicKey Returns the public object handle after a successful key derivation.
hPrivateKey Returns the private object handle after a successful key derivation.

If the attribute count is set to zero or the template is set to NULL, the public or private key will not be generated.

If both attribute count properties are set to zero and/or both key templates are set to NULL, an error will result
(CKR_MECHANISM_PARAM_INVALID).

The following restrictions apply to both templates:

> The CKA_KEY_TYPE value must be CKK_BIP32. Using any other key type will result in an error (CKR_
TEMPLATE_INCONSISTENT).

> The only allowable curve for BIP32 is secp256k1. Setting an ECC curve will result in an error (CKR _
TEMPLATE_INCONSISTENT).

> Ifthe public key generated from the specified seed is invalid, an error will result (CKR_BIP32_MASTER _
SEED_INVALID).

NOTE Both the public and private keys must have the CKA_DERIVE attribute enabled, or
the generated key pair cannot be used for key derivation.

Sample

CK RV generateMasterKeyPair (

CK_SESSION HANDLE hPrivateSession
CK OBJECT HANDLE hSeed

CK OBJECT HANDLE& hPubKey
CK_OBJECT HANDLE& hPriKey

— ~ 0~ ~

CK RV retCode = CKR OK;
CK BYTE no = 0;
CK BYTE yes = 1;

CK _NUMERIC kt = CKK BIP32;
CK OBJECT HANDLE tmpHandle;

CK ATTRIBUTE pubKeyTemplate[] = {
{CKA DERIVE, &yes, sizeof (yes) },
{CKA KEY TYPE, skt,sizeof(kt) }

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 1 05

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CK_ATTRIBUTE priKeyTemplate[] = {
{CKA DERIVE, &yes, sizeof (yes) },
{CKA _KEY TYPE, &kt,sizeof (kt) }

}i

CK MECHANISM deriveMech = { CKM BIP32 MASTER DERIVE , NULL PTR, O };
CK BIP32 MASTER DERIVE PARAMS BIP32 Params;

BIP32 Params.pPrivateKeyTemplate = priKeyTemplate;

BIP32 Params.ulPrivateKeyAttributeCount = (sizeof (priKeyTemplate) / sizeof (CK _ATTRIBUTE)) ;
BIP32 Params.pPublicKeyTemplate = pubKeyTemplate;
BIP32 Params.ulPublicKeyAttributeCount = (sizeof (pubKeyTemplate) / sizeof (CK_ATTRIBUTE)) ;

deriveMech.pParameter = &BIP32 Params;
deriveMech.usParameterLen = sizeof (BIP32 Params);

retCode = C DeriveKey (hPrivateSession, (CK MECHANISM PTR)&deriveMech, hSeed,
(CK_ATTRIBUTE PTR)priKeyTemplate, (sizeof (priKeyTemplate) / sizeof (CK ATTRIBUTE)),
&tmpHandle) ;

hPubKey = BIP32 Params.hPublicKey;

hPriKey = BIP32 Params.hPrivateKey;

return retCode;

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 106

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_CAST128 CBC
Supported Operations
Encrypt and Decrypt Yes
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap Yes
Derive No
Available in FIPS Mode No
Key Size Range (bytes) and Parameters
Minimum 1
Maximum 16
Parameter 8 bytes
Description

For a full description of this mechanism, refer to the PKCS#711 version 2.20 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

107

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_CAST128 CBC_PAD
Supported Operations
Encrypt and Decrypt Yes
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap Yes
Derive No
Available in FIPS Mode No
Key Size Range (bytes) and Parameters
Minimum 1
Maximum 16
Parameter 8 bytes
Description

For a full description of this mechanism, refer to the PKCS#711 version 2.20 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

108

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_CAST128 ECB
Supported Operations
Encrypt and Decrypt Yes
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap Yes
Derive No
Available in FIPS Mode No
Key Size Range (bytes) and Parameters
Minimum 1
Maximum 16
Parameter None
Description

For a full description of this mechanism, refer to the PKCS#711 version 2.20 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

109

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_CAST128 ECB_PAD
Supported Operations
Encrypt and Decrypt Yes
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap Yes
Derive No
Available in FIPS Mode No
Key Size Range (bytes) and Parameters
Minimum 1
Maximum 16
Parameter None
Description

This is a padding mechanism. Implemented padding mechanisms are:

vV V vV VvV V

These block cipher mechanisms are all based on the corresponding Electronic Code Book (ECB) algorithms,
implied by their name, but with the addition of the block-cipher padding method detailed in PKCS#7.

These mechanisms are supplied for compatibility only and their use in new applications is not recommended.

PKCS#11 version 2.20 specifies mechanisms for Chain Block Cipher algorithms with and without padding and
ECB algorithms without padding, but not ECB with padding. These mechanisms fill this gap. The mechanisms
may be used for general data encryption and decryption and also for key wrapping and unwrapping (provided

all the access conditions of the relevant keys are satisfied).

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

110

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_CAST128 KEY_GEN
Supported Operations
Encrypt and Decrypt No
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair Yes
Wrap and Unwrap No
Derive No
Available in FIPS Mode No
Key Size Range (bytes) and Parameters
Minimum 1
Maximum 16
Parameter None
Description

For a full description of this mechanism, refer to the PKCS#711 version 2.20 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

111

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_CAST128 MAC
Supported Operations
Encrypt and Decrypt No
Sign and Verify Yes
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive No
Available in FIPS Mode No
Key Size Range (bytes) and Parameters
Minimum 1
Maximum 16
Parameter None
Description

For a full description of this mechanism, refer to the PKCS#711 version 2.20 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

112

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_CAST128 MAC_GENERAL

Supported Operations
Encrypt and Decrypt No
Sign and Verify Yes
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive No
Available in FIPS Mode No

Key Size Range (bytes) and Parameters

Minimum 1

Maximum 16

Parameter CK_MAC GENERAL PARAMS
Description

For a full description of this mechanism, refer to the PKCS#711 version 2.20 documentation from RSA
Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 113

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_CONCATENATE_BASE_AND_DATA

*WARNING** This mechanism contains vulnerabilities that could compromise
security. It has been disabled in the factory settings for new HSMs. To enable it, the
Weak PKCS#11 Mechanisms flag must be set. See "Weak PKCS#11 Mechanisms" in
SafeNet ProtectToolkit-C Administration Guide for more information.

Supported Operations
Encrypt and Decrypt No
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive Yes
Available in FIPS Mode No

Key Size Range (bytes) and Parameters

Minimum 0

Maximum None

Parameter CK_KEY DERIVATION STRING DATA
Description

For a full description of this mechanism, refer to the PKCS#711 version 2.20 documentation from RSA
Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 114

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_CONCATENATE_BASE_AND_KEY

*WARNING** This mechanism contains vulnerabilities that could compromise
security. It has been disabled in the factory settings for new HSMs. To enable it, the
Weak PKCS#11 Mechanisms flag must be set. See "Weak PKCS#11 Mechanisms" in
SafeNet ProtectToolkit-C Administration Guide for more information.

Supported Operations
Encrypt and Decrypt No
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive Yes
Available in FIPS Mode No

Key Size Range (bytes) and Parameters

Minimum 0

Maximum None

Parameter CK_OBJECT HANDLE
Description

For a full description of this mechanism, refer to the PKCS#711 version 2.20 documentation from RSA
Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 1 1 5

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_CONCATENATE_DATA_AND_BASE

*WARNING** This mechanism contains vulnerabilities that could compromise
security. It has been disabled in the factory settings for new HSMs. To enable it, the
Weak PKCS#11 Mechanisms flag must be set. See "Weak PKCS#11 Mechanisms" in
SafeNet ProtectToolkit-C Administration Guide for more information.

Supported Operations
Encrypt and Decrypt No
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive Yes
Available in FIPS Mode No

Key Size Range (bytes) and Parameters

Minimum 0

Maximum None

Parameter CK_KEY DERIVATION STRING DATA
Description

For a full description of this mechanism, refer to the PKCS#711 version 2.20 documentation from RSA
Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 116

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_DECODE_PKCS 7

Supported Operations

Encrypt and Decrypt No
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive Yes
Available in FIPS Mode Yes
Restrictions in FIPS Mode None

Key Size Range (bytes) and Parameters

Minimum 0

FIPS Minimum 0

Maximum None

Parameter None
Description

This mechanism is used with the C_DeriveKey function to derive a set of X.509 Certificate objects and X.509
CRL objects from a PKCS#7 object. The base key object handle isa CKO DATA object (the PKCS#7 encoding)
which hasa CKA_ OBJECT_ID attribute indicating the type of the object as being a PKCS#7 encoding. This
mechanism does not take any parameters.

One of the functions of PKCS#7 is a mechanism for distributing certificates and CRLs in a single encoded
package. In this case the PKCS#7 message content is usually empty. This mechanism is provided to split
certificates and CRLs from such a PKCS7 encoding so that those certificates and CRLs may be further
processed.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 1 1 7

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

This mechanism will decode a PKCS#7 encoding and create PKCS#11 objects for all certificates (object class
CKO_CERTIFICATE)and CRLs (object class CKO CRL) thatitfinds in the encoding. The signature on the
PKCS#7 content is not verified. The parameter containing the newly derived key is the last Certificate or CRL
that is extracted from the PKCS#7 encoding. The attribute template is applied to all objects extracted from the
encoding.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 118

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_DECODE_X 509
Supported Operations
Encrypt and Decrypt No
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive Yes
Available in FIPS Mode Yes
Restrictions in FIPS Mode None
Key Size Range (bytes) and Parameters
Minimum 0
FIPS Minimum 0
Maximum None
Parameter None
Description

This mechanism is used with the C_DeriveKey function to derive a public key object from an X.509 certificate
or a PKCS#10 certification request. This mechanism does not perform a certificate validation.

The base key object handle should refer to the X.509 certificate or PKCS#10 certificate request. This

mechanism has no parameter.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

119

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_DES BCF
Supported Operations
Encrypt and Decrypt Yes
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap Yes
Derive No
Available in FIPS Mode No
Key Size Range (bytes) and Parameters
Minimum 8
Maximum 8
Parameter 8 bytes
Description

Available in Software Emulation mode only.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

120

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_DES _CBC
Supported Operations
Encrypt and Decrypt Yes
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap Yes
Derive No
Available in FIPS Mode No
Key Size Range (bytes) and Parameters
Minimum 8
Maximum 8
Parameter 8 bytes
Description

For a full description of this mechanism, refer to the PKCS#711 version 2.20 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

121

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_DES_CBC_ENCRYPT_DATA

Supported Operations
Encrypt and Decrypt No
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive Yes
Available in FIPS Mode No

Key Size Range (bytes) and Parameters

Minimum 8
Maximum 8
Parameter CK DES CBC_ENCRYPT DATA PARAMS

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 122

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_DES CBC_PAD
Supported Operations
Encrypt and Decrypt Yes
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap Yes
Derive No
Available in FIPS Mode No
Key Size Range (bytes) and Parameters
Minimum 8
Maximum 8
Parameter 8 bytes
Description

For a full description of this mechanism, refer to the PKCS#711 version 2.20 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

123

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_DES DERIVE_CBC

NOTE The CKM_DES_DERIVE_CBC mechanism is deprecated in this release. Use of
CKM_DES_DERIVE_CBC is no longer recommended.

Supported Operations
Encrypt and Decrypt No
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive Yes
Available in FIPS Mode No

Key Size Range (bytes) and Parameters

Minimum 8

Maximum 8

Parameter CK _DES_CBC_PARAMS
Description

The CKM_DES DERIVE CBCand CKM DES3 DERIVE CBC mechanisms are used with the C_DeriveKey
function to derive a secret key by performing a CBC (no padding) encryption. They create a new secret key
whose value is generated by encrypting the provided data with the provided Single, Double or Triple length
DES key.

Three new mechanism Parameter structures are created, CK_DES CBC PARAMS,CK DES2 CBC PARAMS
and CK_DES3 CBC_PARAMS, for use by these mechanisms. These structures consists of 2-byte arrays, the
first array contains the IV (must be 8 bytes) and the second array contains the data to be encrypted, being 8, 16
or 24 bytes in length, for each PARAMS structure respectively.

These mechanisms require the pParameter in the CK_ MECHANTI SM structure to be a pointer to one of the
above new Parameter structures and the parameterLen to be the size of the provided Parameter structure.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 124

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

If the length of data to be encrypted by the CBC mechanism does not fit into one of the above PARAMS
structures, the developer must produce their own byte array with the following layout. The first 8 bytes must be
the IV, then the data to be encrypted. To use this array, the pParameter in the CK_ MECHANTI SM structure must
be a pointer to this array and the parameterLen is the length of the IV (must be 8 bytes) plus the length of the
provided data, which must be a multiple of 8 bytes.

The following rules apply to the provided attribute template:

>

If no length or key type is provided in the template, then the key produced by these mechanisms is a generic
secret key. Its length is equal to the length of the provided data.

If no key type is provided in the template, but a length is, then the key produced by these mechanismsiis a
generic secret key of the specified length, extracted from the left bytes of the cipher text.

If no length is provided in the template, but a key type is, then that key type must have a well-defined length.
If it does, then the key produced by these mechanisms is of the type specified in the template. If it doesn't,
an error is returned.

If both a key type and a length are provided in the template, the length must be compatible with that key
type. The key produced by these mechanisms is of the specified type and length, extracted from the left
bytes of the cipher text.

If a DES key is derived with these mechanisms, the parity bits of the key are set properly. If the requested type
of key requires more bytes than the length of the provided data, an error is generated.

These mechanisms have the following rules about key sensitivity and extractability:

>

>

>

>

If the base key has its CKA SENSITIVE attribute setto TRUE, so does the derived key. If not, then the
derived key’'s CKA SENSITIVE attribute is set either from the supplied template or else it defaults to TRUE.

Similarly, the derived key’s CKA_ EXTRACTABLE attribute is set either from the supplied template or else it
defaults to the value of the CKA_ EXTRACTABLE of the base key.

The derived key’s CKA_ ALWAYS SENSITIVE attribute is set to TRUE if and only if the base key has its
CKA ALWAYS SENSITIVE attribute setto TRUE.

Similarly, the derived key’s CKA NEVER EXTRACTABLE attribute is set to TRUE if and only if the base key
hasits CKA NEVER EXTRACTABLE attribute setto TRUE.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 1 25

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_DES_DERIVE_ECB

NOTE The CKM_DES_DERIVE_ECB mechanism is deprecated in this release. Use of
CKM_DES_DERIVE_ECB is no longer recommended.

Supported Operations
Encrypt and Decrypt No
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive Yes
Available in FIPS Mode No

Key Size Range (bytes) and Parameters

Minimum 8

Maximum 8

Parameter Multiple of 8 bytes
Description

The CKM_DES DERIVE ECBand CKM DES3 DERIVE ECB mechanisms are used with the C_DeriveKey
function to derive a secret key by performing an ECB (no padding) encryption. They create a new secret key
whose value is generated by encrypting the provided data with the provided single, double or triple length DES
key.

The CKM DES DERIVE ECBand CKM DES3 DERIVE ECB mechanismsrequire the pParameter in the
CK_MECHANISM structure to be the pointer to the data that is to be encrypted. The parameterLen is the
length of the provided data, which must be a multiple of 8 bytes.

The following rules apply to the provided attribute template:

> Ifnolength or key type is provided in the template, then the key produced by these mechanisms is a generic
secret key. Its length is equal to the length of the provided data.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 126

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

>

If no key type is provided in the template, but a length is, then the key produced by these mechanismsiis a
generic secret key of the specified length, extracted from the left bytes of the cipher text.

If no length is provided in the template, but a key type is, then that key type must have a well-defined length.
Ifit does, then the key produced by these mechanisms is of the type specified in the template. If it doesn’t,
an error is returned.

If both a key type and a length are provided in the template, the length must be compatible with that key
type. The key produced by these mechanisms is of the specified type and length, extracted from the left
bytes of the cipher text.

If a DES key is derived with these mechanisms, the parity bits of the key are set properly. If the requested type
of key requires more bytes than the length of the provided data, an error is generated.

The mechanisms have the following rules about key sensitivity and extractability:

>

If the base key has its CKA_ SENSITIVE attribute setto TRUE, so does the derived key. If not, then the
derived key’'s CKA_SENSITIVE attribute is set either from the supplied template or else it defaults to TRUE.

Similarly, the derived key’s CKA_ EXTRACTABLE attribute is set either from the supplied template or else it
defaults to the value of the CKA EXTRACTABLE of the base key.

The derived key’s CKA ALWAYS SENSITIVE attribute is setto TRUE if and only if the base key has its
CKA ALWAYS SENSITIVE attribute setto TRUE.

Similarly, the derived key’'s CKA NEVER EXTRACTABLE attribute is setto TRUE if and only if the base key
hasits CKA NEVER EXTRACTABLE attribute set to TRUE.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 1 27

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_DES ECB
Supported Operations
Encrypt and Decrypt Yes
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap Yes
Derive No
Available in FIPS Mode No
Key Size Range (bytes) and Parameters
Minimum 8
Maximum 8
Parameter None
Description

For a full description of this mechanism, refer to the PKCS#711 version 2.20 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

128

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_DES_ECB_ENCRYPT_DATA

Supported Operations
Encrypt and Decrypt No
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive Yes
Available in FIPS Mode No

Key Size Range (bytes) and Parameters

Minimum 8
Maximum 8
Parameter CK_KEY DERIVATION STRING DATA

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 129

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_DES ECB_PAD
Supported Operations
Encrypt and Decrypt Yes
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap Yes
Derive No
Available in FIPS Mode No
Key Size Range (bytes) and Parameters
Minimum 8
Maximum 8
Parameter None
Description

This is a padding mechanism. Implemented padding mechanisms are:

vV V vV VvV V

These block cipher mechanisms are all based on the corresponding Electronic Code Book (ECB) algorithms,
implied by their name, but with the addition of the block-cipher padding method detailed in PKCS#7.

These mechanisms are supplied for compatibility only and their use in new applications is not recommended.

PKCS#11 version 2.20 specifies mechanisms for Chain Block Cipher algorithms with and without padding and
ECB algorithms without padding, but not ECB with padding. These mechanisms fill this gap. The mechanisms
may be used for general data encryption and decryption and also for key wrapping and unwrapping (provided

all the access conditions of the relevant keys are satisfied).

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

130

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_DES KEY_GEN
Supported Operations
Encrypt and Decrypt No
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair Yes
Wrap and Unwrap No
Derive No
Available in FIPS Mode No
Key Size Range (bytes) and Parameters
Minimum 8
Maximum 8
Parameter None
Description

For a full description of this mechanism, refer to the PKCS#711 version 2.20 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

131

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_DES_MAC

Supported Operations
Encrypt and Decrypt No
Sign and Verify Yes
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive No
Available in FIPS Mode No

Key Size Range (bytes) and Parameters

Minimum 8

Maximum 8

Parameter CK_MAC GENERAL PARAMS
Description

For a full description of this mechanism, refer to the PKCS#711 version 2.20 documentation from RSA
Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 132

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_DES_MAC_ GENERAL

Supported Operations
Encrypt and Decrypt No
Sign and Verify Yes
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive No
Available in FIPS Mode No

Key Size Range (bytes) and Parameters

Minimum 8

Maximum 8

Parameter CK_MAC GENERAL PARAMS
Description

For a full description of this mechanism, refer to the PKCS#711 version 2.20 documentation from RSA
Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 133

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_DES MDC 2 PAD1
Supported Operations
Encrypt and Decrypt No
Sign and Verify No
SignRecover and VerifyRecover No
Digest Yes
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive No
Available in FIPS Mode No
Key Size Range (bytes) and Parameters
Minimum 0
Maximum 0
Parameter None
Description

This mechanism is a hash function as defined in ISO/IEC DIS 10118-2 using DES as block algorithm.

This mechanism implements padding in accordance with ISO 10118-1 Method 1. Basically, zeros are used to
pad the input data to a multiple of 8 if required. If the input data is already a multiple of 8, then no padding is

added.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

134

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_DES_OFBo64
Supported Operations
Encrypt and Decrypt No
Sign and Verify Yes
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive No
Available in FIPS Mode No
Key Size Range (bytes) and Parameters
Minimum 8
Maximum 8
Parameter 8 bytes
Description

Single DES-OFB64 denoted CKM DES OFB64 is a mechanism for single and multiple part encryption and

decryption; based on DES Output Feedback Mode.

It has a parameter, an 8-byte initialization vector.

This mechanism does not require either clear text or cipher text to be presented in multiple block lengths.
There is no padding required. The mechanism will always return a reply equal in length to the request.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

135

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_DES2 KEY GEN

Supported Operations

Encrypt and Decrypt No

Sign and Verify No

SignRecover and VerifyRecover No

Digest No

Generate Key/Key-Pair Yes

Wrap and Unwrap No

Derive No

Available in FIPS Mode Yes

Restrictions in FIPS Mode Formerly acceptable, but soon to be deprecated

Key Size Range (bytes) and Parameters

Minimum 16

FIPS Minimum 16

Maximum 16

Parameter None
Description

For a full description of this mechanism, refer to the PKCS#11 version 2.20 documentation from RSA
Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 136

Chapter 4:

SafeNet ProtectToolkit-C Mechanisms

CKM_DES3 BCF

Supported Operations
Encrypt and Decrypt
Sign and Verify
SignRecover and VerifyRecover
Digest
Generate Key/Key-Pair
Wrap and Unwrap
Derive

FIPS-approved

Key Size Range (bytes) and Parameters
Minimum
Maximum

Parameter

Description
Available in Software Emulation mode only.

Yes
No
No
No
No
Yes
No

No

16
24

8 bytes

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

137

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_DES3_CBC

Supported Operations
Encrypt and Decrypt
Sign and Verify
SignRecover and VerifyRecover
Digest
Generate Key/Key-Pair
Wrap and Unwrap
Derive
Available in FIPS Mode

Restrictions in FIPS Mode

Key Size Range (bytes) and Parameters
Minimum
FIPS Minimum
Maximum

Parameter

Description

Yes

No

No

No

No

Yes

No

Yes

No Wrapping

Encrypt: A maximum limit of 228 64-bit packets can be

processed by a single key. Once this limit is reached, an
error (CKR_KEY_NOT_ACTIVE) occurs.

16
16
24

8 bytes

For a full description of this mechanism, refer to the PKCS#711 version 2.20 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

138

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_DES3 CBC_ENCRYPT DATA

Supported Operations
Encrypt and Decrypt No
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive Yes
Available in FIPS Mode No

Key Size Range (bytes) and Parameters

Minimum 16
Maximum 24
Parameter CK DES CBC_ENCRYPT DATA PARAMS

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 139

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_DES3 CBC_PAD

Supported Operations
Encrypt and Decrypt
Sign and Verify
SignRecover and VerifyRecover
Digest
Generate Key/Key-Pair
Wrap and Unwrap
Derive
Available in FIPS Mode

Restrictions in FIPS Mode

Key Size Range (bytes) and Parameters
Minimum
FIPS Minimum
Maximum

Parameter

Description

Yes

No

No

No

No

Yes

No

Yes

No Wrapping

Encrypt: A maximum limit of 228 64-bit packets can be

processed by a single key. Once this limit is reached, an
error (CKR_KEY_NOT_ACTIVE) occurs.

16
16
24

8 bytes

For a full description of this mechanism, refer to the PKCS#711 version 2.20 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

140

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_DES3 CMAC
Supported Operations
Encrypt and Decrypt No
Sign and Verify Yes
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive No
Available in FIPS Mode Yes

Restrictions in FIPS Mode

Key Size Range (bytes) and Parameters
Minimum
FIPS Minimum
Maximum

Parameter

Description

Sign/Verify: A maximum limit of 228 64-bit packets can
be processed by a single key. Once this limit is reached,
an error (CKR_KEY_NOT_ACTIVE) occurs.

16
16
24

8 bytes

For a full description of this mechanism, refer to the PKCS#711 version 2.30 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

141

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_DES3 CMAC_GENERAL

Supported Operations
Encrypt and Decrypt
Sign and Verify
SignRecover and VerifyRecover
Digest
Generate Key/Key-Pair
Wrap and Unwrap
Derive
Available in FIPS Mode

Restrictions in FIPS Mode

Key Size Range (bytes) and Parameters
Minimum
FIPS Minimum
Maximum

Parameter

Description

No

Yes

No

No

No

No

No

Yes

Sign/Verify: A maximum limit of 228 64-bit packets can

be processed by a single key. Once this limit is reached,
an error (CKR_KEY_NOT_ACTIVE) occurs.

16
16
24

8 bytes

For a full description of this mechanism, refer to the PKCS#711 version 2.20 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

142

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_DES3 DDD CBC

Supported Operations
Encrypt and Decrypt Yes
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap Yes
Derive No
Available in FIPS Mode No

Key Size Range (bytes) and Parameters

Minimum 16

Maximum 24

Parameter 8 bytes
Description

CKM DES3 DDD CBC is a mechanism for single- and multiple-part encryption and decryption, key wrapping
and key unwrapping, based on the DES block cipher and cipher-block chaining mode as defined in FIPS PUB
81.

The DES3-DDD cipher encrypts an 8 byte block by D (KL,, D (KR, D (KL, data)))anddecryptswithE
(KL, E(KR, E(KL, cipher)));whereKey = KL || KR,andE (KL, data) isasingle DES
encryption using key KL.and D (KL, cipher) isa single DES decryption.

It has a parameter, an initialization vector for cipher block chaining mode. The initialization vector has the
same length as the block size, which is 8 bytes.

Constraints on key types and the length of data are summarized in the following table:
Table 1: DES3-DDD Block Cipher CBC: Key and Data Length

Function Key Type Input Length Output Length Comments
C_Encrypt CKK Any input length rounded up to multiple of block size no final part
DES2

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 143

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

Function Key Type
C_Decrypt CKK
DES2

C_WrapKey CKK

DES2
C_ CKK
UnwrapKey DES2

Input Length

Multiple of
block size

Any

Any

Output Length Comments

same as input length no final part

input length rounded up to multiple of block size

Determined by type of key being unwrapped or
CKA VALUE LEN

For the encrypt and wrap operations, the mechanism performs zero-padding when the input data or wrapped
key’s length is not a multiple of 8. That is, the value 0x 00 is appended to the last block until its length is 8 (for
example, plaintext 0x01 would be padded to become 0x010x000x000x000x000x000x000x00).

With the exception of the algorithm specified in this section, the use of this mechanism is identical to the use of
other secret key mechanisms. Therefore, for further details on aspects not covered here (for example, access
control, or error codes) refer to the PKCS#11 standard.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

144

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_DES3 DERIVE_CBC DEPRECATED

NOTE The CKM_DES3_DERIVE_CBC mechanism is deprecated in this release. Use of
CKM_DES3_DERIVE_CBC is no longer recommended.

Supported Operations
Encrypt and Decrypt No
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive Yes
Available in FIPS Mode No

Key Size Range (bytes) and Parameters

Minimum 16
Maximum 24
Parameter CK _DES2 CBC_PARAMS

CK_DES3_CBC_PARAMS

Description

The CKM DES DERIVE CBCand CKM DES3 DERIVE CBC mechanisms are used with the C_DeriveKey
function to derive a secret key by performing a CBC (no padding) encryption. They create a new secret key
whose value is generated by encrypting the provided data with the provided Single, Double or Triple length
DES key.

Three new mechanism Parameter structures are created, CK_DES CBC PARAMS,CK DES2 CBC_ PARAMS
and CK_DES3 CBC_PARAMS, for use by these mechanisms. These structures consists of 2-byte arrays, the
first array contains the IV (must be 8 bytes) and the second array contains the data to be encrypted, being 8, 16
or 24 bytes in length, for each PARAMS structure respectively.

These mechanisms require the pParameter in the CK_ MECHANTI SM structure to be a pointer to one of the
above new Parameter structures and the parameterLen to be the size of the provided Parameter structure.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 145

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

If the length of data to be encrypted by the CBC mechanism does not fit into one of the above PARAMS
structures, the developer must produce their own byte array with the following layout. The first 8 bytes must be
the IV, then the data to be encrypted. To use this array, the pParameter in the CK_ MECHANTI SM structure must
be a pointer to this array and the parameterLen is the length of the IV (must be 8 bytes) plus the length of the
provided data, which must be a multiple of 8 bytes.

The following rules apply to the provided attribute template:

>

If no length or key type is provided in the template, then the key produced by these mechanisms is a generic
secret key. Its length is equal to the length of the provided data.

If no key type is provided in the template, but a length is, then the key produced by these mechanismsiis a
generic secret key of the specified length, extracted from the left bytes of the cipher text.

If no length is provided in the template, but a key type is, then that key type must have a well-defined length.
If it does, then the key produced by these mechanisms is of the type specified in the template. If it doesn't,
an error is returned.

If both a key type and a length are provided in the template, the length must be compatible with that key
type. The key produced by these mechanisms is of the specified type and length, extracted from the left
bytes of the cipher text.

If a DES key is derived with these mechanisms, the parity bits of the key are set properly. If the requested type
of key requires more bytes than the length of the provided data, an error is generated.

These mechanisms have the following rules about key sensitivity and extractability:

>

>

>

>

If the base key has its CKA SENSITIVE attribute setto TRUE, so does the derived key. If not, then the
derived key’'s CKA SENSITIVE attribute is set either from the supplied template or else it defaults to TRUE.

Similarly, the derived key’s CKA_ EXTRACTABLE attribute is set either from the supplied template or else it
defaults to the value of the CKA_ EXTRACTABLE of the base key.

The derived key’s CKA_ ALWAYS SENSITIVE attribute is set to TRUE if and only if the base key has its
CKA ALWAYS SENSITIVE attribute setto TRUE.

Similarly, the derived key’s CKA NEVER EXTRACTABLE attribute is set to TRUE if and only if the base key
hasits CKA NEVER EXTRACTABLE attribute setto TRUE.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 146

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_DES3 DERIVE_ECB_DEPRECATED

NOTE The CKM_DES3_DERIVE_ECB mechanism is deprecated in this release. Use of
CKM_DES3_DERIVE_ECB is no longer recommended.

Supported Operations
Encrypt and Decrypt No
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive Yes
Available in FIPS Mode No

Key Size Range (bytes) and Parameters

Minimum 16

Maximum 24

Parameter Multiple of 8 bytes
Description

The CKM_DES DERIVE ECBand CKM DES3 DERIVE ECB mechanisms are used with the C_DeriveKey
function to derive a secret key by performing an ECB (no padding) encryption. They create a new secret key
whose value is generated by encrypting the provided data with the provided single, double or triple length DES
key.

The CKM DES DERIVE ECBand CKM DES3 DERIVE ECB mechanismsrequire the pParameter in the
CK_MECHANISM structure to be the pointer to the data that is to be encrypted. The parameterLen is the
length of the provided data, which must be a multiple of 8 bytes.

The following rules apply to the provided attribute template:

> Ifnolength or key type is provided in the template, then the key produced by these mechanisms is a generic
secret key. Its length is equal to the length of the provided data.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 147

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

>

If no key type is provided in the template, but a length is, then the key produced by these mechanismsiis a
generic secret key of the specified length, extracted from the left bytes of the cipher text.

If no length is provided in the template, but a key type is, then that key type must have a well-defined length.
Ifit does, then the key produced by these mechanisms is of the type specified in the template. If it doesn’t,
an error is returned.

If both a key type and a length are provided in the template, the length must be compatible with that key
type. The key produced by these mechanisms is of the specified type and length, extracted from the left
bytes of the cipher text.

If a DES key is derived with these mechanisms, the parity bits of the key are set properly. If the requested type
of key requires more bytes than the length of the provided data, an error is generated.

The mechanisms have the following rules about key sensitivity and extractability:

>

If the base key has its CKA_ SENSITIVE attribute setto TRUE, so does the derived key. If not, then the
derived key’'s CKA_SENSITIVE attribute is set either from the supplied template or else it defaults to TRUE.

Similarly, the derived key’s CKA_ EXTRACTABLE attribute is set either from the supplied template or else it
defaults to the value of the CKA EXTRACTABLE of the base key.

The derived key’s CKA ALWAYS SENSITIVE attribute is setto TRUE if and only if the base key has its
CKA ALWAYS SENSITIVE attribute setto TRUE.

Similarly, the derived key’'s CKA NEVER EXTRACTABLE attribute is setto TRUE if and only if the base key
hasits CKA NEVER EXTRACTABLE attribute set to TRUE.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 148

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_DES3 ECB

Supported Operations
Encrypt and Decrypt
Sign and Verify
SignRecover and VerifyRecover
Digest
Generate Key/Key-Pair
Wrap and Unwrap
Derive
Available in FIPS Mode

Restrictions in FIPS Mode

Key Size Range (bytes) and Parameters
Minimum
FIPS Minimum
Maximum

Parameter

Description

Yes

No

No

No

No

Yes

No

Yes

No Wrapping

Encrypt: A maximum limit of 228 64-bit packets can be

processed by a single key. Once this limit is reached, an
error (CKR_KEY_NOT_ACTIVE) occurs.

16
16
24

None

For a full description of this mechanism, refer to the PKCS#711 version 2.20 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

149

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_DES3 ECB_ENCRYPT_DATA

Supported Operations
Encrypt and Decrypt No
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive Yes
FIPS-approved No

Key Size Range (bytes) and Parameters

Minimum 16
Maximum 24
Parameter CK_KEY DERIVATION STRING DATA

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 1 50

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_DES3 ECB_PAD

Supported Operations

Encrypt and Decrypt

Sign and Verify

SignRecover and VerifyRecover
Digest

Generate Key/Key-Pair

Wrap and Unwrap

Derive

Available in FIPS Mode

Restrictions in FIPS Mode

Key Size Range (bytes) and Parameters

Minimum

FIPS Minimum

Maximum

Parameter

Description
This is a padding mechanism. Implemented padding mechanisms are:

>

vV V V V

Yes

No

No

No

No

Yes

No

Yes

No Wrapping

Encrypt: A maximum limit of 228 64-bit packets can be

processed by a single key. Once this limit is reached, an
error (CKR_KEY_NOT_ACTIVE) occurs.

16
16
24

None

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

151

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

These block cipher mechanisms are all based on the corresponding Electronic Code Book (ECB) algorithms,
implied by their name, but with the addition of the block-cipher padding method detailed in PKCS#7.

These mechanisms are supplied for compatibility only and their use in new applications is not recommended.

PKCS#11 version 2.20 specifies mechanisms for Chain Block Cipher algorithms with and without padding and
ECB algorithms without padding, but not ECB with padding. These mechanisms fill this gap. The mechanisms
may be used for general data encryption and decryption and also for key wrapping and unwrapping (provided

all the access conditions of the relevant keys are satisfied).

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 1 52

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_DES3 KEY_GEN
Supported Operations
Encrypt and Decrypt No
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair Yes
Wrap and Unwrap No
Derive No
Available in FIPS Mode Yes
Restrictions in FIPS Mode None
Key Size Range (bytes) and Parameters
Minimum 24
FIPS Minimum 24
Maximum 24
Parameter None
Description

For a full description of this mechanism, refer to the PKCS#11 version 2.20 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

153

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_DES3 MAC

Supported Operations
Encrypt and Decrypt
Sign and Verify
SignRecover and VerifyRecover
Digest
Generate Key/Key-Pair
Wrap and Unwrap
Derive
Available in FIPS Mode

Restrictions in FIPS Mode

Key Size Range (bytes) and Parameters
Minimum
FIPS Minimum
Maximum

Parameter

Description

No
Yes
No
No
No
No
No
Yes

No MAC generation

16
16
24

None

For a full description of this mechanism, refer to the PKCS#11 version 2.20 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

154

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_DES3 MAC_ GENERAL

Supported Operations
Encrypt and Decrypt
Sign and Verify
SignRecover and VerifyRecover
Digest
Generate Key/Key-Pair
Wrap and Unwrap
Derive
Available in FIPS Mode

Restrictions in FIPS Mode

Key Size Range (bytes) and Parameters
Minimum
FIPS Minimum
Maximum

Parameter

Description

No
Yes
No
No
No
No
No
Yes

No MAC generation

16
16
24

CK_MAC GENERAL PARAMS

For a full description of this mechanism, refer to the PKCS#11 version 2.20 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

155

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_DES3 OFB64

Supported Operations

Encrypt and Decrypt Yes

Sign and Verify No

SignRecover and VerifyRecover No

Digest No

Generate Key/Key-Pair No

Wrap and Unwrap No

Derive No

Available in FIPS Mode Yes

Restrictions in FIPS Mode Encrypt: A maximum limit of 228 64-pit packets can be

processed by a single key. Once this limit is reached, an
error (CKR_KEY_NOT_ACTIVE) occurs.

Key Size Range (bytes) and Parameters

Minimum 16

FIPS Minimum 16

Maximum 24

Parameter 8 bytes
Description

For a full description of this mechanism, refer to the PKCS#711 version 2.20 documentation from RSA
Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 1 56

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_DES3 RETAIL_CFB_MAC

Supported Operations
Encrypt and Decrypt
Sign and Verify
SignRecover and VerifyRecover
Digest
Generate Key/Key-Pair
Wrap and Unwrap
Derive
Available in FIPS Mode

Restrictions in FIPS Mode

Key Size Range (bytes) and Parameters
Minimum
FIPS Minimum
Maximum

Parameter

Description

No
Yes
No
No
No
No
No
Yes

No MAC generation

16
16
24

8 bytes (V)

This is a signature generation and verification mechanism. The produced MAC is 8 bytes in length. Itis an
extension of the single length key MAC mechanisms. It takes an 8 byte |V as a parameter, which is encrypted
(ECB mode) with the left most key value before the first data block is MAC'ed.

The data, which must be a multiple of 8 bytes, is MAC’ed with the left most key value in the normal manner, but
the final cipher block is then decrypted (ECB mode) with the middle key value and encrypted (ECB mode) with

the Right most key part.

For double length DES keys, the Right key component is the same as the Left key component.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

157

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_DES3 X919 MAC
Supported Operations

Encrypt and Decrypt No

Sign and Verify Yes

SignRecover and VerifyRecover No

Digest No

Generate Key/Key-Pair No

Wrap and Unwrap No

Derive No

Available in FIPS Mode Yes

Restrictions in FIPS Mode No MAC generation

Key Size Range (bytes) and Parameters
Minimum
FIPS Minimum
Maximum

Parameter

Description

16

16

24

CK_MAC GENERAL PARAMS

CKM DES3 X919 MACandCKM DES3 X919 MAC GENERAL are signature generation and verification
mechanisms, as defined by ANSI X9.19. They are an extension of the single length key MAC mechanisms.
The data is MAC’ed with the left most key value in the normal manner, but the final cipher block is then
decrypted (ECB mode) with the middle key value and encrypted (ECB mode) with the Right most key part.

For double length keys, the Right key component is the same as the Left key component.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

158

Chapter 4:

SafeNet ProtectToolkit-C Mechanisms

CKM_DES3 X919 MAC_GENERAL

Supported Operations
Encrypt and Decrypt
Sign and Verify
SignRecover and VerifyRecover
Digest
Generate Key/Key-Pair
Wrap and Unwrap
Derive
Available in FIPS Mode

Restrictions in FIPS Mode

Key Size Range (bytes) and Parameters
Minimum
FIPS Minimum
Maximum

Parameter

Description

No

Yes

No

No

No

No

No

Yes

No MAC generation

16

16

24

CK_MAC GENERAL PARAMS

CKM DES3 X919 MACandCKM DES3 X919 MAC GENERAL are signature generation and verification
mechanisms, as defined by ANSI X9.19. They are an extension of the single length key MAC mechanisms.
The data is MAC’ed with the left most key value in the normal manner, but the final cipher block is then
decrypted (ECB mode) with the middle key value and encrypted (ECB mode) with the Right most key part.

For double length keys, the Right key component is the same as the Left key component.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

159

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_DH_PKCS_DERIVE

Supported Operations
Encrypt and Decrypt No
Sign and Verify Yes
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive No
Available in FIPS Mode Yes
Restrictions in FIPS Mode Minimum 2048-bit modulus for all operations
Cannot be used for existing Diffie-Hellman keys smaller
than 2048 bits
Key Size Range (bytes) and Parameters
Minimum 512
FIPS Minimum 2048
Maximum 4096
Parameter Bytes (Big Integer)

Description

For a full description of this mechanism, refer to the PKCS#711 version 2.20 documentation from RSA
Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 160

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_DH_PKCS_KEY PAIR _GEN

Supported Operations
Encrypt and Decrypt
Sign and Verify
SignRecover and VerifyRecover
Digest
Generate Key/Key-Pair
Wrap and Unwrap
Derive
Available in FIPS Mode

Restrictions in FIPS Mode

Key Size Range (bytes) and Parameters
Minimum
FIPS Minimum
Maximum

Parameter

Description

No
No
No
No
Yes
No
No
Yes

Minimum 2048-bit modulus for all operations

512
2048
4096

None

For a full description of this mechanism, refer to the PKCS#11 version 2.20 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

161

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_DH PKCS PARAMETER_GEN

Supported Operations
Encrypt and Decrypt
Sign and Verify
SignRecover and VerifyRecover
Digest
Generate Key/Key-Pair
Wrap and Unwrap
Derive
Available in FIPS Mode

Restrictions in FIPS Mode

Key Size Range (bytes) and Parameters
Minimum
FIPS Minimum
Maximum

Parameter

Description

No
No
No
No
Yes
No
No
Yes

Minimum 2048-bit modulus for all operations

512
2048
4096

None

For a full description of this mechanism, refer to the PKCS#11 version 2.20 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

162

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_DSA

Supported Operations
Encrypt and Decrypt
Sign and Verify
SignRecover and VerifyRecover
Digest
Generate Key/Key-Pair
Wrap and Unwrap
Derive
Available in FIPS Mode

Restrictions in FIPS Mode

Key Size Range (bytes) and Parameters
Minimum
FIPS Minimum
Maximum

Parameter

Description

No

Yes (Single part operation only)
No

No

No

No

No

Yes

Minimum 2048-bit modulus for all operations

512
2048
4096

None

For a full description of this mechanism, refer to the PKCS#11 version 2.20 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

163

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_DSA_KEY_PAIR_GEN

Supported Operations
Encrypt and Decrypt
Sign and Verify
SignRecover and VerifyRecover
Digest
Generate Key/Key-Pair
Wrap and Unwrap
Derive
Available in FIPS Mode

Restrictions in FIPS Mode

Key Size Range (bytes) and Parameters
Minimum
FIPS Minimum
Maximum

Parameter

Description

No
No
No
No
Yes
No
No
Yes

Minimum 2048-bit modulus for all operations

512
2048
4096

None

For a full description of this mechanism, refer to the PKCS#11 version 2.20 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

164

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_DSA_PARAMETER GEN

Supported Operations
Encrypt and Decrypt
Sign and Verify
SignRecover and VerifyRecover
Digest
Generate Key/Key-Pair
Wrap and Unwrap
Derive
Available in FIPS Mode

Restrictions in FIPS Mode

Key Size Range (bytes) and Parameters
Minimum
FIPS Minimum
Maximum

Parameter

Description

No
No
No
No
Yes
No
No
Yes

Minimum 2048-bit modulus for all operations

512
2048
4096

None

For a full description of this mechanism, refer to the PKCS#11 version 2.20 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

165

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_DSA_SHA1

Supported Operations
Encrypt and Decrypt
Sign and Verify
SignRecover and VerifyRecover
Digest
Generate Key/Key-Pair
Wrap and Unwrap
Derive
Available in FIPS Mode

Restrictions in FIPS Mode

Key Size Range (bytes) and Parameters
Minimum
FIPS Minimum
Maximum

Parameter

Description

No
Yes
No
No
No
No
No
Yes

No Signing
Minimum 2048-bit modulus for all operations

512
2048
4096

None

For a full description of this mechanism, refer to the PKCS#11 version 2.20 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

166

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_DSA_SHA1 PKCS

Supported Operations
Encrypt and Decrypt
Sign and Verify
SignRecover and VerifyRecover
Digest
Generate Key/Key-Pair
Wrap and Unwrap
Derive
Available in FIPS Mode

Restrictions in FIPS Mode

Key Size Range (bytes) and Parameters
Minimum
FIPS Minimum
Maximum

Parameter

Description

No
Yes
No
No
No
No
No
Yes

No Signing
Minimum 2048-bit modulus for all operations

512
2048
4096

None

The PKCS #1 DSA signature with SHA-1 mechanism, denoted CKM DSA SHA1 PKCS, performs single and
multiple-part digital signature and verification operations without message recovery. The operations
performed are as described in PKCS #1 with the object identifier shalWithDSAEncryption.

It is similar to the PKCS#11 mechanism CKM_RSA SHA1 PKCS except DSA is used instead of RSA. This

mechanism has no parameter.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

167

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_DSA_SHA224

Supported Operations

Encrypt and Decrypt No

Sign and Verify Yes

SignRecover and VerifyRecover No

Digest No

Generate Key/Key-Pair No

Wrap and Unwrap No

Derive No

Available in FIPS Mode Yes

Restrictions in FIPS Mode Minimum 2048-bit modulus for all operations

Key Size Range (bytes) and Parameters

Minimum 1024
FIPS Minimum 2048
Maximum 4096
Parameter None

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 168

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_DSA_SHA224 PKCS

Supported Operations

Encrypt and Decrypt No

Sign and Verify Yes

SignRecover and VerifyRecover No

Digest No

Generate Key/Key-Pair No

Wrap and Unwrap No

Derive No

Available in FIPS Mode Yes

Restrictions in FIPS Mode Minimum 2048-bit modulus for all operations

Key Size Range (bytes) and Parameters

Minimum 1024
FIPS Minimum 2048
Maximum 4096
Parameter None

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 169

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_DSA_SHA256

Supported Operations

Encrypt and Decrypt No

Sign and Verify Yes

SignRecover and VerifyRecover No

Digest No

Generate Key/Key-Pair No

Wrap and Unwrap No

Derive No

Available in FIPS Mode Yes

Restrictions in FIPS Mode Minimum 2048-bit modulus for all operations

Key Size Range (bytes) and Parameters

Minimum 1024
FIPS Minimum 2048
Maximum 4096
Parameter None

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 1 70

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_DSA_SHA256_PKCS

Supported Operations

Encrypt and Decrypt No

Sign and Verify Yes

SignRecover and VerifyRecover No

Digest No

Generate Key/Key-Pair No

Wrap and Unwrap No

Derive No

Available in FIPS Mode Yes

Restrictions in FIPS Mode Minimum 2048-bit modulus for all operations

Key Size Range (bytes) and Parameters

Minimum 1024
FIPS Minimum 2048
Maximum 4096
Parameter None

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 1 71

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_EC_KEY_PAIR_GEN

Supported Operations

Encrypt and Decrypt No
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair Yes
Wrap and Unwrap No
Derive No
Available in FIPS Mode Yes
Restrictions in FIPS Mode None

Key Size Range (bytes) and Parameters

Minimum 64

FIPS Minimum 224

Maximum 571

Parameter None
Description

The elliptic curve key pair generation mechanism, denoted CKM_EC KEY PAIR_GEN, is a key pair
generation mechanism for EC Operation.

This mechanism operates as specified in PKCS#11, with the following adjustments.

The CKA EC PARAMS or CKA ECDSA PARAMS attribute value must be supplied in the Public Key
Template. This attribute is known as the “EC domain parameters” and is defined in ANSI X9.62 as a choice of
three parameter representation methods with the following syntax:

Parameters ::= CHOICE {

ecParameters ECParameters,
namedCurve CURVES. &id ({CurveNames}),
implicitlyCA NULL

}

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 1 72

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

Ifthe CKA_ EC_PARAMS attribute contains a namedCurve then it must be the of DER OID-encoding of one of
the following supported curves:

> {iso(1) member-body(2) US(840) x9-62(10045) curves(3) characteristicTwo(0)
c2tnb191v1(5) }

> {iso(1) member-body(2) US(840) x9-62(10045) curves(3) prime(1) prime192v1(1)}
> {iso(1) identified-organization(3) Certicom(132) certicom_ellipticCurve(0)
secp224r1(33) }
> {iso(1) member-body(2) US(840) x9-62(10045) curves(3) prime(1) prime256v1(7)}
> {iso(1) identified-organization(3) Certicom(132) certicom_ellipticCurve(0)
secp384r1(34)}
> {iso(1) identified-organization(3) Certicom(132) certicom_ellipticCurve(0)
secp521r1(35) }
Plus the custom curve with unofficial OID:
> {iso(1) member-body(2) US(840) x9-62(10045) curves(3) characteristicTwo(0) c2tnb191vie (15)}

Refer to the CT_DerEncodeNamedCurve function in the CTUTIL library for a convenient way to obtain the
encodings of supported namedCurve OIDs.

Ifthe CKA EC_PARAMS attribute is in the form of the ECParameters sequence then the domain parameters
may be described explicitly. In this way the developer is able to specify the curve parameters for curves that the
firmware has no prior knowledge of.

Support for ECParameters sequence is disabled unless the Security Configuration “User Specified ECC
Domain Parameters Allowed”is enabled (see ctconf —fE).

Refer to the CT_GetECCDomainParameters function in the CTUTILS library and the KM_
EncodeECParamsP and KM_EncodeECParams2M functions from the KMLIB library for convenient
methods to obtain ECParameters encodings.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 1 73

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_ECDH1_DERIVE

Supported Operations

Encrypt and Decrypt No
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive Yes
Available in FIPS Mode Yes
Restrictions in FIPS Mode None

Key Size Range (bytes) and Parameters

Minimum 64

FIPS Minimum 224

Maximum 571

Parameter CK ECDH1 DERIVE PARAMS
Description

The elliptic curve Diffie-Hellman (ECDH) key derivation mechanism, denoted CKM_ECDH1 DERIVE,isa
mechanism for key derivation based on the Diffie- Hellman version of the elliptic curve key agreement scheme,
as defined in ANSI X9.63, where each party contributes one key pair all using the same EC domain
parameters.

This mechanism has a parameter,a CK_ECDH1 DERIVE PARAMS structure.

typedef struct CK ECDH1 DERIVE PARAMS {
CK_EC_KDF TYPE kdf;/* key derivation function */
CK_ULONG ulSharedDatalen;/* optional extra shared data */
CK BYTE PTR pSharedData;
CK_ULONG ulPublicDatalLen; /* other party public key value */
CK_BYTE PTR pPublicData;
} CK ECDH1 DERIVE PARAMS;
typedef struct CK ECDH1 DERIVE PARAMS * CK ECDH1 DERIVE PARAMS PTR;

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 1 74

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

The fields of the structure have the following meanings:

kdf This is the Key Derive Function (see below for the description of the possible values of this
field).

ulSharedDataLen This is the length of the optional shared data used by some of the key derive functions. This
may be zero if there is no shared data.

pSharedData This is the address of the optional shared data or NULL if there is no shared data.
ulPublicDataLen This is the length of the other party public key.
pPublicData This is the pointer to the other party public key. Only uncompressed format is accepted.

The mechanism calculates an agreed value using the EC Private key referenced by the base object handle and
the EC Public key passed to the mechanism through the pPublicData field of the mechanism parameter.

The length of the agreed value is equal to the ‘q’ value of the underlying EC curve.

The agreed value is then processed by the Key Derive Function (kdf) to produce the CKA VALUE of the new
Secret Key object.

Four main types of KDFs are supported:

> The NULL KDF performs no additional processing and can be used to obtain the raw agreed value.
Basically: Key =Z

> The CKF_<hash>_KDF algorithms are based on the algorithm described in section 5.6.3 of ANSI X9.63
2001. Basically: Key = H(Z || counter || OtherInfo)

> The CKF_<hash>_SES_KDF algorithms are based on the variant of the x9.63 algorithm specified in

Technical Guideline TR-03111 - Elliptic Curve Cryptography (ECC) based on ISO 15946 Version 1.0,
Bundesamt Fur Sicherheit in der Informationstechnik (BSI)

Basically: Key = H(Z || counter) where counter is a user specified parameter

> The CKF_<hash>_NIST_KDF algorithms are based on the algorithm described in NIST 800-56A
Concatenisation Algorithm

Basically: Key = H(counter|| Z || Otherinfo)

The CKF_SES_<hash>_KDF algorithms require the value of the counter to be specified. This is done by
arithmetically adding the counter value to the CKF value.

The following Counter values are defined in TR-03111:

Counter Name Value Description

CKD SES ENC CTR 0x00000001 Default encryption Key
CKD_SES AUTH CTR 0x00000002 Default authentication Key
CKD SES ALT ENC CTR 0x00000003 Alternate encryption Key

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 1 75

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

Counter Name Value Description
CKD_ SES ALT AUTH CTR 0x00000004 alternate Authentication Key
CKD SES MAX CTR 0x0000FFFF Maximum counter value

For example:

To derive a session key to be used as an Alternate key for Encryption the counter must equal 0x00000003. If
the SHA-1 hash algorithm is required then the kdf value would be set like this:

CK_ECDH1 DERIVE PARAMS Params;
Params.kdf = CKD SHAl SES KDF + CKD SES_ALT ENC CTR;

The table below describes the supported KDFs.
KDF Type Description

CKD_NULL The null transformation. The derived key value is produced by taking bytes from the
left of the agreed value. The new key size is limited to the size of the agreed value.

The Shared Data is not used by this KDF and pSharedData should be NULL.

CKD_SHAl1l KDF This KDF generates secret keys of virtually any length using the algorithm described
in X9.63 with the SHA-1 hash algorithm.

Shared data may be provided.

CKD_ SHA224 KDF This KDF generates secret keys of virtually any length using the algorithm described
in X9.63 with the SHA-224 hash algorithm.

Shared data may be provided.

CKD_ SHA256 KDF This KDF generates secret keys of virtually any length using the algorithm described
in X9.63 with the SHA-256 hash algorithm.

Shared data may be provided.

CKD_ SHA384 KDF This KDF generates secret keys of virtually any length using the algorithm described
in X9.63 with the SHA-384 hash algorithm.

Shared data may be provided.

CKD_ SHA512 KDF This KDF generates secret keys of virtually any length using the algorithm described
in X9.63 with the SHA-512 hash algorithm.

Shared data may be provided.

CKD RIPEMD160 KDF This KDF generates secret keys of virtually any length using the algorithm described
in X9.63 with the RIPE MD 160 hash algorithm.

Shared data may be provided.

This KDF is not available if the HSM is configured for “Only allow Fips Approved
Algorithms”.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 1 76

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

KDF Type

CKD_SHAl SES_KDF

CKD SHA224 SES KDF

CKD SHA256 SES_KDF

CKD SHA384 SES KDF

CKD SHA512 SES_KDF

CKD_RIPEMD160 SES KDF

CKD SHA1l NIST KDF

Description

This KDF generates session keys. It uses the algorithm described in TR-03111 with
the SHA-1 hash algorithm.

Shared data may be provided but typically it is not used.
The counter value that is a parameter to this KDF must be added to this constant.

This KDF generates single, double and triple length DES keys that are intended for
Encryption operations. It uses the algorithm described in TR-03111 with the SHA-
224 hash algorithm.

Shared data may be provided but typically it is not used.
The counter value that is a parameter to this KDF must be added to this constant.

This KDF generates single, double and triple length DES keys that are intended for
Encryption operations. It uses the algorithm described in TR-03111 with the SHA-
256 hash algorithm.

Shared data may be provided but typically it is not used.
The counter value that is a parameter to this KDF must be added to this constant.

This KDF generates single, double and triple length DES keys that are intended for
Encryption operations. It uses the algorithm described in TR-03111 with the SHA-
384 hash algorithm.

Shared data may be provided but typically it is not used.
The counter value that is a parameter to this KDF must be added to this constant.

This KDF generates single, double and triple length DES keys that are intended for
Encryption operations. It uses the algorithm described in TR-03111 with the SHA-
512 hash algorithm.

Shared data may be provided but typically it is not used.
The counter value that is a parameter to this KDF must be added to this constant.

This KDF generates single, double and triple length DES keys that are intended for
Encryption operations. It uses the algorithm described in TR-03111 with the Ripe
MD 160 hash algorithm.

Shared data may be provided but typically it is not used.
The counter value that is a parameter to this KDF must be added to this constant.

This KDF is not available if the HSM is configured for “Only allow Fips Approved
Algorithms”.

This KDF generates secret keys of virtually any length using the algorithm described
in NIST 800-56A with the SHA-1 hash algorithm.

Shared data should be formatted according to the standard.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 1 77

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

KDF Type Description

CKD SHA224 NIST KDF This KDF generates secret keys of virtually any length using the algorithm described
in NIST 800-56A with the SHA-224 hash algorithm.

Shared data should be formatted according to the standard.

CKD SHA256 NIST KDF This KDF generates secret keys of virtually any length using the algorithm described
in NIST 800-56A with the SHA-256 hash algorithm.

Shared data should be formatted according to the standard.

CKD_ SHA384 NIST KDF This KDF generates secret keys of virtually any length using the algorithm described
in NIST 800-56A with the SHA-384 hash algorithm.

Shared data should be formatted according to the standard.

CKD SHA512 NIST KDF This KDF generates secret keys of virtually any length using the algorithm described
in NIST 800-56A with the SHA-512 hash algorithm.

Shared data should be formatted according to the standard.

CKD RIPEMD160 NIST This KDF generates secret keys of virtually any length using the algorithm described
KDF in NIST 800-56A with the RIPE MD 160 hash algorithm.

Shared data should be formatted according to the standard.

This KDF is not available if the HSM is configured for “Only allow Fips Approved
Algorithms”.

This mechanism derives a secret value, and truncates the result according to the CKA_KEY TYPE attribute of
the template and, if it has one and the key type supports it, the CKA_ VALUE LEN attribute of the template.
(The truncation removes bytes from the leading end of the secret value.) The mechanism contributes the result
as the CKA VALUE attribute of the new key; other attributes required by the key type must be specified in the
template.

The following rules apply to the provided attribute template:
> Akey type must be provided in the template or else a Template Error is returned.

> Ifnolengthis provided in the template then that key type must have a well-defined length. If it doesn’t, an
error is returned.

> Ifboth a key type and a length are provided in the template, the length must be compatible with that key
type.
> If a DES key is derived with these mechanisms, the parity bits of the key are set properly.

> Ifthe requested type of key requires more bytes than the Key Derive Function can provide, an error is
generated.

The mechanisms have the following rules about key sensitivity and extractability:

> The CKA SENSITIVE,CKA EXTRACTABLE and CKA EXPORTABLE attributes in the template for the
new key can both be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes all take on
the default value TRUE.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 1 78

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

> Ifthe base key hasits CKA ALWAYS SENSITIVE attribute setto CK FALSE, then the derived key will as
well. If the base key has its CKA ALWAYS SENSITIVE attribute setto CK TRUE, then the derived key has
its CKA ALWAYS SENSITIVE attribute setto the same value asits CKA SENSITIVE attribute.

> Similarly, if the base key has its CKA_ NEVER EXTRACTABLE attribute setto CK_FALSE, then the derived
key will, too. If the base key has its CKA NEVER EXTRACTABLE attribute setto CK TRUE, then the
derived key has its CKA_ NEVER EXTRACTABLE attribute set to the opposite value from its CKA
EXTRACTABLE attribute.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 1 79

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_ECDSA
Supported Operations
Encrypt and Decrypt No
Sign and Verify Yes
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive No
Available in FIPS Mode Yes
Restrictions in FIPS Mode None
Key Size Range (bytes) and Parameters
Minimum 64
FIPS Minimum 224
Maximum 571
Parameter None
Description

For a full description of this mechanism, refer to the PKCS#11 version 2.20 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

180

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_ECDSA_SHA1
Supported Operations

Encrypt and Decrypt No

Sign and Verify Yes

SignRecover and VerifyRecover No

Digest No

Generate Key/Key-Pair No

Wrap and Unwrap No

Derive No

Available in FIPS Mode Yes

Restrictions in FIPS Mode No Signing
Key Size Range (bytes) and Parameters

Minimum 64

FIPS Minimum 224

Maximum 571

Parameter None
Description

For a full description of this mechanism, refer to the PKCS#11 version 2.20 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

181

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_ECDSA_SHA3 224
Supported Operations
Encrypt and Decrypt No
Sign and Verify Yes
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive No
Available in FIPS Mode Yes
Restrictions in FIPS Mode None
Key Size Range (bytes) and Parameters
Minimum 64
FIPS Minimum 224
Maximum 571
Parameter None
Description

For a full description of this mechanism, refer to the ECDSA SHA-3 documentation from OASIS

()-

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

182

https://www.oasis-open.org/

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_ECDSA_SHA3 256
Supported Operations
Encrypt and Decrypt No
Sign and Verify Yes
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive No
Available in FIPS Mode Yes
Restrictions in FIPS Mode None
Key Size Range (bytes) and Parameters
Minimum 64
FIPS Minimum 224
Maximum 571
Parameter None
Description

For a full description of this mechanism, refer to the ECDSA SHA-3 documentation from OASIS

()-

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

183

https://www.oasis-open.org/

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_ECDSA_SHA3 384
Supported Operations
Encrypt and Decrypt No
Sign and Verify Yes
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive No
Available in FIPS Mode Yes
Restrictions in FIPS Mode None
Key Size Range (bytes) and Parameters
Minimum 64
FIPS Minimum 224
Maximum 571
Parameter None
Description

For a full description of this mechanism, refer to the ECDSA SHA-3 documentation from OASIS

()-

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

184

https://www.oasis-open.org/

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_ECDSA_SHA3 512
Supported Operations
Encrypt and Decrypt No
Sign and Verify Yes
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive No
Available in FIPS Mode Yes
Restrictions in FIPS Mode None
Key Size Range (bytes) and Parameters
Minimum 64
FIPS Minimum 224
Maximum 571
Parameter None
Description

For a full description of this mechanism, refer to the ECDSA SHA-3 documentation from OASIS

()-

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

185

https://www.oasis-open.org/

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_ECDSA_SHA224
Supported Operations
Encrypt and Decrypt No
Sign and Verify Yes
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive No
Available in FIPS Mode Yes
Restrictions in FIPS Mode None
Key Size Range (bytes) and Parameters
Minimum 64
FIPS Minimum 224
Maximum 571
Parameter None

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

186

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_ECDSA_SHA256
Supported Operations
Encrypt and Decrypt No
Sign and Verify Yes
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive No
Available in FIPS Mode Yes
Restrictions in FIPS Mode None
Key Size Range (bytes) and Parameters
Minimum 64
FIPS Minimum 224
Maximum 571
Parameter None

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

187

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_ECDSA_SHA384
Supported Operations
Encrypt and Decrypt No
Sign and Verify Yes
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive No
Available in FIPS Mode Yes
Restrictions in FIPS Mode None
Key Size Range (bytes) and Parameters
Minimum 64
FIPS Minimum 224
Maximum 571
Parameter None

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

188

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_ECDSA_SHA512
Supported Operations
Encrypt and Decrypt No
Sign and Verify Yes
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive No
Available in FIPS Mode Yes
Restrictions in FIPS Mode None
Key Size Range (bytes) and Parameters
Minimum 64
FIPS Minimum 224
Maximum 571
Parameter None

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

189

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_ECDSA _GBCS_SHA256
Supported Operations
Encrypt and Decrypt No
Sign and Verify Yes
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive No
Available in FIPS Mode Yes
Restrictions in FIPS Mode None
Key Size Range (bytes) and Parameters
Minimum 64
FIPS Minimum 224
Maximum 571
Parameter None

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

190

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_ECIES

Supported Operations
Encrypt and Decrypt Yes (Single part operation only)
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive No
Available in FIPS Mode No

Key Size Range (bytes) and Parameters

Minimum 64

Maximum 571

Parameter CK_ECIES PARAM
Description

The Elliptic Curve Integrated Encryption Scheme (ECIES) mechanism, denoted CKM_ECIES, performs single-
part encryption and decryption operations. The operations performed are as described in ANSI X9.63-2001.

This mechanism has a parameter, a CK_ECIES_PARAMS structure. This structure is defined as follows:

typedef struct CK ECIES PARAMS

{

CK_EC DH PRIMITIVE dhPrimitive;
CK_EC_KDF TYPE kdf;
CK ULONG ulSharedDatalLenl;
CK BYTE PTR pSharedDatal;
CK _EC ENC SCHEME encScheme;
CK _ULONG ulEncKeyLenInBits;
CK_EC MAC SCHEME macScheme;
CK ULONG ulMacKeyLenInBits;
CK ULONG ulMacLenInBits;
CK _ULONG ulSharedDatalLen2;
CK BYTE PTR pSharedDataZ2;

} CK ECIES PARAMS;

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 191

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

The fields of this structure have the following meanings:

dhPrimitive

kdf

ulSharedDatalLen1
pSharedData1

encScheme

ulEncKeyLenInBits

macScheme

ulMacKeyLenInBits
ulMacLeninBits
ulSharedDatalLen2

pSharedData2

This is the Diffie-Hellman primitive used to derive the shared secret value. Valid value:
CKDHP_ STANDARD

This is the key derivation function used on the shared secret value. Valid value:
CKD SHA1l KDF

This is the length in bytes of the key derivation shared data.
This is the key derivation padding data shared between the two parties.

This is the encryption scheme used to transform the input data. Valid value:
CKES XOR

This is the bit length of the key to use for the encryption scheme.

This is the MAC scheme used for MAC generation or validation. Valid values:
CKMS HMAC SHA1CKMS SHAL

NOTE The MAC scheme CKMS SHA1, should only be used for compatability
with RSA BSAFE® Crypto-C, which uses a NON-STANDARD MAC scheme,
which was defined in the 10/97 X9.63 Draft, but was removed from the released
ANSI X9.63-2001 specification.

This is the bit length of the key to use for the MAC scheme.
This is the bit length of the MAC scheme output.
This is the length in bytes of the MAC shared data.

This is the MAC padding data shared between the two parties.

The pSharedData1 and pSharedData2 parameters are optional, and if not supplied then they must be NULL
and the ulSharedDatalLen1 and ulSharedDataLen2 parameters must be zero. With the MAC scheme
CKMS SHAL, any supplied shared data is ignored.

With the encryption scheme CKES XOR, the ulEncKeyLenInBits parameter MUST be zero. With any other
encryption scheme, the ulEncKeyLenlnBits parameter must be set to the applicable key length in bits.

With the MAC scheme CKMS_SHA1L, the ulMacKeyLenlInBits parameter must be 0. With any other MAC
scheme, the ulMacKeyLenlInBits parameter must be a minimum of 80 bits, and a multiple of 8 bits.

The ulMacLenlInBits parameter must be a minimum of 80 bits, a multiple of 8 bits, and not greater than the
maximum output length for the specified Hash.

Constraints on key types and the length of the data are summarized in the following table.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

192

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

Table 1: ECIES: Key and Data Length

Function Key Type Input Length Output Length
C_Encrypt EC public key any 1+ 2modLen + any + macLen
C_Decrypt EC private key 1+ 2modLen + any + macLen any

Where:

> modLen is the curve modulus length

> maclen is the length of the produced MAC

The encrypted data is in the format QE||EncData||MAC, where:

> QEisthe uncompressed bit string of the ephemeral EC public key
> EncDatais the encrypted data

> MAC is the generated MAC

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 193

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_ENCODE_ATTRIBUTES
Supported Operations
Encrypt and Decrypt No
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap Yes
Derive No
Available in FIPS Mode Yes
Restrictions in FIPS Mode None
Key Size Range (bytes) and Parameters
Minimum 0
FIPS Minimum 0
Maximum None
Parameter None
Description

This wrapping mechanism takes the attributes of an object and encodes them. The encoding is not encrypted
therefore the wrapping key object handle parameter is ignored.

If the object is sensitive then only non-sensitive attributes of the object are encoded. The encoding formatis a
simple proprietary encoding with the attribute type, length, a value presence indicator (Boolean) and the
attribute value. This simple encoding format is used wherever BER or DER is not required.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

194

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_ENCODE_PKCS_10
Supported Operations
Encrypt and Decrypt No
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive Yes
Available in FIPS Mode Yes
Restrictions in FIPS Mode None
Key Size Range (bytes) and Parameters
Minimum 0
FIPS Minimum 0
Maximum None
Parameter None
Description

This mechanism is used with the C_DeriveKey function to create a PKCS#10 certification request from a
public key. Either an RSA or DSA public key may be used with this function. The PKCS#10 certificate request

could then be sent to a Certificate authority for signing.

From PKCS#10

A certification request consists of a distinguished name, a public key and optionally a set of attributes that are
collectively signed by the entity requesting certification. Certification requests are sent to a certification
authority, which will transform the request to an X.509 public-key certificate.

Usage:

> UseCKM RSA PKCS KEY PAIR GEN togenerate akey.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

195

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

> AddaCKA SUBJECT attribute to the public key, containing the subject's distinguished name.

> Initialize the signature mechanism to sign the request. Note that a digest/sign mechanism must be chosen.
Forexample, CKM SHA1 RSA PKCS

> Call C_DeriveKey with the CKM_ENCODE PKCS 10 mechanism to perform the generation.
> On success, an object handle for the certificate request is returned.

> The object's CKA VALUE attribute contains the PKCS#10 request.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 196

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_ENCODE_PUBLIC_KEY
Supported Operations
Encrypt and Decrypt No
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap Yes
Derive No
Available in FIPS Mode Yes
Restrictions in FIPS Mode None
Key Size Range (bytes) and Parameters
Minimum 0
FIPS Minimum 0
Maximum None
Parameter None
Description

This wrapping mechanism performs a DER encoding of a Public Key object. The encoding is not encrypted
therefore the wrapping key object handle parameter is ignored.

Public keys of type CKK_RSA, CKK_DSA and CKK DH may be encoded with this mechanism. The encoding
format is defined in PKCS#1. This mechanism has no parameter.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

197

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_ENCODE_X_509

Supported Operations

Encrypt and Decrypt No
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive Yes
Available in FIPS Mode Yes
Restrictions in FIPS Mode None

Key Size Range (bytes) and Parameters

Minimum 0

FIPS Minimum 0

Maximum None

Parameter CK MECH TYPE AND OBJECT
Description

This mechanism is used with the C_DeriveKey function to derive an X.509 certificate from a public key or a
PKCS#10 certification request. This mechanism creates a new X.509 certificate based on the provided public
key or certification request signed with a CA key. This mechanism takes no parameter.

The new certificate validity period is based onthe CKA START DATE and CKA END DATE attributes on the
base object. If the start date is missing the current time is used. If the end date is missing the certificate is valid
for one year. These dates may be specified as relative values by adding the + character at the start of the date
value. The start date is relative to 'now' and the end date is relative to the start date if relative times are
specified. Negative relative times are not allowed. If the start or end date is invalid then the error CKR_
TEMPLATE INCONSISTENT is returned.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 198

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

The certificate’s serial number is taken from the template’s CKA SERIAL NUMBER, CKA SERIAL
NUMBER_INT orthe signing key’'s CKA_ USAGE COUNT in that order. If none of these values is available CKR
WRAPPING KEY HANDLE INVALID errorisreturned.

To determine the Subject distinguished name for the new certificate if the base object is a public key the
algorithm willuse the CKA_SUBJECT STR, CKA SUBJECT from the template or the base key (in that
order). If none of these values is available CKR KEY HANDLE INVALID isreturned.

Itis also possible to include arbitrary X.509 extensions in the certificate. These are not verified for validity nor
parsed for correctness. Rather they are included verbatim in the newly generated certificate. In order to specify
an extension use the CKA_ PKI ATTRIBUTE BER ENCODED attribute with the value specified as a BER
encoding of the attribute. If the base object is a Certification request or a self-signed certificate the subjectis
taken from the objects encoded subject name.

Currently this mechanism supports generation of RSA or DSA certificates. On success, a handle to a new
CKO_CERTIFICATE objectis returned. The certificate will include the CKA ISSUER, CKA SERIAL
NUMBER and CKA SUBJECT attributes as wellas a CKA VALUE attribute which will contain the DER encoded
certificate.

To create a X.509 certificate that uses EC keys, either provide a PKCS#10 certificate request that was created
with EC keys, or provide an EC public key for the hBaseKey parameter to the function. To sign the certificate as
a CAusing EC keys, use the CKM_ECDSA_SHA1 mechanism to initialize the sign operation before calling C_
DeriveKey().

Usage:
> Create a key-pair using the CKM_RSA PKCS mechanism (this is the key-pair for the new certificate), or

> Createa CKO_CERTIFICATE REQUEST object (with the object's CKA VALUE attribute set to the
PKCS#10 data)

> This object is the "base-key" used in the C_DeriveKey function

> |Initialize the signature mechanism to sign the request using C_Signlnit. Note that a digest/ sign mechanism
must be chosen. For example, CKM SHA1 RSA PKCS

> Call C_DeriveKey with CKM ENCODE X 509 to perform the generation

The new certificate's template may contain:

CKA ISSUER STR The distinguished name of the issuer of the new certificate. If this attribute is not
CKA TSSUER included the issuer is taken from the signing key's CKA SUBJECT attribute. CKA
B ISSUER is the encoded version of this attribute.

CKA_ SERIAL NUMBER INT The serial number of the new certificate. If this attribute is not included the serial
CKA SERTIAL NUMBER number is set to the value of the CKA USAGE_COUNT attribute of the signing key.
- B CKA_ SERIAL NUMBER is the encoded version of this attribute.

CKA SUBJECT STR If the base key (i.e. the input object) is a public key then either the template must
CKA SUBJECT contain this attribute or the public key must have a CKA SUBJECT attribute. This
B attribute contains the distinguished name of the subject. When the base key is a
PKCS#10 certification request the CKA SUBJECT information is taken from there.
CKA SUBJECT is the encoded version of this attribute.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 199

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKA START DATE These attributes are used to determine the new certificate’s validity period. If the
CKA END DATE start date is missing the current date is used. If the end date is missing the date is
- set to one year from the start date. Relative values may be specified (see above).

CKA PKI ATTRIBUTE BER These attributes are used to determine the new certificate’s extended attributes.
ENCODED

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 200

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_ENCODE_X 509 LOCAL_CERT

Supported Operations

Encrypt and Decrypt No
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive Yes
Available in FIPS Mode Yes
Restrictions in FIPS Mode None

Key Size Range (bytes) and Parameters

Minimum 0

FIPS Minimum 0

Maximum None

Parameter None
Description

This mechanism is similar to the CKM_ENCODE_X 509 mechanism in that it is used to create an X 509 public
key certificate. The basic difference is that this mechanism has additional usage controls.

This mechanism will only create certificates for public keys locally generated on the adapter. Thatis, the base
key must have a CKA CLASS attribute of CKO_ PUBLIC KEYand have the CKA LOCAL attribute setto TRUE.

In addition, the signing key specified in the mechanism parameter (see below) must have the CKA SIGN
LOCAL_CERT attribute setto TRUE. Itis used with the C_KeyDerive function only, (thatis, itis a derive
mechanism).

It takes a parameter that is a pointertoa CK_MECH TYPE AND OBJECT structure.

typedef struct CK MECH TYPE AND OBJECT {
CK_MECHANISM TYPE mechanism;

CK_OBJECT HANDLE obj;

} CK MECH TYPE AND OBJECT;

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 201

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

The above mechanism field specifies the actual signature mechanism to use in generation of the certificate
signature. This must be one of the multipart digest RSA or DSA algorithms. The obj field above specifies the
signature generation key. Thatis, it should specify a RSA or DSA private key as appropriate for the chosen
signature mechanism.

To create a X.509 local certificate that uses EC keys, either provide a PKCS#10 certificate request that was
created with EC keys, or provide an EC public key for the hBaseKey parameter to the function. To sign the
certificate as a CA using EC keys, use the CKM_ECDSA_SHAI mechanism to initialize the sign operation

before calling C_DeriveKey(). The CKM_ECDSA SHAI mechanism and EC key must also be specified in the
mechanism parameter.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 202

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_EXTRACT KEY_FROM _KEY

*WARNING** This mechanism contains vulnerabilities that could compromise
security. It has been disabled in the factory settings for new HSMs. To enable it, the
Weak PKCS#11 Mechanisms flag must be set. See "Weak PKCS#11 Mechanisms" in
SafeNet ProtectToolkit-C Administration Guide for more information.

Supported Operations
Encrypt and Decrypt No
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive Yes
Available in FIPS Mode No

Key Size Range (bytes) and Parameters

Minimum 0

Maximum None

Parameter CK_EXTRACT PARAMS
Description

For a full description of this mechanism, refer to the PKCS#711 version 2.20 documentation from RSA
Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 203

Chapter 4:

SafeNet ProtectToolkit-C Mechanisms

CKM_GENERIC_SECRET_KEY_GEN

Supported Operations
Encrypt and Decrypt
Sign and Verify
SignRecover and VerifyRecover
Digest
Generate Key/Key-Pair
Wrap and Unwrap
Derive
Available in FIPS Mode

Restrictions in FIPS Mode

Key Size Range (bytes) and Parameters
Minimum
FIPS Minimum
Maximum

Parameter

Description

No

No

No

No

Yes

No

No

Yes

None

None

None

For a full description of this mechanism, refer to the PKCS#11 version 2.20 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

204

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_IDEA CBC
Supported Operations
Encrypt and Decrypt Yes
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap Yes
Derive No
Available in FIPS Mode No
Key Size Range (bytes) and Parameters
Minimum 16
Maximum 16
Parameter 8 bytes
Description

For a full description of this mechanism, refer to the PKCS#711 version 2.20 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

205

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_IDEA CBC PAD
Supported Operations
Encrypt and Decrypt Yes
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap Yes
Derive No
Available in FIPS Mode No
Key Size Range (bytes) and Parameters
Minimum 16
Maximum 16
Parameter 8 bytes
Description

For a full description of this mechanism, refer to the PKCS#711 version 2.20 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

206

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_IDEA ECB
Supported Operations
Encrypt and Decrypt Yes
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap Yes
Derive No
Available in FIPS Mode No
Key Size Range (bytes) and Parameters
Minimum 16
Maximum 16
Parameter None
Description

For a full description of this mechanism, refer to the PKCS#711 version 2.20 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

207

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_IDEA ECB_PAD
Supported Operations
Encrypt and Decrypt Yes
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap Yes
Derive No
Available in FIPS Mode No
Key Size Range (bytes) and Parameters
Minimum 16
Maximum 16
Parameter None
Description

This is a padding mechanism. Implemented padding mechanisms are:

vV V vV VvV V

These block cipher mechanisms are all based on the corresponding Electronic Code Book (ECB) algorithms,
implied by their name, but with the addition of the block-cipher padding method detailed in PKCS#7.

These mechanisms are supplied for compatibility only and their use in new applications is not recommended.

PKCS#11 version 2.20 specifies mechanisms for Chain Block Cipher algorithms with and without padding and
ECB algorithms without padding, but not ECB with padding. These mechanisms fill this gap. The mechanisms
may be used for general data encryption and decryption and also for key wrapping and unwrapping (provided

all the access conditions of the relevant keys are satisfied).

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

208

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_IDEA KEY_GEN
Supported Operations
Encrypt and Decrypt No
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair Yes
Wrap and Unwrap No
Derive No
Available in FIPS Mode No
Key Size Range (bytes) and Parameters
Minimum 16
Maximum 16
Parameter None
Description

For a full description of this mechanism, refer to the PKCS#711 version 2.20 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

209

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_IDEA MAC
Supported Operations
Encrypt and Decrypt No
Sign and Verify Yes
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive No
Available in FIPS Mode No
Key Size Range (bytes) and Parameters
Minimum 16
Maximum 16
Parameter None
Description

For a full description of this mechanism, refer to the PKCS#711 version 2.20 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

210

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_IDEA_MAC_GENERAL

Supported Operations
Encrypt and Decrypt No
Sign and Verify Yes
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive No
Available in FIPS Mode No

Key Size Range (bytes) and Parameters

Minimum 16

Maximum 16

Parameter CK_MAC GENERAL PARAMS
Description

For a full description of this mechanism, refer to the PKCS#711 version 2.20 documentation from RSA
Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 211

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_KEY_TRANSLATION
Supported Operations
Encrypt and Decrypt No
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap Yes
Derive No
Available in FIPS Mode No
Key Size Range (bytes) and Parameters
Minimum 512
Maximum 4096
Parameter None
Description

This is a key wrapping mechanisms as used by Entrust compliant applications. This mechanism is only visible
whenthe CKF_ENTRUST READY flagis setin the Security Mode attribute of the Adapter Configuration object

in the Admin Token of the adapter.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

212

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_KEY WRAP_SET OAEP

Supported Operations

Encrypt and Decrypt No
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap Yes
Derive No
Available in FIPS Mode Yes
Restrictions in FIPS Mode None

Key Size Range (bytes) and Parameters

Minimum 512

FIPS Minimum 1024

Maximum 4096

Parameter CK KEY WRAP SET OAEP PARAMS
Description

For a full description of this mechanism, refer to the PKCS#11 version 2.20 documentation from RSA
Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 213

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_MD2
Supported Operations
Encrypt and Decrypt No
Sign and Verify No
SignRecover and VerifyRecover No
Digest Yes
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive No
Available in FIPS Mode No
Key Size Range (bytes) and Parameters
Minimum 0
Maximum None
Parameter None
Description

For a full description of this mechanism, refer to the PKCS#711 version 2.20 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

214

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_MD2 HMAC
Supported Operations
Encrypt and Decrypt No
Sign and Verify Yes
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive No
Available in FIPS Mode No
Key Size Range (bytes) and Parameters
Minimum 0
Maximum None
Parameter None
Description

For a full description of this mechanism, refer to the PKCS#711 version 2.20 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

215

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_MD2 HMAC_GENERAL

Supported Operations
Encrypt and Decrypt No
Sign and Verify Yes
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive No
Available in FIPS Mode No

Key Size Range (bytes) and Parameters

Minimum 0

Maximum None

Parameter CK_MAC GENERAL PARAMS
Description

For a full description of this mechanism, refer to the PKCS#711 version 2.20 documentation from RSA
Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 216

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_MD2 KEY_ DERIVATION
Supported Operations
Encrypt and Decrypt No
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive Yes
Available in FIPS Mode No
Key Size Range (bytes) and Parameters
Minimum 0
Maximum None
Parameter None
Description

For a full description of this mechanism, refer to the PKCS#711 version 2.20 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

217

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_MD2_RSA PKCS
Supported Operations
Encrypt and Decrypt No
Sign and Verify Yes
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive No
Available in FIPS Mode No
Key Size Range (bytes) and Parameters
Minimum 512
Maximum 4096
Parameter None
Description

For a full description of this mechanism, refer to the PKCS#711 version 2.20 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

218

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_MD5
Supported Operations
Encrypt and Decrypt No
Sign and Verify No
SignRecover and VerifyRecover No
Digest Yes
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive No
Available in FIPS Mode No
Key Size Range (bytes) and Parameters
Minimum 0
Maximum None
Parameter None
Description

For a full description of this mechanism, refer to the PKCS#711 version 2.20 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

219

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_MDS5 HMAC
Supported Operations
Encrypt and Decrypt No
Sign and Verify Yes
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive No
Available in FIPS Mode No
Key Size Range (bytes) and Parameters
Minimum 0
Maximum None
Parameter None
Description

For a full description of this mechanism, refer to the PKCS#711 version 2.20 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

220

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_MD5 HMAC_GENERAL

Supported Operations
Encrypt and Decrypt No
Sign and Verify Yes
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive No
Available in FIPS Mode No

Key Size Range (bytes) and Parameters

Minimum 0

Maximum None

Parameter CK_MAC GENERAL PARAMS
Description

For a full description of this mechanism, refer to the PKCS#711 version 2.20 documentation from RSA
Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 221

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_MD5 KEY DERIVATION
Supported Operations
Encrypt and Decrypt No
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive Yes
Available in FIPS Mode No
Key Size Range (bytes) and Parameters
Minimum 0
Maximum None
Parameter None
Description

For a full description of this mechanism, refer to the PKCS#711 version 2.20 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

222

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_MDS RSA PKCS
Supported Operations
Encrypt and Decrypt No
Sign and Verify Yes
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive No
Available in FIPS Mode No
Key Size Range (bytes) and Parameters
Minimum 512
Maximum 4096
Parameter None
Description

For a full description of this mechanism, refer to the PKCS#711 version 2.20 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

223

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_MILENAGE_DERIVE

Supported Operations
Encrypt and Decrypt No
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive Yes
Available in FIPS Mode No

Key Size Range (bytes) and Parameters

Minimum 16

Maximum 16

Parameter CK_MILENAGE DERIVE PARAMS
Description
This mechanism is used to perform key derivation for MILENAGE functions F3, F4, F5 and F5* as per the
specification available at using the PKCS

function C_DeriveKey(). .

The mechanism requires the 16-byte milenage key 'K' to be initialized as an AES key on the HSM slot. The key
should have the CKA_DERIVE attribute set to TRUE. The 16-byte Operator Variant key should be stored on
the HSM slot as a Generic Secret key (CKK_GENERIC_SECRET).

The mechanism takes a parameter, CK_MILENAGE_DERIVE_PARAMS. See ctvdef.h for description.

The resultant derived key(s) are of the type "CKK_GENERIC_SECRET" using the supplied user template.
Attempts to create any other type of key will result in an error.

NOTE Only a 16-byte AES key and a 16-byte Operator Variant are supported with this
mechanism.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 224

http://www.3gpp.org/specifications/60-confidentiality-algorithms

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_MILENAGE_SIGN

Supported Operations
Encrypt and Decrypt No
Sign and Verify Yes (single-part sign only)
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive No
Available in FIPS Mode No

Key Size Range (bytes) and Parameters

Minimum 16

Maximum 16

Parameter CK_MILENAGE SIGN PARAMS
Description
This mechanism is used to perform MAC calculation for MILENAGE functions F1, F1*and F2 as per the
specification available at , using the PKCS

functions C_Signlnit() and C_Sign().

The mechanism requires the 16-byte milenage key 'K' to be initialized as an AES key on the HSM slot. The key
should have the CKA_SIGN attribute set to TRUE. The 16-byte Operator Variant key should be stored on the
HSM slot as a Generic Secret key (CKK_GENERIC_SECRET).

The mechanism takes a parameter, CK_MILENAGE_SIGN_PARAMS. See ctvdef.h for description.

NOTE Only a 16-byte AES key and a 16-byte Operator Variant are supported with this
mechanism.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 225

http://www.3gpp.org/specifications/60-confidentiality-algorithms

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_NVB
Supported Operations
Encrypt and Decrypt No
Sign and Verify No
SignRecover and VerifyRecover No
Digest Yes
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive No
Available in FIPS Mode No
Key Size Range (bytes) and Parameters
Minimum 0
Maximum None
Parameter None
Description

This is a message digest mechanism. Itis an implementation of the NVB (Nederlandse Vereiniging van
Banken) Dutch hash standard. This hash algorithm is also known as the BGC hash, version 7.1. This
mechanism is only available in Software Emulation mode.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

226

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_PBA SHA1 WITH_SHA1 HMAC

Supported Operations
Encrypt and Decrypt No
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair Yes
Wrap and Unwrap No
Derive No
Available in FIPS Mode No

Key Size Range (bytes) and Parameters

Minimum 20

Maximum 20

Parameter CK_PBE PARAMS
Description

For a full description of this mechanism, refer to the PKCS#711 version 2.20 documentation from RSA
Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 227

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_PBE_MD2 DES_CBC

Supported Operations
Encrypt and Decrypt No
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair Yes
Wrap and Unwrap No
Derive No
Available in FIPS Mode No

Key Size Range (bytes) and Parameters

Minimum 8

Maximum 8

Parameter CK_PBE PARAMS
Description

For a full description of this mechanism, refer to the PKCS#711 version 2.20 documentation from RSA
Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 228

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_PBE_MD5_CAST128 CBC

Supported Operations
Encrypt and Decrypt No
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair Yes
Wrap and Unwrap No
Derive No
Available in FIPS Mode No

Key Size Range (bytes) and Parameters

Minimum 16

Maximum 16

Parameter CK_PBE PARAMS
Description

For a full description of this mechanism, refer to the PKCS#711 version 2.20 documentation from RSA
Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 229

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_PBE_MD5_DES_CBC

Supported Operations
Encrypt and Decrypt No
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair Yes
Wrap and Unwrap No
Derive No
Available in FIPS Mode No

Key Size Range (bytes) and Parameters

Minimum 8

Maximum 8

Parameter CK_PBE PARAMS
Description

For a full description of this mechanism, refer to the PKCS#711 version 2.20 documentation from RSA
Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 230

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_PBE_SHA1 CAST128 CBC

Supported Operations
Encrypt and Decrypt No
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair Yes
Wrap and Unwrap No
Derive No
Available in FIPS Mode No

Key Size Range (bytes) and Parameters

Minimum 16

Maximum 16

Parameter CK_PBE PARAMS
Description

For a full description of this mechanism, refer to the PKCS#711 version 2.20 documentation from RSA
Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 231

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_PBE_SHA1 DES2 EDE_CBC

Supported Operations
Encrypt and Decrypt No
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair Yes
Wrap and Unwrap No
Derive No
Available in FIPS Mode No

Key Size Range (bytes) and Parameters

Minimum 16

Maximum 16

Parameter CK_PBE PARAMS
Description

For a full description of this mechanism, refer to the PKCS#711 version 2.20 documentation from RSA
Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 232

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_PBE_SHA1 DES3 EDE_CBC

Supported Operations
Encrypt and Decrypt No
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair Yes
Wrap and Unwrap No
Derive No
Available in FIPS Mode No

Key Size Range (bytes) and Parameters

Minimum 24

Maximum 24

Parameter CK_PBE PARAMS
Description

For a full description of this mechanism, refer to the PKCS#711 version 2.20 documentation from RSA
Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 233

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_PBE_SHA1 RC2 40 CBC

Supported Operations
Encrypt and Decrypt No
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair Yes
Wrap and Unwrap No
Derive No
Available in FIPS Mode No

Key Size Range (bytes) and Parameters

Minimum 5

Maximum 5

Parameter CK_PBE PARAMS
Description

For a full description of this mechanism, refer to the PKCS#711 version 2.20 documentation from RSA
Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 234

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_PBE_SHA1 RC2 128 CBC

Supported Operations
Encrypt and Decrypt No
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair Yes
Wrap and Unwrap No
Derive No
Available in FIPS Mode No

Key Size Range (bytes) and Parameters

Minimum 16

Maximum 16

Parameter CK_PBE PARAMS
Description

For a full description of this mechanism, refer to the PKCS#711 version 2.20 documentation from RSA
Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 235

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_PBE_SHA1 RC4 40

Supported Operations
Encrypt and Decrypt No
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair Yes
Wrap and Unwrap No
Derive No
Available in FIPS Mode No

Key Size Range (bytes) and Parameters

Minimum 5

Maximum 5

Parameter CK_PBE PARAMS
Description

For a full description of this mechanism, refer to the PKCS#711 version 2.20 documentation from RSA
Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 236

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_PBE_SHA1 RC4 128

Supported Operations
Encrypt and Decrypt No
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair Yes
Wrap and Unwrap No
Derive No
Available in FIPS Mode No

Key Size Range (bytes) and Parameters

Minimum 16

Maximum 16

Parameter CK_PBE PARAMS
Description

For a full description of this mechanism, refer to the PKCS#711 version 2.20 documentation from RSA
Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 237

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_PKCS12 PBE_EXPORT

Supported Operations
Encrypt and Decrypt No
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap Wrap only
Derive No
Available in FIPS Mode No

Key Size Range (bytes) and Parameters

Minimum 0

Maximum None

Parameter CKM PKCS12 PBE EXPORT PARAMS
Description

The PKCS#12 export mechanism, denoted CKM_PKCS12_PBE_EXPORT is a mechanism for wrapping a
private key and a certificate. The outcome of the wrapping operation is a PKCS#12 byte buffer.

This mechanism has a parameter, a CK_PKCS12_PBE_EXPORT_PARAMS structure.

This mechanism will enforce a password length based on the token. If the PIN is too short, then CKR_PIN
LEN_ RANGE is returned.

This mechanism does not require a wrapping key and it only support RSA, ECDSA and DSA private keys and
certificates.

During the wrapping operation, this mechanism performs a sign and verify test on the supplied key/certificate
pair. Should this test fail, the wrapping operation will abort.

If the exported key is marked CKA EXPORTABLE=TRUE and CKA_ EXTRACTABLE=FALSE this mechanism
forces the export to be performed under the Security Officer session. In this case, the user must ensure that
the private key is either visible to the Security Ofiicer or made available to the Security Officer by performing a

copy.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 238

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

Note that the user performing the private key export is asked to supply two (2) passwords. These passwords
must be identical if MS Windows is to be used to later extract the created PKCS#12 file. For other 3™ party tools
such as OpenSSL these two passwords do not have to be the same.

CK_PKCS12_PBE_EXPORT_PARAMS is a structure that provides parameter to the CKM_PKCS12 PBE
EXPORT mechanism. This structure is defined as follows:

typedef struct CK PKCS12 PBE EXPORT PARAMS
{

CK_OBJECT HANDLE keyCert;

CK CHAR PTR passwordAuthSafe;

CK SIZE passwordAuthSafelen;

CK_CHAR PTR passwordHMAC;

CK SIZE passwordHMACLen;

CK MECHANISM TYPE safeBagKgMech;
CK_MECHANISM TYPE safeContentKgMech;
CK MECHANISM TYPE hmacKgMech;

}

The fields of the structure have the following meanings:
keyCert This is the certificate handle for the associated private key.
passwordAuthSafe This is the password for the PBE keys.
passwordAuthSafeLen This is the length of the password.
passwordHMAC This is the password for the PBA keys.
passwordHMACLen This is the length of the password.

safeBagKgMech This is the key generation mechanism for SafeBag encryption. It is only applicable to
pkcs8ShroudedKeyBag. Valid options are:

CKM PBE SHAl RC4 128
CKM_PBE_SHAl RC4 40

CKM PBE SHAl DES3 EDE CBC
CKM PBE SHAl DES2 EDE CBC
CKM_PBE SHAl RC2 128 CBC
CKM PBE SHAl RC2 40 CBC

V V.V V V V

safeContentKgMech This is the key generation mechanism for SafeContent encryption. It is only applicable to
EncryptedData. Valid options are:

> CKM PBE SHAl RC4 128

CKM PBE SHAl RC4 40
CKM_PBE SHAl DES3 EDE CBC
CKM PBE SHAl DES2 EDE CBC
CKM PBE SHAl RC2 128 CBC
CKM_PBE SHAl RC2 40 CBC

vV V V VvV YV

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 239

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

hmacKgMech This is the key generation mechanism for generating PFX MAC. Valid option is:
> CKM PBA SHAl WITH SHA1 HMAC

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 240

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_PKCS12 PBE_IMPORT

Supported Operations
Encrypt and Decrypt No
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap Unwrap only
Derive No
Available in FIPS Mode No

Key Size Range (bytes) and Parameters

Minimum 0

Maximum None

Parameter CK_PBE PARAMS
Description

The PKCS#12 import mechanism, denoted CKM_PKCS12 PBE IMPORT is a mechanism for unwrapping a
private key and certificate(s). This mechanism shall return the user a handle to a private key and handle(s) to
certificate(s). Note that multiple certificate handles could be returned depending on the contents of the
PKCS#12 file.

NOTE This mechanism does notimport optional PKCS#12 bag attributes and PKCS#8
private-key attributes. These components are discarded during import.

The mechanism has a parameter,a CK_PKCS12_PBE_IMPORT_PARAMS structure. This mechanism
does not require an unwrapping key and supports RSA, DH, DSA and EC Private Keys and certificates.

CK_PKCS12_PBE_IMPORT_PARAMS is a structure that provides parameters to the CKM_ PKCS12 PBE
IMPORT mechanism. This structure is defined as follows:

typedef struct CK PKCS12 PBE IMPORT PARAMS
{

/** AuthenticatedSafe password */

CK CHAR PTR passwordAuthSafe;

/** Size of AuthenticatedSafe password */

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 241

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CK SIZE passwordAuthSafelen;

/** HMAC password */

CK CHAR PTR passwordHMAC;

/** Size of HMAC password */

CK SIZE passwordHMACLen;

/** Certificate attributes */
CK_ATTRIBUTE PTR certAttr;

/** Number of certificate attributes */
CK COUNT certAttrCount;

/** Handle to returned certificate(s) */
CK_OBJECT HANDLE PTR hCert;

/** Number of returned certificate handle(s) */
CK _COUNT PTR hCertCount;

}CK_PKCS12 PBE_IMPORT PARAMS;

The fields of the structure have the following meanings:
passwordAuthSafe This is the password to the authenticated safe container.

passwordAuthSafeLen This is the length of password.

passwordHMAC This is the password to HMAC.

certAttr These are the attributes assigned to certificate.

certAttrCount This is the number of entries in certAttr.

hCert This is the returned certificate handle(s).

hCertCount This is the number of handles allocated for hCert or the number of certificates found in

PKCS#12 file. See below.

Length Prediction

The PKCS#12 file may contain more than one certificate, as such, the user would need to allocate sufficient
buffer to hold the returned handles. The user needs to specify NULL as a parameter to the returned certificate
handle (hCert), the import mechanism shall then return a count (hCertCount) of the certificate found the in
the PKCS#12 file. Using the value of hCertCount, the user then allocates the required buffer to hold the
returned certificate handles for the next C_UnwrapKey function call.

Returning Multiple Ceritificates

Assuming the user has allocated sufficient buffer to hold the certificate handles and there is multiple certificate
in the PKCS#12 files, the import mechanism shall populate buffer hCert with the allocated certificate handles.
The returned hCertCount shall match the specified value.

Reporting Remaining Certificates

In the event of the user not reserving sufficient buffer in hCert and there are more certificates to be unwrapped,
the import mechanism shall unwrap up to a maximum of cerficate handles allocated by the user and return the
total count of the certificates found in the PKCS#12 file. For example, if the user initially allocated one handle

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 242

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

(hCertCount=1) and the PKCS#12 contains 2 certificates, the import mechanism shall extract the first
certificate it encounters and return hCertCount=2. In this case, the returned hCertCount shall always be
larger than the specified value.

PKCS#12 Import Return Code
The following vendor specific return code may be returned in the event of errors:

CKR_PKCS12 DECODE This error code is returned when there is an error decoding the PKCS#12 file.
CKR_PKCS12 This error code is returned when unsupported SafeBag is found. The import mechanism

UNSUPPORTED _ for this release only supports keyBag, pkcs8ShroudedKeyBag, and certBag.
SAFEBAG TYPE

CKR PKCS12 This error code is returned when a PKCS#12 file with unsupported privacy mode is
UNSUPPORTED _ encountered. The import mechanism for this release only supports password privacy
PRIVACY MODE mode.

CKR_PKCS12 This error code is returned when a PKCS#12 file with unsupported integrity mode is
UNSUPPORTED encountered. The import mechanism for this release only supports password integrity
INTEGRITY MODE mode.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 243

Chapter 4:

SafeNet ProtectToolkit-C Mechanisms

CKM_PP LOAD SECRET

Supported Operations
Encrypt and Decrypt No
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair Yes
Wrap and Unwrap No
Derive No
Available in FIPS Mode Yes
Restrictions in FIPS Mode None

Key Size Range (bytes) and Parameters
Minimum 1
FIPS Minimum 1
Maximum None
Parameter CK PP LOAD SECRET PARAMS

Description

This is a key generate mechanism to provide the capability to load a clear key component from a directly
attached pin pad device.

It has a parameter,a CK_PP_LOAD_SECRET_PARAMS, which holds the operational details for the
mechanism.

struct CK PP LOAD SECRET PARAMS

{

/** Entered characters should be masked with
* value being entered. An error is returned if this is TRUE
* and the device does not support this feature. */

CK BBOOL bMaskInput;

'*' or similar to hide the

/** Entered characters should be converted from the ASCII representation
* to binary before being stored, according to the conversion type

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

244

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

supplied. If the device does not support the specified type of input
(e.g. hex input on a decimal keyboard), an error is returned.

The octal and decimal representations will expect 3 digits per byte,
whereas the hexadecimal representations will expect 2 digits per byte.

* ok ok ok %

An error is returned if the data contains invalid encoding (such
as 351 for decimal conversion).

*

*/
CK_PP CONVERT TYPE cConvert;
/** The time to wait for operator response - in seconds. An error is

* returned if the operation does not complete in the specified time.

* This field may be ignored if the device does not support a configurable
* timeout. */

CK _CHAR cTimeout;

/** Reserved for future extensions. Must be set to zero. */

CK _CHAR reserved;

/** The prompt to be displayed on the device. If the prompt cannot fit on
* the device display, the output is clipped. If the device does not

* have any display, the operation will continue without any prompt, or

* error.

* The following special characters are recognized on the display:
* - Newline (0Ox0Oa): Continue the display on the next line.

*/

CK CHAR PTR prompt;
}i

The template supplied with the call to the C_GenerateKey function determines the type of object generated
by the operation. CKA_CLASS may be CKO_SECRETKEY only, and the only key type supported is CKK_
GENERIC_SECRET. (This restriction applies because only key components are to be entered by this
mechanism).

The normal rules for template consistencies apply. In particular the CKA ALWAYS SENSITIVE mustbe set
FALSE andthe CKA NEVER EXTRACTABLE mustbe FALSE.

The expected size of the object value created by this operation is supplied in the CKA_VALUE_LEN
parameter in the template.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 245

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_RC2_CBC

Supported Operations
Encrypt and Decrypt Yes
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap Yes
Derive No
Available in FIPS Mode No

Key Size Range (bytes) and Parameters

Minimum 1

Maximum 128

Parameter CK _RC2 CBC_PARAMS
Description

For a full description of this mechanism, refer to the PKCS#711 version 2.20 documentation from RSA
Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 246

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_RC2_CBC_PAD

Supported Operations
Encrypt and Decrypt Yes
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap Yes
Derive No
Available in FIPS Mode No

Key Size Range (bytes) and Parameters

Minimum 1

Maximum 128

Parameter CK _RC2 CBC_PARAMS
Description

For a full description of this mechanism, refer to the PKCS#711 version 2.20 documentation from RSA
Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 247

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_RC2 ECB

Supported Operations
Encrypt and Decrypt Yes
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap Yes
Derive No
Available in FIPS Mode No

Key Size Range (bytes) and Parameters

Minimum 1

Maximum 128

Parameter CK_RC2_ PARAMS
Description

For a full description of this mechanism, refer to the PKCS#711 version 2.20 documentation from RSA
Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 248

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_RC2 ECB_PAD

Supported Operations
Encrypt and Decrypt Yes
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap Yes
Derive No
Available in FIPS Mode No

Key Size Range (bytes) and Parameters

Minimum 1

Maximum 128

Parameter CK_RC2_ PARAMS
Description

This is a padding mechanism. Implemented padding mechanisms are:

vV V vV VvV V

These block cipher mechanisms are all based on the corresponding Electronic Code Book (ECB) algorithms,
implied by their name, but with the addition of the block-cipher padding method detailed in PKCS#7.

These mechanisms are supplied for compatibility only and their use in new applications is not recommended.

PKCS#11 version 2.20 specifies mechanisms for Chain Block Cipher algorithms with and without padding and
ECB algorithms without padding, but not ECB with padding. These mechanisms fill this gap. The mechanisms
may be used for general data encryption and decryption and also for key wrapping and unwrapping (provided

all the access conditions of the relevant keys are satisfied).

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 249

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_RC2 KEY_GEN
Supported Operations
Encrypt and Decrypt No
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair Yes
Wrap and Unwrap No
Derive No
Available in FIPS Mode No
Key Size Range (bytes) and Parameters
Minimum 1
Maximum 128
Parameter None
Description

For a full description of this mechanism, refer to the PKCS#711 version 2.20 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

250

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_RC2 MAC

Supported Operations
Encrypt and Decrypt No
Sign and Verify Yes
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive No
Available in FIPS Mode No

Key Size Range (bytes) and Parameters

Minimum 1

Maximum 128

Parameter CK_RC2_ PARAMS
Description

For a full description of this mechanism, refer to the PKCS#711 version 2.20 documentation from RSA
Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 251

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_RC2_MAC_ GENERAL

Supported Operations
Encrypt and Decrypt No
Sign and Verify Yes
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive No
Available in FIPS Mode No

Key Size Range (bytes) and Parameters

Minimum 1

Maximum 128

Parameter CK_RC2 MAC GENERAL PARAMS
Description

For a full description of this mechanism, refer to the PKCS#711 version 2.20 documentation from RSA
Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 252

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_RC4
Supported Operations
Encrypt and Decrypt No
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair Yes
Wrap and Unwrap No
Derive No
Available in FIPS Mode No
Key Size Range (bytes) and Parameters
Minimum 0
Maximum 256
Parameter None
Description

For a full description of this mechanism, refer to the PKCS#711 version 2.20 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

253

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_RC4 KEY_GEN
Supported Operations
Encrypt and Decrypt Yes
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive No
Available in FIPS Mode No
Key Size Range (bytes) and Parameters
Minimum 0
Maximum 256
Parameter None
Description

For a full description of this mechanism, refer to the PKCS#711 version 2.20 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

254

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_REPLICATE_TOKEN_RSA_AES

Supported Operations

Encrypt and Decrypt No
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap Yes
Derive No
Available in FIPS Mode Yes
Restrictions in FIPS Mode None

Key Size Range (bytes) and Parameters

Minimum 2048

FIPS Minimum 2048

Maximum 4096

Parameter CK REPLICATE TOKEN PARAMS
Description

This is a Gemalto vendor-defined mechanism for wrapping and unwrapping tokens.

Wrapping Tokens
The mechanism wraps the token associated with the hSession parameter to C_WrapKey() into a protected

format. When the mechanism is used to wrap a token it has a required parameter,a CK_REPLICATE_
TOKEN_PARAMS_PTR.

The CK_REPLICATE_TOKEN_PARAMS structure is defined as follows:

typedef struct CK REPLICATE TOKEN PARAMS ({
CK CHAR peerId[CK SERIAL NUMBER SIZE];
} CK_REPLICATE TOKEN PARAMS;

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 255

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

The peerld field identifies the peer public key on the administrative token. The public key is used to wrap the
token encryption key and therefore must identify the public key of the destination HSM.

CK_REPLICATE_TOKEN_PARAMS_PTR is a pointer to a CK_REPLICATE_TOKEN_PARAMS.
The following conditions must be satisfied:

> The token being wrapped which is associated with the hSession parameter to the C_WrapKey() must be
aregular user token (i.e. NOT the administrative token or a smart-card token).

> The session state for hSession must be one of CKS RO _USER_FUNCTIONS or CKS RW USER
FUNCTIONS.

> The hWrappingKey parameter to C_WrapKey() must specify CK INVALID HANDLE.
> The hKey parameter to C_WrapKey() must specify CK INVALID HANDLE.

Unwrapping Tokens

This mechanism unwraps the protected token information, replacing the entire token contents of the token
associated with the hSession parameter to C_UnwrapKey().When the mechanism is used for unwrapping a
token, a mechanism parameter must not be specified.

The following conditions must be satisfied:

> The token being unwrapped which is associated with the hSession parameter to C_UnwrapKey() must
be aregular user token. Thatis, NOT the administrative token or a smart card token.

> The session state for hSession mustbe CKS RW USER FUNCTIONS.

\"

The hUnwrappingKey parameter to C_UnwrapKey() must specify
CK_INVALID HANDLE.

The pTemplate parameter to C_UnwrapKey() must specify NULT.

The ulAttributeCount parameter to C_UnwrapKey() must specify zero.
The phKey parameter to C_UnwrapKey() must specify NULL.

Any new sessions must be deferred until the operation has finished.

The current session must be the only session in existence for the token.

vV V VvV VvV V V

The application should call C_Finalize() upon completion.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 256

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_RIPEMD128
Supported Operations
Encrypt and Decrypt No
Sign and Verify No
SignRecover and VerifyRecover No
Digest Yes
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive No
Available in FIPS Mode No
Key Size Range (bytes) and Parameters
Minimum 0
Maximum None
Parameter None
Description

For a full description of this mechanism, refer to the PKCS#711 version 2.20 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

257

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_RIPEMD128 HMAC
Supported Operations
Encrypt and Decrypt No
Sign and Verify Yes
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive No
Available in FIPS Mode No
Key Size Range (bytes) and Parameters
Minimum 0
Maximum None
Parameter None
Description

For a full description of this mechanism, refer to the PKCS#711 version 2.20 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

258

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_RIPEMD128 HMAC_GENERAL

Supported Operations
Encrypt and Decrypt No
Sign and Verify Yes
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive No
Available in FIPS Mode No

Key Size Range (bytes) and Parameters

Minimum 0

Maximum None

Parameter CK_MAC GENERAL PARAMS
Description

For a full description of this mechanism, refer to the PKCS#711 version 2.20 documentation from RSA
Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 259

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_RIPEMD128 RSA PKCS
Supported Operations
Encrypt and Decrypt No
Sign and Verify Yes
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive No
Available in FIPS Mode No
Key Size Range (bytes) and Parameters
Minimum 512
Maximum 4096
Parameter None
Description

For a full description of this mechanism, refer to the PKCS#711 version 2.20 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

260

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_RIPEMD160
Supported Operations
Encrypt and Decrypt No
Sign and Verify No
SignRecover and VerifyRecover No
Digest Yes
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive No
Available in FIPS Mode No
Key Size Range (bytes) and Parameters
Minimum 0
Maximum None
Parameter None
Description

For a full description of this mechanism, refer to the PKCS#711 version 2.20 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

261

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_RIPEMD160_HMAC
Supported Operations
Encrypt and Decrypt No
Sign and Verify Yes
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive No
Available in FIPS Mode No
Key Size Range (bytes) and Parameters
Minimum 0
Maximum None
Parameter None
Description

For a full description of this mechanism, refer to the PKCS#711 version 2.20 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

262

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_RIPEMD160_HMAC_GENERAL

Supported Operations
Encrypt and Decrypt No
Sign and Verify Yes
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive No
Available in FIPS Mode No

Key Size Range (bytes) and Parameters

Minimum 0

Maximum None

Parameter CK_MAC GENERAL PARAMS
Description

For a full description of this mechanism, refer to the PKCS#711 version 2.20 documentation from RSA
Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 263

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_RIPEMD160_RSA PKCS
Supported Operations
Encrypt and Decrypt No
Sign and Verify Yes
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive No
Available in FIPS Mode No
Key Size Range (bytes) and Parameters
Minimum 512
Maximum 4096
Parameter None
Description

For a full description of this mechanism, refer to the PKCS#711 version 2.20 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

264

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_RSA_9796

Supported Operations

Encrypt and Decrypt No

Sign and Verify Yes (Single part operation only)
SignRecover and VerifyRecover Yes

Digest No

Generate Key/Key-Pair No

Wrap and Unwrap No

Derive No

Available in FIPS Mode No

Key Size Range (bytes) and Parameters

Minimum 512

Maximum 4096

Parameter None
Description

For a full description of this mechanism, refer to the PKCS#711 version 2.20 documentation from RSA
Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 265

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_RSA_FIPS_186_4 PRIME_KEY PAIR_GEN

Supported Operations

Encrypt and Decrypt No
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair Yes
Wrap and Unwrap No
Derive No
Available in FIPS Mode Yes
Restrictions in FIPS Mode None

Key Size Range (bytes) and Parameters

Minimum 2048
FIPS Minimum 2048
Maximum 4096
Parameter CK_ULONG (optional)

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 266

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_RSA_PKCS

Supported Operations
Encrypt and Decrypt
Sign and Verify
SignRecover and VerifyRecover
Digest
Generate Key/Key-Pair
Wrap and Unwrap
Derive
Available in FIPS Mode

Restrictions in FIPS Mode

Key Size Range (bytes) and Parameters
Minimum
FIPS Minimum
Maximum

Parameter

Description

Yes (Single part operation only)
Yes (Single part operation only)
Yes

No

No

Yes

No

Yes

Minimum 2048-bit modulus for signing

512
1024
4096

None

For a full description of this mechanism, refer to the PKCS#11 version 2.20 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

267

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_RSA_PKCS_KEY PAIR_GEN

Supported Operations

Encrypt and Decrypt No
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair Yes
Wrap and Unwrap No
Derive No
Available in FIPS Mode Yes
Restrictions in FIPS Mode None

Key Size Range (bytes) and Parameters

Minimum 512

FIPS Minimum 2048

Maximum 4096

Parameter CK_ULONG (optional)
Description

The mechanism denoted CKM_RSA PKCS KEY PAIR GEN isa Key Pair Generation mechanism to create a
new RSA key pair of objects using the method described in PKCS#1. It behaves as described in the PKCS#11
version 2.20 documentation, with the following exception:

This SafeNet ProtectToolkit-C mechanism has an optional parameter of type CK_ ULONG which, if provided, will
specify the size in bits of the random public exponent.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 268

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_RSA PKCS_OAEP

Supported Operations
Encrypt and Decrypt
Sign and Verify
SignRecover and VerifyRecover
Digest
Generate Key/Key-Pair
Wrap and Unwrap
Derive
Available in FIPS Mode

Restrictions in FIPS Mode

Key Size Range (bytes) and Parameters
Minimum
FIPS Minimum
Maximum

Parameter

Description

Yes (Single part operation only)
No

Yes

No

No

Yes

No

Yes

Minimum 2048-bit modulus for signing

512
1024
4096

CK_RSA PKCS OAEP PARAMS

For a full description of this mechanism, refer to the PKCS#11 version 2.20 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

269

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_RSA PKCS PSS

Supported Operations
Encrypt and Decrypt
Sign and Verify
SignRecover and VerifyRecover
Digest
Generate Key/Key-Pair
Wrap and Unwrap
Derive
Available in FIPS Mode

Restrictions in FIPS Mode

Key Size Range (bytes) and Parameters
Minimum
FIPS Minimum
Maximum

Parameter

Description

No
Yes
No
No
No
No
No
Yes

Minimum 2048-bit modulus for signing

512
1024
4096

CK_RSA PKCS PSS PARAMS

For a full description of this mechanism, refer to the PKCS#11 version 2.20 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

270

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_RSA_X_ 509

Supported Operations

Encrypt and Decrypt Yes (Single part operation only)
Sign and Verify Yes (Single part operation only)
SignRecover and VerifyRecover Yes

Digest No

Generate Key/Key-Pair No

Wrap and Unwrap Yes

Derive No

Available in FIPS Mode No

Key Size Range (bytes) and Parameters

Minimum 512

Maximum 4096

Parameter None
Description

For a full description of this mechanism, refer to the PKCS#711 version 2.20 documentation from RSA
Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 271

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_RSA_X9 31 KEY PAIR GEN

Supported Operations

Encrypt and Decrypt No
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair Yes
Wrap and Unwrap No
Derive No
Available in FIPS Mode Yes
Restrictions in FIPS Mode None

Key Size Range (bytes) and Parameters

Minimum 1024

FIPS Minimum 2048

Maximum 4096

Parameter None
Description

For a full description of this mechanism, refer to the PKCS#11 version 2.20 documentation from RSA
Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 272

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_SECRET_RECOVER WITH ATTRIBUTES

Supported Operations

Encrypt and Decrypt No
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive Yes
Available in FIPS Mode Yes
Restrictions in FIPS Mode None

Key Size Range (bytes) and Parameters

Minimum 0

FIPS Minimum None

Maximum None

Parameter CK_SECRET SHARE PARAMS
Description

The Secret Recovery Mechanism denoted CKM_SECRET RECOVER WITH ATTRIBUTES is aderive
mechanism to create a new key object by combining two or more shares.

The mechanism has no parameter.

The C_DeriveKey parameter hBaseKey is the handle of one of the share objects. The mechanism will obtain
the CKA_LABEL value from hBaseKey and then treat all data objects with the same label as shares.

Atemplate is not required as all the attributes of the object are also recovered from the secret.

Usage Note
To avoid shares getting mixed up between different uses of this mechanism the developer should ensure that
data objects with the same label are all from the same secret share batch.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 273

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

For further information about secure key backup and restoration see the SafeNet ProtectToolkit-C
Administration Manual.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 274

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_SECRET_SHARE_WITH_ATTRIBUTES

Supported Operations

Encrypt and Decrypt No
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive Yes
Available in FIPS Mode Yes
Restrictions in FIPS Mode None

Key Size Range (bytes) and Parameters

Minimum 0

FIPS Minimum 0

Maximum None

Parameter None
Description

The Secret Share Mechanism denoted CKM_SECRET SHARE WITH ATTRIBUTES is a derive mechanism
to create M shares of a key such that N shares are required to recover the secret, where N is less than or equal
to M.

The mechanism creates a secret value by combining all the attributes of the base key and then shares that
secretinto M shares.

The algorithm used is according to A. Shamir - How to Share a Secret, Communications of the ACM vol. 22, no.
11, November 1979, pp. 612-613

It has a parameter,a CK_SECRET SHARE PARAMS, which specifies the number of shares M and the
recovery threshold N. See below for the definition.

The mechanism will create M data objects and return the object handle of one of them. It is expected that the
data objects would be copied to a smart card token for storage.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 275

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

The template supplied is used to specify the CKA LABEL attribute of each new data object. If the CKA LABEL
attribute is not provided in the template thena CKR_ TEMPLATE INCOMPLETE error is returned.

The mechanism contributes the CKA VALUE attribute of each data object. Any attempt to specify a CKA
VALUE attribute in the template will cause the mechanism to return the error: CKR_ TEMPLATE
INCONSISTENT.

The default value of the CKA_ TOKEN, CKA PRIVATE attribute of the new objects is false. The new data
objects willhave a CKA SENSITIVE attribute. If the CKA SENSITIVE attribute of the base key is true then
the data objects is sensitive. If the base key is not sensitive then the data objects take the value of CKA
SENSITIVE from the template or it is defaulted to false.

Usage Note

To avoid shares getting mixed up between different uses of this mechanism the developer should ensure that
there are no data objects with the same label already on the token before attempting to use this mechanism. If
objects are found then these objects should be deleted or a different label chosen.

Security Note

The key to be exported with this mechanism requires the CKA_DERIVE attribute to be true. This has the
effect of enabling other key derive mechanisms to be performed with the key. If this is not desired then the
CKA MECHANISM LIST attribute may be used with the key to restrict its derive operations to this mechanism.

For further information about secure key backup and restoration see the SafeNet ProtectToolkit-C
Administration Manual.

Secret Share Mechanism Parameter
CK_SECRET SHARE PARAMS is used to specify the number of shares M and the recovery threshold N for
secret sharing mechanisms. Itis defined as follows:

typedef struct CK SECRET SHARE PARAMS {
CK ULONG nj;
CK ULONG m;} CK SECRET SHARE PARAMS;

The fields of the structure have the following meanings:

> N=Number of shares required to recover the secret. Must be at least 2 and not greater than the number of
shares

> M=Total number of shares. Must be at least 2 and not greater than 64.

CK_SECRET SHARE PARAMS PTRisa pointertoa CK SECRET SHARE PARAMS.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 276

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_SEED CBC

Supported Operations
Encrypt and Decrypt Yes
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap Yes
Derive No
Available in FIPS Mode No

Key Size Range (bytes) and Parameters

Minimum 16

Maximum 16

Parameter 16 bytes
Description

SEED-CBC, denoted CKM_SEED CBC, is a mechanism for single and multiple part encryption and decryption,
key wrapping and key unwrapping, based on the KISA (Korean Information Security Agency) SEED
specification and cipher-block chaining mode.

It has a single parameter; a 16-byte initialization vector.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may not be able to
wrap/unwrap every secret key that it supports. For wrapping, the mechanism encrypts the value of the CKA
VALUE attribute of the key that is wrapped, padded on the trailing end with up to block size minus one null bytes
so that the resulting length is a multiple of the block size. The output data is the same length as the padded
input data. It does not wrap the key type, key length, or any other information about the key; the application
must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result according to the CKA
KEY TYPE attribute of the template and, if it has one and the key type supports it, the CKA_ VALUE LEN
attribute of the template. The mechanism contributes the result as the CKA VALUE attribute of the new key.
Other attributes required by the key type must be specified in the template.

Constraints on key types and the length of data are summarized in the following table.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 277

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

Table 1: SEED-CBC: Key and Data Length

Function Key Type Input Length Output Length Comments

C_Encrypt CKK _ Multiple of Same as input length No final part
SEED block size

C_Decrypt CKK Multiple of Same as input length No final part
SEED block size

C_WrapKey CKK_ Any Input length rounded up to multiple of the block
SEED size

C_ CKK _ Multiple of Determined by type of key being unwrapped or

UnwrapKey SEED block size CKA VALUE LEN

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 278

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_SEED CBC_PAD

Supported Operations
Encrypt and Decrypt Yes
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap Yes
Derive No
Available in FIPS Mode No

Key Size Range (bytes) and Parameters

Minimum 16

Maximum 16

Parameter 16 bytes
Description

SEED-CBC with PKCS padding, denoted CKM_SEED CBC_PAD, is a mechanism for single and multiple part
encryption and decryption; key wrapping; and key unwrapping, based on the KISA (Korean Information
Security Agency) SEED specification, cipher-block chaining mode and the block cipher padding method
detailed in PKCS #7.

It has a single parameter; a 16-byte initialization vector.

The PKCS padding in this mechanism allows the length of the plaintext value to be recovered from the
ciphertext value. Therefore, when unwrapping keys with this mechanism, no value should be specified for the
CKA VALUE LEN attribute.

In addition to being able to wrap and unwrap secret keys, this mechanism can wrap and unwrap RSA, Diffie-
Hellman, X9.42 Diffie-Hellman, and DSA private keys.

Constraints on key types and the length of data are summarized in the following table. The data length
constraints do not apply to the wrapping and unwrapping of private keys.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 279

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

Table 1: SEED-CBC with PKCS Padding: Key and Data Length

Function Key Tpe

C_Encrypt CKK
SEED

C_Decrypt CKK__
SEED

C_WrapKey CKK
SEED

C_ CKK_
UnwrapKey SEED

Input Length

Any

Multiple of block

size

Any

Multiple of block
size

Output Length

This is the input length plus one, rounded up to a multiple of the
block size.

Between 1 and block size bytes shorter than input length.

This is the input length plus one, rounded up to a multiple of the
block size.

Between 1 and block length bytes shorter than input length.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

280

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_SEED ECB

Supported Operations
Encrypt and Decrypt Yes
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap Yes
Derive No
Available in FIPS Mode No

Key Size Range (bytes) and Parameters

Minimum 16

Maximum 16

Parameter None
Description

SEED-ECB, denoted CKM_SEED ECB, is a mechanism for single- and multiple-part encryption and
decryption; key wrapping; and key unwrapping, based on the KISA (Korean Information Security Agency)
SEED specification and electronic codebook mode. It does not have a parameter

This mechanism can wrap and unwrap any secret key. Of course, a particular token may not be able to
wrap/unwrap every secret key that it supports. For wrapping, the mechanism encrypts the value of the CKA
VALUE attribute of the key that is wrapped, padded on the trailing end with up to block size, minus one null
bytes so that the resulting length is a multiple of the block size. The output data is the same length as the
padded input data. It does not wrap the key type, key length, or any other information about the key; the
application must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result according to the CKA
KEY TYPE attribute of the template and, if it has one and the key type supports it, the CKA_ VALUE LEN
attribute of the template. The mechanism contributes the result as the CKA VALUE attribute of the new key.
Other attributes required by the key type must be specified in the template.

Constraints on key types and the length of data are summarized in the following table.

SafeNet ProtectToolkit 5.6 Programming Guide

007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 281

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

Table 1: SEED-ECB: Key and Data Length

Function Key Type Input Length Output Length Comments

C_Encrypt CKK _ Multiple of Same as input length No final part
SEED block size

C_Decrypt CKK Multiple of Same as input length No final part
SEED block size

C_WrapKey CKK_ Any Input length rounded up to multiple of block size
SEED

C_ CKK _ Multiple of Determined by type of key being unwrapped or

UnwrapKey SEED block size CKA VALUE LEN

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 282

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_SEED ECB_PAD

Supported Operations
Encrypt and Decrypt Yes
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap Yes
Derive No
Available in FIPS Mode No

Key Size Range (bytes) and Parameters

Minimum 16

Maximum 16

Parameter None
Description

SEED-ECB with PKCS padding, denoted CKM_SEED ECB_PAD, is a mechanism for single- and multiple-part
encryption and decryption, key wrapping and key unwrapping, based on the KISA (Korean Information Security
Agency) SEED specification, electronic code book mode and the block cipher padding method detailed in
PKCS #7. It does not have a parameter.

The PKCS padding in this mechanism allows the length of the plaintext value to be recovered from the
ciphertext value. Therefore, when unwrapping keys with this mechanism, no value should be specified for the
CKA VALUE LEN attribute.

In addition to being able to wrap and unwrap secret keys, this mechanism can wrap and unwrap RSA, Diffie-
Hellman, X9.42 Diffie-Hellman, and DSA private keys. The entries in

for data length constraints when wrapping and unwrapping keys do not
apply to wrapping and unwrapping private keys. Constraints on key types and the length of data are
summarized in the following table.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 283

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

Table 1: SEED-ECB with PKCS Padding: Key and Data Length

Function Key Type

C_Encrypt CKK
SEED

C_Decrypt CKK__
SEED

C_WrapKey CKK
SEED

C_ CKK_
UnwrapKey SEED

Input Length

Any

Multiple of block

size

Any

Multiple of block
size

Output Length

This is the input length plus one, rounded up to a multiple of the
block size.

Between 1 and block size bytes shorter than input length.

This is the input length plus one, rounded up to a multiple of the
block size.

Between 1 and block length bytes shorter than input length.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

284

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_SEED KEY_ GEN

Supported Operations
Encrypt and Decrypt Yes
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair Yes
Wrap and Unwrap No
Derive No
Available in FIPS Mode No

Key Size Range (bytes) and Parameters

Minimum 16

Maximum 16

Parameter None
Description

The SEED key generation mechanism, denoted CKM SEED KEY GEN, is a key generation mechanism for the
Korean Information Security Agency’s SEED algorithm.

The mechanism does not have a parameter, and it generates SEED keys 16 bytes in length.

The mechanism contributes the CKA CLASS,CKA KEY TYPE,CKA VALUE LEN, and CKA VALUE
attributes to the new key. Other attributes supported by the SEED key type (specifically, the flags indicating
which functions the key supports) may be specified in the template for the key, or they may be assigned default
initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK MECHANISM INFO
structure specify the supported range of SEED key sizes, in bytes, which is 16.

The algorithm block size is 16 bytes.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 285

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_SEED MAC
Supported Operations
Encrypt and Decrypt No
Sign and Verify Yes
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive No
Available in FIPS Mode No
Key Size Range (bytes) and Parameters
Minimum 16
Maximum 16
Parameter None
Description

SEED-MAC, denoted by CKM SEED MAC, is a special case of the general-length SEED-MAC mechanism.
SEED-MAC always produces and verifies MACs that are eight bytes in length. It does not have a parameter.

Constraints on key types and the length of data are summarized in the following table.

Table 1: SEED-MAC: Key and Data Length

Function Key Type Data Length
C_Sign CKK_SEED any
C_Verify CKK_SEED any

Signature Length
Y2 block size (8 bytes)

2 block size (8 bytes)

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

286

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_SEED MAC_ GENERAL
Supported Operations
Encrypt and Decrypt No
Sign and Verify Yes
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive No
Available in FIPS Mode No

Key Size Range (bytes) and Parameters
Minimum
Maximum

Parameter

Description

16

16

CK MAC GENERAL PARAMS

General-length SEED-MAC, denoted CKM_SEED MAC GENERAL, is a mechanism for single and multiple part
signatures and verification, based on the KISA (Korean Information Security Agency) SEED specification.

It has a single parameter, a CK_ MAC GENERAL PARAMS structure, which specifies the output length desired

from the mechanism.

The output bytes from this mechanism are taken from the start of the final SEED cipher block produced in the

MACing process.

Constraints on key types and the length of data are summarized in the following table.

Table 1: General-length SEED-MAC: Key and Data Length

Function Key Type Data Length
C_Sign CKK_SEED Any
C_Verify CKK_SEED Any

Signature Length

0-block size, as specified in parameters

0-block size, as specified in parameters

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

287

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_SET _ATTRIBUTES
Supported Operations
Encrypt and Decrypt No
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive No
Available in FIPS Mode Yes
Restrictions in FIPS Mode None
Key Size Range (bytes) and Parameters
Minimum 1024
FIPS Minimum 1024
Maximum 4096
Parameter None
Description

The Set Object Attribute Mechanism denoted CKM_SET_ATTRIBUTES is a TICKET mechanism used to
modify the attributes of a key. It does not take a parameter.

The ticket specifies the Digest of the key/object to modify and the new attribute values. The ticket is digitally
signed and the certificate used to verify the signature must be contained in the CKA_ADMIN_CERT attribute

of the key object being modified.

This mechanism is only used with the CT_PresentTicket command.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

288

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_SHA1
Supported Operations
Encrypt and Decrypt No
Sign and Verify No
SignRecover and VerifyRecover No
Digest Yes
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive No
Available in FIPS Mode Yes
Restrictions in FIPS Mode None
Key Size Range (bytes) and Parameters
Minimum 0
FIPS Minimum 0
Maximum None
Parameter None
Description

For a full description of this mechanism, refer to the PKCS#11 version 2.20 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

289

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_SHA1 _HMAC
Supported Operations
Encrypt and Decrypt No
Sign and Verify Yes
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive No
Available in FIPS Mode Yes
Restrictions in FIPS Mode None
Key Size Range (bytes) and Parameters
Minimum 0
FIPS Minimum 10
Maximum None
Parameter None
Description

For a full description of this mechanism, refer to the PKCS#11 version 2.20 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

290

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_SHA1 HMAC GENERAL
Supported Operations

Encrypt and Decrypt No

Sign and Verify No

SignRecover and VerifyRecover No

Digest Yes

Generate Key/Key-Pair No

Wrap and Unwrap No

Derive No

Available in FIPS Mode Yes

Restrictions in FIPS Mode None
Key Size Range (bytes) and Parameters

Minimum 0

FIPS Minimum 10

Maximum None

Parameter CK_MAC GENERAL PARAMS
Description

For a full description of this mechanism, refer to the PKCS#11 version 2.20 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

291

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_SHA1 KEY DERIVATION
Supported Operations
Encrypt and Decrypt No
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive Yes
Available in FIPS Mode No
Key Size Range (bytes) and Parameters
Minimum 0
Maximum None
Parameter None
Description

For a full description of this mechanism, refer to the PKCS#711 version 2.20 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

292

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_SHA1 RSA_PKCS
Supported Operations

Encrypt and Decrypt No

Sign and Verify Yes

SignRecover and VerifyRecover No

Digest No

Generate Key/Key-Pair No

Wrap and Unwrap No

Derive No

Available in FIPS Mode Yes

Restrictions in FIPS Mode Verify only
Key Size Range (bytes) and Parameters

Minimum 512

FIPS Minimum 1024

Maximum 4096

Parameter None
Description

For a full description of this mechanism, refer to the PKCS#11 version 2.20 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

293

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_SHA1 RSA PKCS PSS

Supported Operations

Encrypt and Decrypt No
Sign and Verify Yes
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive No
Available in FIPS Mode Yes
Restrictions in FIPS Mode None

Key Size Range (bytes) and Parameters

Minimum 512

FIPS Minimum 1024

Maximum 4096

Parameter CK_RSA PKCS PSS PARAMS
Description

For a full description of this mechanism, refer to the PKCS#11 version 2.20 documentation from RSA
Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 294

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_SHA1 RSA_PKCS_TIMESTAMP

Supported Operations
Encrypt and Decrypt No
Sign and Verify Sign only
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive No
Available in FIPS Mode No

Key Size Range (bytes) and Parameters

Minimum 512

Maximum 4096

Parameter CK_TIMESTAMP PARAMS
Description

The PKCS#11 mechanism CKM_SHA1_RSA_PKCS_TIMESTAMP provides time stamping functionality.
The supported signing functions are C_Sign_Init and C_Sign. This mechanism supports single and multiple-
part digital signatures and verification with message recovery. The mechanism uses the SHA1 hash function to
generate the message digest. The mechanism only supports one second granularity in the timestamp
although the timestamp format will provide for future sub-second granularity.

A monotonic counter object is used to generate the unique serial number that forms part of the timestamp. The
monotonic counter object is automatically created when a token is initialized and exists by default in the Admin
Token.

The following structure is used to provide the optional mechanism parameters in the CK_MECHANISM
structure. The CK_MECHANISM structure is defined in the PKCS #1711 v2.10: Cryptographic Token Interface
Standard, RSA Laboratories December 1999.

typedef struct CK _TIMESTAMP PARAMS {
CK BBOOL useMilliseconds;

CK_TIMESTAMP FORMAT timestampFormat;
} CK TIMESTAMP PARAMS;

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 295

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

The useMilleseconds parameter specifies whether the timestamp should include millisecond granularity. The
default value for this parameter is FALSE. If the mechanism parameters are specified then the useMilliseconds
parameter must be setto FALSE as only one-second granularity is provided in the first release of the
mechanism’s implementation.

The "timeStampFormat" parameter specifies the input/output format of the data to be timestamped. This
provides the ability to introduce future support for timestamping protocols such as those defined in RFC3161.
The default value for this parameteris CK_ TIMESTAMP FORMAT PTKC. If the mechanism parameters are
specified then the timeStampType parameter must be setto CK_TIMESTAMP FORMAT PTKC as only this
format is supported in the first release.

For CK_TIMESTAMP FORMAT PTKC the mechanism expects the input data to be a stream of bytes for which
a message digest must be computed and a timestamp generated according to the format defined below. If
mechanism parameters are passed and the two parameters are not set as defined above, the C_Signlnit
function returns CKR_MECHANISM PARAM INVALID.

C_Signis defined in the PKCS #11 standard as:

CK_DEFINE FUNCTION(CK RV, C_ Sign) (
CK SESSION HANDLE hSession,

CK BYTE PTR pData,

CK _ULONG ulDatalen,

CK_BYTE PTR pSignature,
CK_ULONG PTR pulSignaturelLen);

The parameter formats are defined in the following tables.
Table 1: Input format (=pData in C_Sign)

C-Definition Description

unsigned char Data Transaction data (variable length), maximum of 3k

Table 2: Output format (=pSignature in C_Sign)
C-Definition Contents on Output

Unsigned char This is a unique number for each timestamp, padded with zeroes in a Big Endian 20 byte array.

serialnumber The number is read from the CKH_MONOTONIC_COUNTER hardware feature object on the

[20] same token as the signing key. By this read action the value contained by the object is
automatically increased by 1.

Unsigned char This is the timestamp in the format of GeneralizedTime specified in RFC3161. The syntax is:
timestamp[15] YYYYMMDDhhmmss|.s...]Z The sub-second component is optional and not supported in the

intial release but still defined to ensure backward compatibility in the future.

Unsigned char RSA Signature
sign[128]

I NOTE Please see the PKCS #11 v2.10: Cryptographic Token Interface Standard, RSA

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 296

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

I Laboratories December 1999 for a definition of types.

NOTE lItis highly recommended that the RFC3161 format timestamp provided by the HSM
be stored on the host to allow future independent third party timestamp verification.

The mechanism will perform the following:
> Inputdatathatis provided by the calling host.
> Obtain the time from within the ProtectHost.

> Calculate a signature across the merged input data and time data using PKCS#1 type 01 padding as
follows:

Signature = Sign(SHA1(Data || serialnumber || timestamp)
> Output part of the input data, the time data and the signature.

Verification of the signature can be performed usingthe CKM_SHA1_RSA_PKCS_TIMESTAMP
mechanism with C_Verify or C_VerifyRecover. The difference between the two functions is that C_Verify
calculates the hash but does not return it to the caller where as C_VerifyRecover() returns the hash. The
following is passed as input data: <data><serialnumber><timestamp>

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 297

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_SHA3 224
Supported Operations
Encrypt and Decrypt No
Sign and Verify No
SignRecover and VerifyRecover No
Digest Yes
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive No
Available in FIPS Mode Yes
Restrictions in FIPS Mode None
Key Size Range (bytes) and Parameters
Minimum 0
FIPS Minimum 0
Maximum None
Parameter None
Description

For a full description of this mechanism, refer to the SHA-3 documentation from OASIS (

).

This mechanism uses the Secure Hash Algorithm-3 (SHA-3) standard, as described in NIST publication FIPS

PUB 202.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

298

https://www.oasis-open.org/
https://www.oasis-open.org/

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_SHA3 224 HMAC
Supported Operations
Encrypt and Decrypt No
Sign and Verify Yes
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive No
Available in FIPS Mode Yes
Restrictions in FIPS Mode None
Key Size Range (bytes) and Parameters
Minimum 0
FIPS Minimum 14
Maximum None
Parameter None
Description

For a full description of this mechanism, refer to the SHA-3 documentation from OASIS (

).

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

299

https://www.oasis-open.org/
https://www.oasis-open.org/

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_SHA3 224 HMAC GENERAL

Supported Operations

Encrypt and Decrypt No
Sign and Verify Yes
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive No
Available in FIPS Mode Yes
Restrictions in FIPS Mode None

Key Size Range (bytes) and Parameters

Minimum 0

FIPS Minimum 14

Maximum None

Parameter CK MAC GENERAL PARAMS
Description

For a full description of this mechanism, refer to the SHA-3 documentation from OASIS (

).

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 300

https://www.oasis-open.org/
https://www.oasis-open.org/

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_SHA3 224 KEY DERIVE
Supported Operations
Encrypt and Decrypt No
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive Yes
Available in FIPS Mode No
Key Size Range (bytes) and Parameters
Minimum 0
Maximum None
Parameter None
Description

For a full description of this mechanism, refer to the SHA-3 documentation from OASIS (

).

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

301

https://www.oasis-open.org/
https://www.oasis-open.org/

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_SHA3 224 RSA PKCS
Supported Operations
Encrypt and Decrypt No
Sign and Verify Yes
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive No
Available in FIPS Mode Yes

Restrictions in FIPS Mode

Key Size Range (bytes) and Parameters
Minimum
FIPS Minimum
Maximum

Parameter

Description

Minimum 2048-bit modulus for signing

512

1024

4096

None

For a full description of this mechanism, refer to the SHA-3 documentation from OASIS (

).

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

302

https://www.oasis-open.org/
https://www.oasis-open.org/

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_SHA3 224 RSA_PKCS_PSS

Supported Operations

Encrypt and Decrypt No

Sign and Verify Yes

SignRecover and VerifyRecover No

Digest No

Generate Key/Key-Pair No

Wrap and Unwrap No

Derive No

Available in FIPS Mode Yes

Restrictions in FIPS Mode Minimum 2048-bit modulus for signing

Key Size Range (bytes) and Parameters

Minimum 512

FIPS Minimum 1024

Maximum 4096

Parameter CK_RSA PKCS PSS PARAMS
Description

For a full description of this mechanism, refer to the SHA-3 documentation from OASIS (

).

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 303

https://www.oasis-open.org/
https://www.oasis-open.org/

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_SHA3 256
Supported Operations
Encrypt and Decrypt No
Sign and Verify No
SignRecover and VerifyRecover No
Digest Yes
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive No
Available in FIPS Mode Yes
Restrictions in FIPS Mode None
Key Size Range (bytes) and Parameters
Minimum 0
FIPS Minimum 0
Maximum None
Parameter None
Description

For a full description of this mechanism, refer to the SHA-3 documentation from OASIS (

).

This mechanism uses the Secure Hash Algorithm-3 (SHA-3) standard, as described in NIST publication FIPS

PUB 202.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

304

https://www.oasis-open.org/
https://www.oasis-open.org/

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_SHA3 256 HMAC
Supported Operations
Encrypt and Decrypt No
Sign and Verify Yes
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive No
Available in FIPS Mode Yes
Restrictions in FIPS Mode None
Key Size Range (bytes) and Parameters
Minimum 0
FIPS Minimum 16
Maximum None
Parameter None
Description

For a full description of this mechanism, refer to the SHA-3 documentation from OASIS (

).

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

305

https://www.oasis-open.org/
https://www.oasis-open.org/

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_SHA3 256 HMAC GENERAL

Supported Operations

Encrypt and Decrypt No
Sign and Verify Yes
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive No
Available in FIPS Mode Yes
Restrictions in FIPS Mode None

Key Size Range (bytes) and Parameters

Minimum 0

FIPS Minimum 16

Maximum None

Parameter CK MAC GENERAL PARAMS
Description

For a full description of this mechanism, refer to the SHA-3 documentation from OASIS (

).

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 306

https://www.oasis-open.org/
https://www.oasis-open.org/

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_SHA3 256 KEY_DERIVE
Supported Operations
Encrypt and Decrypt No
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive Yes
Available in FIPS Mode No
Key Size Range (bytes) and Parameters
Minimum 0
Maximum None
Parameter None
Description

For a full description of this mechanism, refer to the SHA-3 documentation from OASIS (

).

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

307

https://www.oasis-open.org/
https://www.oasis-open.org/

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_SHA3 256 RSA PKCS
Supported Operations
Encrypt and Decrypt No
Sign and Verify Yes
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive No
Available in FIPS Mode Yes

Restrictions in FIPS Mode

Key Size Range (bytes) and Parameters
Minimum
FIPS Minimum
Maximum

Parameter

Description

Minimum 2048-bit modulus for signing

512

1024

4096

None

For a full description of this mechanism, refer to the SHA-3 documentation from OASIS (

).

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

308

https://www.oasis-open.org/
https://www.oasis-open.org/

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_SHA3 256 RSA PKCS PSS

Supported Operations

Encrypt and Decrypt No

Sign and Verify Yes

SignRecover and VerifyRecover No

Digest No

Generate Key/Key-Pair No

Wrap and Unwrap No

Derive No

Available in FIPS Mode Yes

Restrictions in FIPS Mode Minimum 2048-bit modulus for signing

Key Size Range (bytes) and Parameters

Minimum 512

FIPS Minimum 1024

Maximum 4096

Parameter CK_RSA PKCS PSS PARAMS
Description

For a full description of this mechanism, refer to the SHA-3 documentation from OASIS (

).

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 309

https://www.oasis-open.org/
https://www.oasis-open.org/

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_SHA3 384
Supported Operations
Encrypt and Decrypt No
Sign and Verify No
SignRecover and VerifyRecover No
Digest Yes
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive No
Available in FIPS Mode Yes
Restrictions in FIPS Mode None
Key Size Range (bytes) and Parameters
Minimum 0
FIPS Minimum 0
Maximum None
Parameter None
Description

For a full description of this mechanism, refer to the SHA-3 documentation from OASIS (

).

This mechanism uses the Secure Hash Algorithm-3 (SHA-3) standard, as described in NIST publication FIPS

PUB 202.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

310

https://www.oasis-open.org/
https://www.oasis-open.org/

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_SHA3 384 HMAC
Supported Operations
Encrypt and Decrypt No
Sign and Verify Yes
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive No
Available in FIPS Mode Yes
Restrictions in FIPS Mode None
Key Size Range (bytes) and Parameters
Minimum 0
FIPS Minimum 24
Maximum None
Parameter None
Description

For a full description of this mechanism, refer to the SHA-3 documentation from OASIS (

).

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

311

https://www.oasis-open.org/
https://www.oasis-open.org/

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_SHA3 384 HMAC GENERAL

Supported Operations

Encrypt and Decrypt No
Sign and Verify Yes
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive No
Available in FIPS Mode Yes
Restrictions in FIPS Mode None

Key Size Range (bytes) and Parameters

Minimum 0

FIPS Minimum 24

Maximum None

Parameter CK MAC GENERAL PARAMS
Description

For a full description of this mechanism, refer to the SHA-3 documentation from OASIS (

).

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 312

https://www.oasis-open.org/
https://www.oasis-open.org/

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_SHA3 384 KEY_ DERIVE
Supported Operations
Encrypt and Decrypt No
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive Yes
Available in FIPS Mode No
Key Size Range (bytes) and Parameters
Minimum 0
Maximum 0
Parameter None
Description

For a full description of this mechanism, refer to the SHA-3 documentation from OASIS (

).

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

313

https://www.oasis-open.org/
https://www.oasis-open.org/

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_SHA3 384 RSA PKCS
Supported Operations
Encrypt and Decrypt No
Sign and Verify Yes
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive No
Available in FIPS Mode Yes

Restrictions in FIPS Mode

Key Size Range (bytes) and Parameters
Minimum
FIPS Minimum
Maximum

Parameter

Description

Minimum 2048-bit modulus for signing

640

1024

4096

None

For a full description of this mechanism, refer to the SHA-3 documentation from OASIS (

).

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

314

https://www.oasis-open.org/
https://www.oasis-open.org/

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_SHA3 384 RSA PKCS PSS

Supported Operations

Encrypt and Decrypt No

Sign and Verify Yes

SignRecover and VerifyRecover No

Digest No

Generate Key/Key-Pair No

Wrap and Unwrap No

Derive No

Available in FIPS Mode Yes

Restrictions in FIPS Mode Minimum 2048-bit modulus for signing

Key Size Range (bytes) and Parameters

Minimum 640

FIPS Minimum 1024

Maximum 4096

Parameter CK_RSA PKCS PSS PARAMS
Description

For a full description of this mechanism, refer to the SHA-3 documentation from OASIS (

).

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 31 5

https://www.oasis-open.org/
https://www.oasis-open.org/

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_SHA3 512
Supported Operations
Encrypt and Decrypt No
Sign and Verify No
SignRecover and VerifyRecover No
Digest Yes
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive No
Available in FIPS Mode Yes
Restrictions in FIPS Mode None
Key Size Range (bytes) and Parameters
Minimum 0
FIPS Minimum 0
Maximum None
Parameter None
Description

For a full description of this mechanism, refer to the SHA-3 documentation from OASIS (

).

This mechanism uses the Secure Hash Algorithm-3 (SHA-3) standard, as described in NIST publication FIPS

PUB 202.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

316

https://www.oasis-open.org/
https://www.oasis-open.org/

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_SHA3 512 HMAC
Supported Operations
Encrypt and Decrypt No
Sign and Verify Yes
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive No
Available in FIPS Mode Yes
Restrictions in FIPS Mode None
Key Size Range (bytes) and Parameters
Minimum 0
FIPS Minimum 32
Maximum None
Parameter None
Description

For a full description of this mechanism, refer to the SHA-3 documentation from OASIS (

).

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

317

https://www.oasis-open.org/
https://www.oasis-open.org/

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_SHA3 512 HMAC GENERAL

Supported Operations

Encrypt and Decrypt No
Sign and Verify Yes
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive No
Available in FIPS Mode Yes
Restrictions in FIPS Mode None

Key Size Range (bytes) and Parameters

Minimum 0

FIPS Minimum 32

Maximum None

Parameter CK MAC GENERAL PARAMS
Description

For a full description of this mechanism, refer to the SHA-3 documentation from OASIS (

).

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 318

https://www.oasis-open.org/
https://www.oasis-open.org/

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_SHA3 512 KEY_DERIVE
Supported Operations
Encrypt and Decrypt No
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive Yes
Available in FIPS Mode No
Key Size Range (bytes) and Parameters
Minimum 0
Maximum None
Parameter None
Description

For a full description of this mechanism, refer to the SHA-3 documentation from OASIS (

).

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

319

https://www.oasis-open.org/
https://www.oasis-open.org/

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_SHA3 512 RSA PKCS
Supported Operations
Encrypt and Decrypt No
Sign and Verify Yes
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive No
Available in FIPS Mode Yes

Restrictions in FIPS Mode

Key Size Range (bytes) and Parameters
Minimum
FIPS Minimum
Maximum

Parameter

Description

Minimum 2048-bit modulus for signing

768

1024

4096

None

For a full description of this mechanism, refer to the SHA-3 documentation from OASIS (

).

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

320

https://www.oasis-open.org/
https://www.oasis-open.org/

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_SHA3 512 RSA PKCS PSS

Supported Operations

Encrypt and Decrypt No

Sign and Verify Yes

SignRecover and VerifyRecover No

Digest No

Generate Key/Key-Pair No

Wrap and Unwrap No

Derive No

Available in FIPS Mode Yes

Restrictions in FIPS Mode Minimum 2048-bit modulus for signing

Key Size Range (bytes) and Parameters

Minimum 768

FIPS Minimum 1024

Maximum 4096

Parameter CK_RSA PKCS PSS PARAMS
Description

For a full description of this mechanism, refer to the SHA-3 documentation from OASIS (

).

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 321

https://www.oasis-open.org/
https://www.oasis-open.org/

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_SHA224
Supported Operations
Encrypt and Decrypt No
Sign and Verify No
SignRecover and VerifyRecover No
Digest Yes
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive No
Available in FIPS Mode Yes
Restrictions in FIPS Mode None
Key Size Range (bytes) and Parameters
Minimum 0
FIPS Minimum 0
Maximum None
Parameter None
Description

For a full description of this mechanism, refer to the PKCS#11 version 2.20 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

322

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_SHA224 HMAC
Supported Operations
Encrypt and Decrypt No
Sign and Verify Yes
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive No
Available in FIPS Mode Yes
Restrictions in FIPS Mode None
Key Size Range (bytes) and Parameters
Minimum 0
FIPS Minimum 14
Maximum None
Parameter None
Description

For a full description of this mechanism, refer to the PKCS#11 version 2.20 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

323

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_SHA224 HMAC_ GENERAL

Supported Operations

Encrypt and Decrypt No
Sign and Verify Yes
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive No
Available in FIPS Mode Yes
Restrictions in FIPS Mode None

Key Size Range (bytes) and Parameters

Minimum 0

FIPS Minimum 14

Maximum None

Parameter CK MAC GENERAL PARAMS
Description

For a full description of this mechanism, refer to the PKCS#11 version 2.20 documentation from RSA
Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 324

Chapter 4:

SafeNet ProtectToolkit-C Mechanisms

CKM_SHA224 KEY_DERIVATION

Supported Operations
Encrypt and Decrypt
Sign and Verify
SignRecover and VerifyRecover
Digest
Generate Key/Key-Pair
Wrap and Unwrap
Derive

FIPS-approved

Key Size Range (bytes) and Parameters
Minimum
FIPS Minimum
Maximum

Parameter

Description

No

No

No

No

No

No

Yes

No

N/A

None

For a full description of this mechanism, refer to the PKCS#711 version 2.20 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

325

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_SHA224 RSA_PKCS

Supported Operations
Encrypt and Decrypt
Sign and Verify
SignRecover and VerifyRecover
Digest
Generate Key/Key-Pair
Wrap and Unwrap
Derive
Available in FIPS Mode

Restrictions in FIPS Mode

Key Size Range (bytes) and Parameters
Minimum
FIPS Minimum
Maximum

Parameter

Description

No
Yes
No
No
No
No
No
Yes

Minimum 2048-bit modulus for signing

512
2048
4096

None

For a full description of this mechanism, refer to the PKCS#11 version 2.20 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

326

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_SHA224 RSA_PKCS_PSS

Supported Operations
Encrypt and Decrypt
Sign and Verify
SignRecover and VerifyRecover
Digest
Generate Key/Key-Pair
Wrap and Unwrap
Derive
Available in FIPS Mode

Restrictions in FIPS Mode

Key Size Range (bytes) and Parameters
Minimum
FIPS Minimum
Maximum

Parameter

Description

No
Yes
No
No
No
No
No
Yes

Minimum 2048-bit modulus for signing

512
2048
4096

CK_RSA PKCS PSS PARAMS

For a full description of this mechanism, refer to the PKCS#11 version 2.20 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

327

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_SHA256
Supported Operations
Encrypt and Decrypt No
Sign and Verify No
SignRecover and VerifyRecover No
Digest Yes
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive No
Available in FIPS Mode Yes
Restrictions in FIPS Mode None
Key Size Range (bytes) and Parameters
Minimum 0
FIPS Minimum 0
Maximum 0
Parameter None
Description

For a full description of this mechanism, refer to the PKCS#11 version 2.20 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

328

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_SHA256 _HMAC
Supported Operations
Encrypt and Decrypt No
Sign and Verify Yes
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive No
Available in FIPS Mode Yes
Restrictions in FIPS Mode None
Key Size Range (bytes) and Parameters
Minimum 0
FIPS Minimum 16
Maximum None
Parameter None
Description

For a full description of this mechanism, refer to the PKCS#11 version 2.20 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

329

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_SHA256 HMAC_ GENERAL

Supported Operations

Encrypt and Decrypt No
Sign and Verify Yes
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive No
Available in FIPS Mode Yes
Restrictions in FIPS Mode None

Key Size Range (bytes) and Parameters

Minimum 0

FIPS Minimum 16

Maximum None

Parameter CK MAC GENERAL PARAMS
Description

For a full description of this mechanism, refer to the PKCS#11 version 2.20 documentation from RSA
Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 330

Chapter 4:

SafeNet ProtectToolkit-C Mechanisms

CKM_SHA256_KEY_DERIVATION

Supported Operations
Encrypt and Decrypt
Sign and Verify
SignRecover and VerifyRecover
Digest
Generate Key/Key-Pair
Wrap and Unwrap
Derive

FIPS-approved

Key Size Range (bytes) and Parameters
Minimum
FIPS Minimum
Maximum

Parameter

Description

No

No

No

No

No

No

Yes

No

N/A

None

For a full description of this mechanism, refer to the PKCS#711 version 2.20 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

331

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_SHA256_RSA_PKCS

Supported Operations
Encrypt and Decrypt
Sign and Verify
SignRecover and VerifyRecover
Digest
Generate Key/Key-Pair
Wrap and Unwrap
Derive
Available in FIPS Mode

Restrictions in FIPS Mode

Key Size Range (bytes) and Parameters
Minimum
FIPS Minimum
Maximum

Parameter

Description

No
Yes
No
No
No
No
No
Yes

Minimum 2048-bit modulus for signing

512
2048
4096

None

For a full description of this mechanism, refer to the PKCS#11 version 2.20 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

332

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_SHA256 RSA PKCS PSS

Supported Operations
Encrypt and Decrypt
Sign and Verify
SignRecover and VerifyRecover
Digest
Generate Key/Key-Pair
Wrap and Unwrap
Derive
Available in FIPS Mode

Restrictions in FIPS Mode

Key Size Range (bytes) and Parameters
Minimum
FIPS Minimum
Maximum

Parameter

Description

No
Yes
No
No
No
No
No
Yes

Minimum 2048-bit modulus for signing

512
2048
4096

CK_RSA PKCS PSS PARAMS

For a full description of this mechanism, refer to the PKCS#11 version 2.20 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

333

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_SHA384
Supported Operations
Encrypt and Decrypt No
Sign and Verify No
SignRecover and VerifyRecover No
Digest Yes
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive No
Available in FIPS Mode Yes
Restrictions in FIPS Mode None
Key Size Range (bytes) and Parameters
Minimum 0
FIPS Minimum 0
Maximum 0
Parameter None
Description

For a full description of this mechanism, refer to the PKCS#11 version 2.20 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

334

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_SHA384 HMAC
Supported Operations
Encrypt and Decrypt No
Sign and Verify Yes
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive No
Available in FIPS Mode Yes
Restrictions in FIPS Mode None
Key Size Range (bytes) and Parameters
Minimum 0
FIPS Minimum 24
Maximum None
Parameter None
Description

For a full description of this mechanism, refer to the PKCS#11 version 2.20 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

335

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_SHA384 HMAC_ GENERAL

Supported Operations

Encrypt and Decrypt No
Sign and Verify Yes
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive No
Available in FIPS Mode Yes
Restrictions in FIPS Mode None

Key Size Range (bytes) and Parameters

Minimum 0

FIPS Minimum 24

Maximum None

Parameter CK MAC GENERAL PARAMS
Description

For a full description of this mechanism, refer to the PKCS#11 version 2.20 documentation from RSA
Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 336

Chapter 4:

SafeNet ProtectToolkit-C Mechanisms

CKM_SHA384 KEY_ DERIVATION

Supported Operations
Encrypt and Decrypt
Sign and Verify
SignRecover and VerifyRecover
Digest
Generate Key/Key-Pair
Wrap and Unwrap
Derive

FIPS-approved

Key Size Range (bytes) and Parameters
Minimum
FIPS Minimum
Maximum

Parameter

Description

No

No

No

No

No

No

Yes

No

N/A

None

For a full description of this mechanism, refer to the PKCS#711 version 2.20 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

337

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_SHA384 RSA PKCS

Supported Operations
Encrypt and Decrypt
Sign and Verify
SignRecover and VerifyRecover
Digest
Generate Key/Key-Pair
Wrap and Unwrap
Derive
Available in FIPS Mode

Restrictions in FIPS Mode

Key Size Range (bytes) and Parameters
Minimum
FIPS Minimum
Maximum

Parameter

Description

No
Yes
No
No
No
No
No
Yes

Minimum 2048-bit modulus for signing

640
1024
4096

None

For a full description of this mechanism, refer to the PKCS#11 version 2.20 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

338

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_SHA384 RSA PKCS PSS

Supported Operations
Encrypt and Decrypt
Sign and Verify
SignRecover and VerifyRecover
Digest
Generate Key/Key-Pair
Wrap and Unwrap
Derive
Available in FIPS Mode

Restrictions in FIPS Mode

Key Size Range (bytes) and Parameters
Minimum
FIPS Minimum
Maximum

Parameter

Description

No
Yes
No
No
No
No
No
Yes

Minimum 2048-bit modulus for signing

640
1024
4096

CK_RSA PKCS PSS PARAMS

For a full description of this mechanism, refer to the PKCS#11 version 2.20 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

339

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_SHA512
Supported Operations
Encrypt and Decrypt No
Sign and Verify No
SignRecover and VerifyRecover No
Digest Yes
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive No
Available in FIPS Mode Yes
Restrictions in FIPS Mode None
Key Size Range (bytes) and Parameters
Minimum 0
FIPS Minimum 0
Maximum None
Parameter None
Description

For a full description of this mechanism, refer to the PKCS#11 version 2.20 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

340

Chapter 4: SafeNet ProtectToolkit-C Mechanisms
CKM_SHA512_HMAC
Supported Operations
Encrypt and Decrypt No
Sign and Verify Yes
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive No
Available in FIPS Mode Yes
Restrictions in FIPS Mode None
Key Size Range (bytes) and Parameters
Minimum 0
FIPS Minimum 32
Maximum None
Parameter None
Description

For a full description of this mechanism, refer to the PKCS#11 version 2.20 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

341

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_SHA512_ HMAC_ GENERAL

Supported Operations

Encrypt and Decrypt No
Sign and Verify Yes
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive No
Available in FIPS Mode Yes
Restrictions in FIPS Mode None

Key Size Range (bytes) and Parameters

Minimum 0

FIPS Minimum 32

Maximum None

Parameter CK MAC GENERAL PARAMS
Description

For a full description of this mechanism, refer to the PKCS#11 version 2.20 documentation from RSA
Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 342

Chapter 4:

SafeNet ProtectToolkit-C Mechanisms

CKM_SHA512_KEY_DERIVATION

Supported Operations
Encrypt and Decrypt
Sign and Verify
SignRecover and VerifyRecover
Digest
Generate Key/Key-Pair
Wrap and Unwrap
Derive

Available in FIPS Mode

Key Size Range (bytes) and Parameters
Minimum
Maximum

Parameter

Description

No

No

No

No

No

No

Yes

No

None

None

For a full description of this mechanism, refer to the PKCS#711 version 2.20 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

343

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_SHA512 RSA_PKCS

Supported Operations
Encrypt and Decrypt
Sign and Verify
SignRecover and VerifyRecover
Digest
Generate Key/Key-Pair
Wrap and Unwrap
Derive
Available in FIPS Mode

Restrictions in FIPS Mode

Key Size Range (bytes) and Parameters
Minimum
FIPS Minimum
Maximum

Parameter

Description

No
Yes
No
No
No
No
No
Yes

Minimum 2048-bit modulus for signing

768
1024
4096

None

For a full description of this mechanism, refer to the PKCS#11 version 2.20 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

344

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_SHA512 RSA_PKCS_PSS

Supported Operations
Encrypt and Decrypt
Sign and Verify
SignRecover and VerifyRecover
Digest
Generate Key/Key-Pair
Wrap and Unwrap
Derive
Available in FIPS Mode

Restrictions in FIPS Mode

Key Size Range (bytes) and Parameters
Minimum
FIPS Minimum
Maximum

Parameter

Description

No
Yes
No
No
No
No
No
Yes

Minimum 2048-bit modulus for signing

768
1024
4096

CK_RSA PKCS PSS PARAMS

For a full description of this mechanism, refer to the PKCS#11 version 2.20 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

345

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_SSL3 KEY_AND MAC_DERIVE

Supported Operations
Encrypt and Decrypt No
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive Yes
Available in FIPS Mode No

Key Size Range (bytes) and Parameters

Minimum 48

Maximum 48

Parameter CK_SSL3 KEY MAT PARAMS
Description

For a full description of this mechanism, refer to the PKCS#711 version 2.20 documentation from RSA
Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 346

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_SSL3 MASTER KEY_DERIVE

Supported Operations
Encrypt and Decrypt No
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive Yes
Available in FIPS Mode No

Key Size Range (bytes) and Parameters

Minimum 48

Maximum 48

Parameter CK_SSL3 MASTER KEY DERIVE PARAMS
Description

For a full description of this mechanism, refer to the PKCS#711 version 2.20 documentation from RSA
Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 347

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_SSL3_MD5 MAC

Supported Operations
Encrypt and Decrypt No
Sign and Verify Yes
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive No
Available in FIPS Mode Yes

Key Size Range (bytes) and Parameters

Minimum 0

FIPS Minimum 0

Maximum None

Parameter CK_MAC_GENERAL PARAMS
Description

For a full description of this mechanism, refer to the PKCS#711 version 2.20 documentation from RSA
Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 348

Chapter 4:

SafeNet ProtectToolkit-C Mechanisms

CKM_SSL3 PRE_MASTER KEY GEN

Supported Operations
Encrypt and Decrypt
Sign and Verify
SignRecover and VerifyRecover
Digest
Generate Key/Key-Pair
Wrap and Unwrap
Derive
Available in FIPS Mode

Restrictions in FIPS Mode

Key Size Range (bytes) and Parameters
Minimum
FIPS Minimum
Maximum

Parameter

Description

No

No

No

No

Yes

No

No

Yes

None

48

48

48

CK_VERSION

For a full description of this mechanism, refer to the PKCS#11 version 2.20 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

349

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_SSL3 SHA1 MAC

Supported Operations
Encrypt and Decrypt No
Sign and Verify Yes
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive No
Available in FIPS Mode No

Key Size Range (bytes) and Parameters

Minimum 0

Maximum None

Parameter CK_MAC GENERAL PARAMS
Description

For a full description of this mechanism, refer to the PKCS#711 version 2.20 documentation from RSA
Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 350

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_VISA_CVV

Supported Operations
Encrypt and Decrypt No
Sign and Verify Yes
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive No
Available in FIPS Mode No

Key Size Range (bytes) and Parameters

Minimum 16

Maximum 16

Parameter None
Description

This is a signature generation and verification method. The Card Verification Value signature is generated as
specified by VISA. The mechanism does not have a parameter. Constraints on key types and the length of data
are summarized in the following table:

Table 1: Output format (=pSignature in C_Sign)

Function Key Type Input Length Output Length
C_Sign CKK_DES2 16 2
C_Verify CKK_DES2 16, 22 N/A

2 Data length, signature length.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 351

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_WRAPKEY AES_CBC

Supported Operations

Encrypt and Decrypt No

Sign and Verify No
SignRecover and VerifyRecover No

Digest No

Generate Key/Key-Pair No

Wrap and Unwrap Yes

Derive No
Available in FIPS Mode Yes
Restrictions in FIPS Mode No Wrapping

Key Size Range (bytes) and Parameters

Minimum 16

FIPS Minimum 16

Maximum 32

Parameter None
Description

The CKM_WRAPKEY_AES_CBC mechanism is used to wrap a key value plus all of its attributes so that the
entire key can be reconstructed without a template at the destination.

This mechanism is the same as the CKM_WRAPKEY_DES3_CBC mechanism described above but uses only
NIST approved cryptographic algorithms and key sizes.

The following fields in the encoding are computed differently to those in CKM_WRAPKEY_DES3 CBC
mechanism described above.

mK This is arandomly generated 256-bit MAC key using CKM_GENERIC_SECRET_KEY_GEN. This key is
used with Mx.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 352

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

E x This is encryption using CKM_AES_CBC_PAD with key 'x'.

M x This is MAC generation using CKM_SHA512_ HMAC_ GENERAL (16 byte MAC result) with key 'x'.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 353

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_WRAPKEY_DES3 CBC
Supported Operations

Encrypt and Decrypt No

Sign and Verify No

SignRecover and VerifyRecover No

Digest No

Generate Key/Key-Pair No

Wrap and Unwrap Yes

Derive No

Available in FIPS Mode Yes

Restrictions in FIPS Mode No Wrapping
Key Size Range (bytes) and Parameters

Minimum 0

FIPS Minimum 0

Maximum None

Parameter None
Description

The CKM_WRAPKEY_DES3_CBC and CKM_WRAPKEY_DES3_ECB mechanisms are used to wrap a
key value plus all of its attributes so that the entire key can be reconstructed without a template at the
destination. The key value is encoded and encrypted using CKM_DES3_CBC_PAD and then combined with
all other object attributes. The result are then MACed. The wrapping key is supplied as normal to the C_Wrap

and C_Unwrap Cryptoki functions.

The C_Unwrap operation will fail with CKR_ SIGNATURE INVALID if any of the key’s attributes have been

tampered with while the key was in transit.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

354

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

Encoding Format

The encoding is a proprietary encoding where fields are identified by their position (no tags). All fields are
preceded by an encoding of the length of the content. The length may be zero indicating an empty field but
must always be present. Where the length is zero the content is not present (zero bytes). Where the length is
non zero the content has the number of bytes equal to the value of the encoded length. The length is encoded
as a 32-bit big-endian binary value and can thus take values from 0 to (232 -1) i.e. around 4 gigabytes.

Definitions

wK This is the wrapping key under which the subject key is to be wrapped. This key must be valid for the operation
Ex.

mK This is arandomly generated MAC key using CKM_DES2_KEY_GEN. This key is used with Mx.

cK This is clear encoding of the subject key. For single part symmetric keys, this is just the key value. For
compound (e.g., RSA) keys, it is a BER encoding as per PKCS#1.

a This is the encoded non-sensitive subject key attributes. The attributes are encoded with an attribute header,
which is the number of attributes (4 byte), followed by a list of sub encodings which contain the attribute type
(4 byte), content length (4 byte), a content presence indicator (1 byte), and the content bytes. The presence
indicator allows the content length value to be non-zero, but, where presence indicator = 0, no content bytes
are included. If the presence indicator is 1 then the content length must be the number of bytes indicated by the
content length field. All numeric values are encoded as big-endian. Note that the sensitive attributes are
contained in cK.

E x This is encryption using CKM_DES3_(ECB/CBC)_PAD with key 'x'.
M x This is MAC generation using CKM_DES3_MAC_GENERAL (8 byte MAC result) with key 'x'.

Awrapped key using CKM_WRAPKEY_DES3_ECB or CKM_WRAPKEY_DES3_CBC is made up of the
following fields:

> ecKthe encrypted key value, ecK = EwK(cK).

> athe encoded non-sensitive subject key attributes.

> maMAC of the key value and attributes, m = MmK(cK + a).
> emKthe encrypted MAC key value, emK = EwK(mK).
These fields are then encoded as described above.

E.g. Using CKM_WRAPKEY_DES3_CBC on a Single length DES key, with a Triple DES Wrapping key,
produces the encoding:

|length | ecK - encrypted key value

00000010 2B847CF929FA2148A0A59BB6D44BBD74

|length | a - encoded non-sensitive attributes

00000120
00000019000000010000000101010000000200000001010000000003000000
05017465737400000001060000000101008000012800000001010000000107
00000001010100000162000000010101800001290000000101010000017000
00000101010000010400000001010100000105000000010101000001080000
000101010000010A0000000101010000010300000001010000000163000000
01010100000000000000040100000004000001000000000401000000130000

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 355

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

01610000000401000000088000010200000010013230303131313031313234
35303330300000010C00000001010000000102000000000000000110000000
00000000011100000000000000016500000001010000000164000000010100
000000000000000000

|length | m — MAC of key value and attributes

00000008 6256751248BFA515

|length | emK - encrypted MAC key value

00000018 2B847CF929FA214837ACF80D3AASD1470082249D71E053DA

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 356

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_WRAPKEY_DES3 ECB
Supported Operations

Encrypt and Decrypt No

Sign and Verify No

SignRecover and VerifyRecover No

Digest No

Generate Key/Key-Pair No

Wrap and Unwrap Yes

Derive No

Available in FIPS Mode Yes

Restrictions in FIPS Mode No Wrapping
Key Size Range (bytes) and Parameters

Minimum 0

FIPS Minimum 0

Maximum None

Parameter None
Description

The CKM_WRAPKEY_DES3_CBC and CKM_WRAPKEY_DES3_ECB mechanisms are used to wrap a
key value plus all of its attributes so that the entire key can be reconstructed without a template at the
destination. The key value is encoded and encrypted using CKM_DES3_CBC_PAD and then combined with
all other object attributes. The result are then MACed. The wrapping key is supplied as normal to the C_Wrap

and C_Unwrap Cryptoki functions.

The C_Unwrap operation will fail with CKR_ SIGNATURE INVALID if any of the key’s attributes have been

tampered with while the key was in transit.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

357

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

Encoding Format

The encoding is a proprietary encoding where fields are identified by their position (no tags). All fields are
preceded by an encoding of the length of the content. The length may be zero indicating an empty field but
must always be present. Where the length is zero the content is not present (zero bytes). Where the length is
non zero the content has the number of bytes equal to the value of the encoded length. The length is encoded
as a 32-bit big-endian binary value and can thus take values from 0 to (232 -1) i.e. around 4 gigabytes.

Definitions

wK This is the wrapping key under which the subject key is to be wrapped. This key must be valid for the operation
Ex.

mK This is arandomly generated MAC key using CKM_DES2_KEY_GEN. This key is used with Mx.

cK This is clear encoding of the subject key. For single part symmetric keys, this is just the key value. For
compound (e.g., RSA) keys, it is a BER encoding as per PKCS#1.

a This is the encoded non-sensitive subject key attributes. The attributes are encoded with an attribute header,
which is the number of attributes (4 byte), followed by a list of sub encodings which contain the attribute type
(4 byte), content length (4 byte), a content presence indicator (1 byte), and the content bytes. The presence
indicator allows the content length value to be non-zero, but, where presence indicator = 0, no content bytes
are included. If the presence indicator is 1 then the content length must be the number of bytes indicated by the
content length field. All numeric values are encoded as big-endian. Note that the sensitive attributes are
contained in cK.

E x This is encryption using CKM_DES3_(ECB/CBC)_PAD with key 'x'.
M x This is MAC generation using CKM_DES3_MAC_GENERAL (8 byte MAC result) with key 'x'.

Awrapped key using CKM_WRAPKEY_DES3_ECB or CKM_WRAPKEY_DES3_CBC is made up of the
following fields:

> ecKthe encrypted key value, ecK = EwK(cK).

> athe encoded non-sensitive subject key attributes.

> maMAC of the key value and attributes, m = MmK(cK + a).
> emKthe encrypted MAC key value, emK = EwK(mK).
These fields are then encoded as described above.

E.g. Using CKM_WRAPKEY_DES3_CBC on a Single length DES key, with a Triple DES Wrapping key,
produces the encoding:

|length | ecK - encrypted key value

00000010 2B847CF929FA2148A0A59BB6D44BBD74

|length | a - encoded non-sensitive attributes

00000120
00000019000000010000000101010000000200000001010000000003000000
05017465737400000001060000000101008000012800000001010000000107
00000001010100000162000000010101800001290000000101010000017000
00000101010000010400000001010100000105000000010101000001080000
000101010000010A0000000101010000010300000001010000000163000000
01010100000000000000040100000004000001000000000401000000130000

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 358

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

01610000000401000000088000010200000010013230303131313031313234
35303330300000010C00000001010000000102000000000000000110000000
00000000011100000000000000016500000001010000000164000000010100
000000000000000000

|length | m — MAC of key value and attributes

00000008 6256751248BFA515

|length | emK - encrypted MAC key value

00000018 2B847CF929FA214837ACF80D3AASD1470082249D71E053DA

CKM_WRAPKEYBLOB_AES CBC

Supported Operations

Encrypt and Decrypt No

Sign and Verify No
SignRecover and VerifyRecover No

Digest No

Generate Key/Key-Pair No

Wrap and Unwrap Yes

Derive No
Available in FIPS Mode Yes
Restrictions in FIPS Mode No Wrapping

Key Size Range (bytes) and Parameters

Minimum 16

FIPS Minimum 16

Maximum 32

Parameter None
Description

The CKM_WRAPKEYBLOB_AES_CBC and CKM_WRAPKEYBLOB_DES3_CBC mechanism is used to wrap a
private key value using the Microsoft PRIVATEKEYBLOB format.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 359

http://msdn.microsoft.com/en-us/library/cc250013(PROT.13).aspx

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

The RSA private key is formatted as shown below and then the result is encrypted by CKM_AES_CBC_PAD or
CKM_DES3_CBC_PAD:

Header 12 bytes long = 07 02 00 00 00 A4 00 00 52 53 41 32
Bit Length (32 bit LE)

PubExp (32 bit LE)

Modulus (BitLength/8 bytes long LE)

P (BitLength/8 bytes long LE)

Q (BitLength/8 bytes long LE)

Dp (BitLength/8 bytes long LE)

Dq (BitLength/8 bytes long LE)

Iq (BitLength/8 bytes long LE)

D (BitLength/8 bytes long LE)

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 360

Chapter 4:

SafeNet ProtectToolkit-C Mechanisms

CKM_WRAPKEYBLOB_DES3 CBC

Supported Operations
Encrypt and Decrypt
Sign and Verify
SignRecover and VerifyRecover
Digest
Generate Key/Key-Pair
Wrap and Unwrap
Derive
Available in FIPS Mode

Restrictions in FIPS Mode

Key Size Range (bytes) and Parameters
Minimum
FIPS Minimum
Maximum

Parameter

Description

No
No
No
No
No
Yes
No
Yes

No Wrapping

None

None

The CKM_WRAPKEYBLOB_AES_CBC and CKM_WRAPKEYBLOB_DES3_CBC mechanism is used to wrap a
private key value using the Microsoft PRIVATEKEYBLOB format.

The RSA private key is formatted as shown below and then the result is encrypted by CKM_AES_CBC_PAD or

CKM_DES3_CBC_PAD:
Header 12 bytes long = 07 02 00 00 00 A4 00 00 52 53 41 32

Bit Length (32 bit LE)

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

361

http://msdn.microsoft.com/en-us/library/cc250013(PROT.13).aspx

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

PubExp (32 bit LE)

Modulus (BitLength/8 bytes long LE)
P (BitLength/8 bytes long LE)

Q (BitLength/8 bytes long LE)

Dp (BitLength/8 bytes long LE)

Dq (BitLength/8 bytes long LE)

Iq (BitLength/8 bytes long LE)

D (BitLength/8 bytes long LE)

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 362

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_X9 42 DH_DERIVE

Supported Operations

Encrypt and Decrypt No
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap Yes
Derive No
Available in FIPS Mode Yes
Restrictions in FIPS Mode None

Key Size Range (bytes) and Parameters

Minimum 1024

FIPS Minimum 2048

Maximum 4096

Parameter CK X9 42 DH1 DERIVE PARAMS
Description

For a full description of this mechanism, refer to the PKCS#11 version 2.20 documentation from RSA
Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 363

Chapter 4:

SafeNet ProtectToolkit-C Mechanisms

CKM_X9 42 DH_KEY PAIR_GEN

Supported Operations
Encrypt and Decrypt
Sign and Verify
SignRecover and VerifyRecover
Digest
Generate Key/Key-Pair
Wrap and Unwrap
Derive
Available in FIPS Mode

Restrictions in FIPS Mode

Key Size Range (bytes) and Parameters
Minimum
FIPS Minimum
Maximum

Parameter

Description

No

No

No

No

Yes

No

No

Yes

None

1024

2048

4096

None

For a full description of this mechanism, refer to the PKCS#11 version 2.20 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

364

Chapter 4:

SafeNet ProtectToolkit-C Mechanisms

CKM_X9 42 DH_PARAMETER GEN

Supported Operations
Encrypt and Decrypt
Sign and Verify
SignRecover and VerifyRecover
Digest
Generate Key/Key-Pair
Wrap and Unwrap
Derive
Available in FIPS Mode

Restrictions in FIPS Mode

Key Size Range (bytes) and Parameters
Minimum
FIPS Minimum
Maximum

Parameter

Description

No

No

No

No

Yes

No

No

Yes

None

1024

2048

4096

None

For a full description of this mechanism, refer to the PKCS#11 version 2.20 documentation from RSA

Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

365

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_XOR_BASE_AND DATA

*WARNING** This mechanism contains vulnerabilities that could compromise
security. It has been disabled in the factory settings for new HSMs. To enable it, the
Weak PKCS#11 Mechanisms flag must be set. See "Weak PKCS#11 Mechanisms" in
SafeNet ProtectToolkit-C Administration Guide for more information.

Supported Operations
Encrypt and Decrypt No
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive Yes
Available in FIPS Mode No

Key Size Range (bytes) and Parameters

Minimum 0

Maximum None

Parameter CK_KEY DERIVATION STRING DATA
Description

For a full description of this mechanism, refer to the PKCS#711 version 2.20 documentation from RSA
Laboratories.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 366

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_XOR_BASE_AND KEY

*WARNING** This mechanism contains vulnerabilities that could compromise
security. It has been disabled in the factory settings for new HSMs. To enable it, the
Weak PKCS#11 Mechanisms flag must be set. See "Weak PKCS#11 Mechanisms" in
SafeNet ProtectToolkit-C Administration Guide for more information.

Supported Operations
Encrypt and Decrypt No
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive Yes
Available in FIPS Mode No

Key Size Range (bytes) and Parameters

Minimum 0

Maximum None

Parameter CK_OBJECT HANDLE
Description

XORing key derivation, denoted CKM_XOR_BASE_AND_KEY, is a mechanism which provides the
capability of deriving a secret key by performing a bit XORing of two existing secret keys. The two keys are
specified by handles; the values of the keys specified are XORed together in a buffer to create the value of the
new key.

This mechanism takes a parameter,a CK_OBJECT_HANDLE. This handle produces the key value
information that is XORed with the base key’s value information (the base key is the key whose handle is
supplied as an argument to C_DeriveKey).

For example, if the value of the base key is 0x01234567, and the value of the other key is 0x89ARCDEF,
then the value of the derived key is taken from a buffer containing the string 0x88888888.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 367

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

If no length or key type is provided in the template, then the key produced by this mechanism is a generic
secret key. Its length is equal to the minimum of the lengths of the data and the value of the original key.

If no key type is provided in the template, but a length is, then the key produced by this mechanismis a
generic secret key of the specified length.

If no length is provided in the template, but a key type is, then that key type must have a well-defined length.
If it does, then the key produced by this mechanism is of the type specified in the template. If it doesn’t, an
error is returned.

If both a key type and a length are provided in the template, the length must be compatible with that key
type. The key produced by this mechanism is of the specified type and length.

If a key type is provided in the template the behavior depends on whether the type is identical to the type of
the base key. If the base key is of type CKK_GENERIC_SECRET then you can change the type of the
new key. Otherwise you can change the type only if the “Pure PKCS11” configuration flag has been set.

If a DES, DES2, DES3, or CDMF key is derived with this mechanism, the parity bits of the key are set properly.

If the requested type of key requires more bytes than are available by taking the shorter of the two keys' value,
an error is generated.

This mechanism has the following rules about key sensitivity and extractability:

>

If the base key has its CKA_SENSITIVE attribute set to TRUE, so does the derived key. If not, then the
derived key’'s CKA_SENSITIVE attribute is set either from the supplied template or from a default value.

Similarly, the derived key’'s CKA_EXTRACTABLE attribute is set either from the supplied template or else
it defaults to the value of the CKA_EXTRACTABLE of the base key.

The derived key's CKA_ALWAYS_SENSITIVE attribute is set to TRUE if and only if the base key has its
CKA_ALWAYS_SENSITIVE attribute setto TRUE.

Similarly, the derived key’'s CKA_NEVER_EXTRACTABLE attribute is set to TRUE if and only if the base
key has its CKA_NEVER_EXTRACTABLE attribute setto TRUE.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 368

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

CKM_ZKA_MDC_2 KEY DERIVATION

Supported Operations
Encrypt and Decrypt No
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair No
Wrap and Unwrap No
Derive Yes
Available in FIPS Mode No

Key Size Range (bytes) and Parameters

Minimum 0

Maximum None

Parameter Arbitrary byte length
Description

This is the ZKA MDC-2 and DES based key derivation mechanism. The algorithm implemented by this
mechanism is defined in the ZKA technical appendix, “Technischer Anhang zum Vertrag (iber die Zulassung
als Netzbetreiber im electronic-cash-System der deutschen Kreditwirtschaft” V5.2, section 1.9.2.3,
“Generierung kartenindividueller Schliissel’.

It has a parameter, the derivation data, which is an arbitrary-length byte array.
This mechanism only operates with the C_DeriveKey()function.

The derivation data is digested using the CKM_DES MDC_2 PAD1 mechanism, and the resultis ECB
decrypted with the base key. The result is used to make the value of a derived secret key. Only keys of type
CKK_DES, CKK_DES2 and CKK_DES3 can be used as the base key for this mechanism. The derived key can
have any key type with key length less than or equal to 16 bytes.

> If Nokey type and Nolength is provided in the template, then the key produced by this mechanism is a
generic secret key. Its length is 16 bytes (the output size of MDC2).

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 369

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

v

>
>

T
>

If Nokey type is provided in the template, but a length is provided, then the key produced by this mechanism
is a generic secret key of the specified length — created by discarding one or more bytes from the right hand
side of the decryption result.

If a key type is provided in the template, but Nolength is provided, then that key type must have a well-
defined length. If it does, then the key produced by this mechanism is of the type specified in the template. If
it doesn’t, an error is returned.

If both a key type and a length are provided in the template, the length must be compatible with that key
type. The key produced by this mechanism is of the specified type and length. If the length isn’t compatible
with the key type, an error is returned.

If the derived key type is CKK_DES, or CKK_DES2, the parity bits of the key are set properly.
If the derived key value length requested is more than 16 bytes, an error is returned.
he following key sensitivity and extractability rules apply for this mechanism:

The CKA_SENSITIVE, CKA_EXTRACTABLE and CKA_EXPORTABLE attributes in the template for the new
key can be specified to be either TRUE or FALSE. If omitted, these attributes each take on the value of the
corresponding attribute of the base key. The default value for the CKA_EXTRACTABLE and CKA _
EXPORTABLE attributes is TRUE. The default value of the CKA_SENSITIVE attribute depends on the
security flags. If the No clear Pins security flag is set, the default value is TRUE; otherwise, it is false.

If the base key has its CKA_ALWAYS_SENSITIVE attribute set to FALSE, then the derived key will as well. If
the base key has its CKA_ALWAYS_SENSITIVE attribute set to TRUE, then the derived key has its CKA_
ALWAYS SENSITIVE attribute set to the same value as its CKA_SENSITIVE attribute.

If the base key has its CKA_NEVER_EXTRACTABLE attribute set to FALSE, then the derived key will too. If
the base key has its CKA_NEVER_EXTRACTABLE attribute set to TRUE, then the derived key has its CKA _
NEVER_EXTRACTABLE attribute set to TRUE only if both CKA_EXTRACTABLE and CKA_EXPORTABLE
attributes are FALSE. Otherwise, it is setto FALSE.

Vendor-Defined Error Codes

T

he table below lists the error codes that may be returned from SafeNet ProtectToolkit-C which are Vendor

extensions to the PKCS#11 standard.

T

able 1: SafeNet-defined Error Codes
Name Value Description
CKR BIP32 CHILD 0x8000007B = BIP32 private key cannot be produced due to passing an invalid index.

INDEX INVALID

CKR_BIP32 INVALID 0x8000007C = Base public key used to derive a hardened BIP32 key. Private and
HARDENED DERIVATION hardened keys must be derived from private keys.

CKR BIP32 MASTER 0x8000007D CKK_GENERIC_SECRET used to derive a master BIP32 key has an
SEED LEN INVALID invalid bit length. Use a seed within the accepted range of 128-512 bits.
CKR BIP32 MASTER 0x8000007E Invalid BIP32 public key generated from the seed provided.

SEED INVALID

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 370

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

Name

CKR_BIP32 INVALID
KEY PATH LEN

CKR_TIME STAMP

CKR_ACCESS_DENIED

CKR_CRYPTOKI
UNUSABLE

CKR_ENCODE_ERROR

CKR_V_CONFIG

CKR_SO_NOT LOGGED
IN

CKR_CERT_ NOT
VALIDATED

CKR_PIN ALREADY
INITIALIZED

CKR_REMOTE SERVER
ERROR

CKR_CSA_HW_ERROR
CKR_NO_ CHALLENGE

CKR_RESPONSE
INVALID

CKR_EVENT LOG_NOT
FULL

CKR_OBJECT READ
ONLY

CKR_TOKEN READ ONLY

CKR_TOKEN NOT
INITIALIZED

Value

0x8000007F

0x80000101

0x80000102

0x80000103

0x80000104

0x80000105

0x80000106

0x80000107

0x80000108

0x8000010A

0x8000010B

0x80000110

0x80000111

0x80000113

0x80000114

0x80000115

0x80000116

Description

Not used

Attempting to call C_InitToken when HSM configured for “No Clear
Pins”

Use CT_InitToken instead.

Not used

Template encode/decode error. Usually internal error but may be
caused by badly formed function request parameters.

Not used

Operation requires session to be in SO RW mode.

Public key certificate chain not terminated by a TRUSTED certificate.
Calling C_InitPIN when PIN is already initialized. Use C_SetPIN
instead.

Not used

Not used
Not used

Failure to disable an FM

Attempting to erase Event log when it is not full.

Attempting to C_DestroyObject with CKA DELETABLE=TRUE

Not used

Attempting to Reset a Token that is not initialized

SafeNet ProtectToolkit 5.6 Programming Guide

007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

371

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

Name

CKR_NOT ADMIN TOKEN
CKR_AUTHENTICATION
REQUIRED
CKR_OPERATION NOT
PERMITTED
CKR_PKCS12 DECODE
CKR PKCS12
UNSUPPORTED
SAFEBAG TYPE

CKR PKCS12
UNSUPPORTED
PRIVACY MODE

CKR PKCS12
UNSUPPORTED
INTEGRITY MODE

CKR_KEY NOT ACTIVE

CKR_ET NOT ODD
PARITY

CKR_CANNOT DERIVE
KEYS

CKR_BAD REQ
SIGNATURE

CKR_BAD REPLY
SIGNATURE
CKR_SMS ERROR

CKR_BAD PROTECTION

CKR_DEVICE RESET

Value

0x80000117

0x80000130

0x80000131

0x80000132

0x80000133

0x80000134

0x80000135

0x80000136

0x80000140

0x80000381

0x80000382

0x80000383

0x80000384

0x80000385

0x80000386

Description

Attempting to create an object or write an attribute of an object on a
normal token that should only be on an Admin token

Not used

Attempting to generate a timestamp when the RTC is not working or
trusted.

PKCS#12 import package has more than one private key.

PKCS#12 package corrupt

PKCS#12 package contains unrecognised SAFEBAG

PKCS#12 package contains unrecognised privacy (public key mode
not psupported)

PKCS#12 package contains unrecognised integrity (should be MAC)

Key has exceeded its usage limit or dates.

DES key being loaded into HSM has bad parity (should be odd) — fix
key or enable “Des Keys Even Parity Allowed” mode (ctconf —fd)

Internal error when establishing a secure messaging connection.
Corrupt request to HSM when using secure messaging (network or
device driver error)

Corrupt reply from HSM when using secure messaging (network or
device driver error)

General error from secure messaging system — probably caused by
HSM failure or network failure.

Cryptoki library has failed to apply proper secure message protection —
internal error.

HSM has unexpectantly shutdown. Check the event log for errors
(ctconf —e)

SafeNet ProtectToolkit 5.6 Programming Guide

007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

372

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

Name

CKR_NO SESSION KEYS

CKR_BAD REPLY

CKR_KEY ROLLOVER

CKR_NEED IV UPDATE

CKR_DUPLICATE IV

FOUND

CKR_BAD REQUEST

CKR_BAD ATTRIBUTE
PACKING

CKR_BAD ATTRIBUTE
COUNT

CKR_BAD PARAM
PACKING

CKR_EXTERN DCP_
ERROR

CKR_WLD CONFIG NOT

FOUND

CKR_WLD_CONFIG
ITEM READ FAILED

CKR_WLD CONFIG NO_
TOKEN LABEL

CKR_WLD_CONFIG
TOKEN LABEL_ LEN

CKR_WLD_CONFIG
TOKEN SERIAL NUM
LEN

Value

0x80000387

0x80000388

0x80000389

0x80000310

0x80000311

0x80001001

0x80001002

0x80001003

0x80001004

0x80001386

0x80002001

0x80002002

0x80002003

0x80002004

0x80002005

Description

Cryptoki library has failed to establish keys for secure message
protection — internal error.

Reply message from HSM is badly formatted (network or device driver
error).

Secure messaging system has not implemented key rollover protocol
properly

Secure messaging system has not implemented key rollover protocol
properly

Not used

Badly formed request message (network or device driver error)

Cryptoki client has failed to encode attribute list correctly.

Cryptoki client has failed to encode attribute list correctly.

Cryptoki client has failed to encode function parameters correctly.

Not used

ET_PTKC_WLD configuration data not consistent

ET_PTKC_WLD configuration data not available

ET_PTKC_WLD configuration data not formatted correctly

ET_PTKC_WLD configuration data not formatted correctly

ET_PTKC_WLD configuration data not formatted correctly

SafeNet ProtectToolkit 5.6 Programming Guide

007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

373

Chapter 4: SafeNet ProtectToolkit-C Mechanisms

Name

CKR _WLD CONFIG
SLOT DESCRIPTION
LEN

CKR_WLD CONFIG_
ITEM FORMAT INVALID

CKR_WLD_LOGIN
CACHE_INCONSISTENT

CKR_HA MAX SLOTS
INVALID LEN

CKR_HA SESSION
HANDLE_INVALID

CKR_HA CANNOT _
RECOVER_KEY

CKR_HA NO HSM

CKR_HA OUT_OF OBJS

Value

0x80002006

0x80002007

0x80002010

0x80003001

0x80003002

0x80003005

0x80003006

0x80003007

Description

ET_PTKC_WLD configuration data not formatted correctly

ET_PTKC_WLD configuration data not formatted correctly

Internal error in cryptoki library where WLD values are inconsistent.

Too many virtual WLD slots are defined

Unknown session handle passed to Cryptoki library.

HA recovery process needs to create a key but is unable to
HA has tried to recover a lost session but no more working HSMs are
available.

The HA feature has reached its capacity to manage session objects —
too many objects created.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

374

CHAPTER 5:
Sample Programs

Sample programs include a variety of PKCS#11 applications. Unless specifically stated, the source code
provided with the SafeNet ProtectToolkit-C SDK product may be modified or incorporated into other programs.

This chapter contains the following sections:
>

>
>
>

C Samples

Compiling the Sample Programs
The sample programs will need to be compiled prior to use.

NOTE A third-party C software compiler, such as Microsoft Visual C++, must be installed
before performing these steps.

To compile under Windows:

1. Setthe CPROVDIR environment variable to point to your installation.

C:\> set CPROVDIR=C:\program files\safenet\cprov sdk

2. Use the nmake program to compile the examples.

C:\Program files\safenet\Cprov SDK\samples\demo> nmake

To compile under UNIX:

1. Create a temporary compile directory.

% mkdir SafeNet

2. Copy the sample program and Makefile into that directory.

% cp /opt/safenet/protecttoolkit5/ptk/src/demo/* SafeNet

3. Modify the Makefile to point to your installation directory.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 375

Chapter 5: Sample Programs

CFLAGS=-I/opt/safenet/protecttoolkit5/ptk/include -
I/opt/safenet/protecttoolkit5/ptk/src/include
LDFLAGS=-L/opt/safenet/protecttoolkit5/ptk/1lib

4. Use the make program to build the demo.

% make

CTDEMO

This program sets up a 4-token key profile that may be used for an electronic commerce trading application.
The token profiles include a sample customer, merchant, bank and certifying authority. The application
exchanges public keys between each of the tokens and, where CA mechanism extensions are supported,
SafeNet ProtectToolkit-C generates certificates for the public keys.

SafeNet ProtectToolkit-C must be configured to have at least 4 slots/tokens for this demonstration program to
operate correctly.

CTDEMO is a console application that takes the following arguments:

ctdemo -s<slotID> -m<modulus size> -q -f —x

where:
-q Quick. Does not prompt for values but uses defaults.
-f Force. Does not warn about overwriting token contents.
-m Specify modulus size.
-S First slot number to use.
X Extended. Creates more keys.
Defaults:

Security Officer (SO) PIN =9999

Slot Token Label PIN

0 Alice 0000
1 NAB 1111
2 Meyer 2222
3 SAFENET 3333

I NOTE This will overwrite the contents of all of the above tokens.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 376

Chapter 5: Sample Programs

FCRYPT

FCRYPT is a file encryption program that takes a recipient's public key and sender's private key and uses
these to encrypt and sign the contents of a file. Random transport keys for triple DES are generated for the
bulk file content encryption. Alternately the Password Based Encryption (PBE) variant can be used so that only
the password needs to be shared and no public keys/certificates need to be exchanged.

FCRYPT is a console application that takes the following arguments:

Usage
fcrypt [-d] [-t] [-o<outfile>] -p<password> infile

fcrypt [-d] [-t] [-o<outfile>] -s<key> -r<key> infile

NOTE Correct usage is to either to provide a pbe-password, or to provide a sender and
recipient key.

Options
-h View help
-d Decrypt instead of encrypt
-0 Output file name
-p PBE password
-r Recipient key name
-s Sender key name
-t Report timing info

Key Naming Syntax:

<token name> (<user pin>)/<key name>
for example, -s"Alice(0000)/Sign"

NOTE The FCRYPT program is also provided as an example tutorial in

Additional C Sample Programs

There are also a number of additional C sample programs provided. For more information about the
functionality of these programs refer to the description provided at the top of the source file for each of them.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 377

Chapter 5: Sample Programs

Java Samples

Compiling and Running the Sample Programs
The binaries for the sample programs are included in jcprovsamples.jar file. However, in order to use the
sources provided, you must compile them first.

I NOTE The JDK 1.2.2 or newer is required to compile these samples.

For best results, ensure that jcprov.jar is in your CLASSPATH environment variable before compiling the
applications. Since all the applications are registered under the name space SafeNet_tech.jcprov.samples,
a path that allows this namespace to be used must also be added to the CLASSPATH. If the samples are
compiled in their installed locations, the path leading to the “samples” directory in the installation location will
allow them to be executed as documented below.

For compiling and running under Windows NT:

1. Setthe CLASSPATH environment variable to point to jcprov.jar and sample programs’ root path.

C:\> set “CLASSPATH=C:\program files\safenet\cprovsdk\bin\jcprov.jar; C:\program
files\safenet\cprovsdk\samples”

2. Use javac program to compile the examples.

C:\Program Files\Safenet\CprovSDK\samples\SafeNet tech\jcprov\samples> javac GetInfo.java

3. Use java program to run samples.

C:\Program files\safenet\CprovSDK\samples\SafeNet tech\jcprov\samples> javaSafeNet
tech.jcprov.samples.GetInfo -info

For compiling and running under UNIX:

1. Create a temporary compile directory.

o)

% mkdir -p SafeNet tech/Jjcprov/samples

2. Copy the sample program and Makefile into that directory.

o)

% cp /opt/safenet/protecttoolkit5/ptk/src/SafeNet tech/jcprov/samples/* SafeNet
tech/jcprov/samples

3. Setthe CLASSPATH environment variable to point to jcprov.jar and sample programs’ root path.

% export CLASSPATH=/opt/safenet/protecttoolkit5/ptk/lib/jcprov.jar: pwd’

4. Change directory to sample programs’ path.

o)

% cd SafeNet tech/jcprov/samples

5. Use javac program to compile the examples.

o)

% javac GetInfo.java

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 378

Chapter 5: Sample Programs

6. Use java program to run samples.

% Jjava SafeNet tech.jcprov.samples.GetInfo -info

The Java Classes

DeleteKey
This class demonstrates the deletion of keys.

Usage:

java SafeNet tech.jcprov.samples.DeleteKey -keyType <keytype> -keyName <keyname> [-slot <slotId>]

[-password <password>]

Options:
keytype One of (des, des2, des3, rsa). The types of keys supported are:
> des —single DES key
> des2 — double length Triple DES key
> des3 —triple length Triple DES key
> rsa— RSA Key Pair
keyname The name (label) of the key to delete.
slotld The slot containing the token to delete the key from. The default is (0).
password The user password of the slot. If specified, a private key is deleted.
EccDemo

This class demonstrates the generation of EC keys (prime192v1) and optionally performs sign/verify option

with generated keys

Usage:
java SafeNet tech.jcprov.samples.EccDemo [-g] -n<keylabel>
Options:
-9 Generate Key Pair only (do not perform sign/verify)
-n<keylabel> Labels for key pair
EncDec

This class demonstrates the encryption and decryption operations.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

379

Chapter 5: Sample Programs

Usage:

java SafeNet tech.jcprov.samples.EncDec -keyType <keytype> -keyName <keyname> [-slot <slotId>] [-
password <password>]

Options:
keytype One of (des, des2, des3, rsa). The types of keys supported are:
> des —single DES key
> des2 — double length Triple DES key
> des3 —triple length Triple DES key
> rsa— RSA Key Pair
keyname The name (label) of the key to delete.
slotld The slot containing the token to delete the key from. The default is (0).
password The user password of the slot. If specified, a private key is used.

EnumAttributes
This class demonstrates the SafeNet extension to enumerate all attributes of an object.

Usage:

java SafeNet tech.jcprov.samples.EnumAttributes -name <objectname> [-slot <slotId>] [password
<password>]

Options:

objectName The name (label) of the object to enumerate over.

slotld The slot containing the object. The default is (0).

password The user password of the slot. If specified, a private object is used.
GenerateKey

This class demonstrates the generation of keys.

Usage:

java SafeNet tech.jcprov.samples.GenerateKey -keyType <keytype> -keyName <keyname> [-slot
<slotId>] [-password <password>]

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 380

Chapter 5: Sample Programs
Options:
keytype One of (des, des2, des3, rsa). The types of keys supported are:
> des—single DES key
> des2 — double length Triple DES key
> des3 — triple length Triple DES key
> rsa— RSAKey Pair
> ec—EC Key Pair
keyname The name (label) of the key to delete.
slotld The slot containing the token to delete the key from. The default is (0).
password The user password of the slot. If specified, a private key is created.
GetInfo

The class demonstrates the retrieval of Slot and Token Information.

Usage:

java SafeNet tech.jcprov.samples.GetInfo (-info, -slot, -token) [<slotId>]

Options:

info Retrieve the General information.

slot Retrieve the Slot Information of the specified slot.

token Retrieve the Token Information of the token in the specified slot.

slotld The related slot ID of the slot or token information to retrieve. The default is (all).
ListObjects
This class demonstrates the listing of Token objects.
Usage:
java SafeNet tech.jcprov.samples.ListObjects [-slot <slotId>] [-password <password>]
Options:

slotld The slot containing the token objects to list. The default is (0).

password The user password of the slot. If specified, private objects are also listed.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

381

Chapter 5: Sample Programs

ReEncrypt
This class demonstrates re-encryption of variable length data.

Re-encryption is where cipher text (encrypted key or data) is decrypted with one key, and then the resulting
plain text is encrypted with another key. Typically you want this operation to occur in such a way as to avoid
having the intermediate plain text leaving the security of the adapter.

This is achieved in PKCS#11 via the C_UnwrapKey and C_WrapKey functions. By specifying the
intermediate plain text data as a GENERIC_SECRET, SENSITIVE, Session object, you can keep variable
length data securely in the adapter. This program assumes that slot 0 exists. All objects generated during
program execution are session objects, and as such the contents of the token in slot 0 are not modified.

Usage:

java SafeNet tech.jcprov.samples.ReEncrypt

Threading
Sample program to show use of different ways to handle multi-threading.

This program initializes the Cryptoki library according to the specified locking model. Then a shared handle to
the specified key is created. The specified number of threads is started, where each thread opens a session
and then enters a loop which does a triple DES encryption operation using the shared key handle.

Itis assumed that the key exists in slot 0, and is a Public Token object.

Usage:

java ...Threading —-numThreads <numthreads> -keyName <keyname> -locking
<lockingmodel> [-v]

Options:
numthreads The number of threads to start.
keyname The name of the Triple DES key to use for encryption operation.
lockingmodel The locking model, one of:

> None — No locking performed. Some of the threads should report failures.
> OS — Use native OS mechanisms to perform locking.
> Functions — Use Java functions to perform locking.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 382

CHAPTER 6:
Best Practice Guidelines

SafeNet ProtectToolkit-C can be used to add cryptographic services to any application requiring such services
in a standardized way. Cryptographic services are required where security policy exists, and must be enforced
to the fullest possible extent by state of the art existing technology. Currently, cryptographic methods are the
only way to assure authenticity, confidentiality and integrity to levels that can be mathematically shown to resist
all known attacks for the foreseeable future.

Simplicity is another essential goal since complex systems are extremely difficult to analyze to an extent where
all weakness can be found or shown not to exist to a level that is practicable. SafeNet ProtectToolkit-C is a
simple and low-level key management and cryptographic service provider and its simplicity should allow it to be
used easily to provide the necessary level of cryptographic service.

There are many independent, and sometimes conflicting, goals in the development life cycle of secure
products, so this document shall outline the best approach to the use of SafeNet ProtectToolkit-C, always
keeping these goals in mind. Above all, the developer should always strive to keep implementation simple.

The remainder of this document assumes a basic level of understanding of the SafeNet ProtectToolkit-C
product and the PKCS#11 (Cryptoki) system. It refers to the PKCS#11 device as a security module and this
may be a stand-alone appliance, or adapter-based PKCS#11 security module.

This chapter contains the following sections:

V V. V V vV V VvV V V V V

Introduction

The best place to start building a SafeNet ProtectToolkit-C application is with the sample applications that
demonstrate how the SafeNet ProtectToolkit-C system should be initialized and used to perform various
cryptographic operations. Although the samples vary in complexity, they are all real working SafeNet

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 383

Chapter 6: Best Practice Guidelines

ProtectToolkit-C utilities and cover all SafeNet ProtectToolkit-C services.

System security depends mainly on confidentiality, authentication, and access control.

Confidentiality

Confidentiality is critical when data must exist or be transferred through an environment where it may be
vulnerable to inspection by an unauthorized person, and damages to the owner of the data may result from
such inspection. The best way to protect confidential data is to encrypt it. Examples of confidential information
include corporate or personal data, and cryptographic keys.

Integrity / Authentication

Integrity requires that no unauthorized person can alter data without detection. Integrity can be assured by
using message authentication codes (MAC), a cryptographic digest of the message that requires knowledge of
a secret key.

NOTE Itis not necessary to know the value of a secret key to use it to encrypt or sign (MAC)
something.

Access Control

Access to certain objects must be restricted to reliable people, or circumstances in which misuse can be easily
detected . Access control demands accountability from those who interact with the data. It requires users to be
authenticated before access is granted. There are many methods of user authentication.

Getting to Know SafeNet ProtectToolkit-C

To become proficient at SafeNet ProtectToolkit-C development, you must understand PKCS#11 and basic
security and cryptographic principles. The entire PKCS (Public Key Cryptographic Standard) suite of standards
is relevant, since PKCS#11 employs elements of most of the other PKCS standards. All the PKCS standard
documentation can be found online.

You should also refer to , which details some of the many
differences between the PKCS#11 standard and SafeNet ProtectToolkit-C.

The sample PKCS#11 application code included in the SDK installation is another excellent starting point for
getting to know SafeNet ProtectToolkit-C. These applications may be compiled and inspected, or used directly
for commercial PKCS#11 applications.

Application Security

SafeNet ProtectToolkit-C applications must provide access control and confidentiality of any keys used by the
application.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 384

Chapter 6: Best Practice Guidelines

NOTE In PKCS#11 there are three classes of users: the public, the token user, and the token
security officer (SO). Please refer to the PKCS#11 documentation and the SafeNet
ProtectToolkit-C Administration Guide for more about these user classes and their roles and
responsibilities.

SafeNet ProtectToolkit-C Security

The following rules should generally be applied:

>

Use one token per application. The tokens are access-controlled separately, collect all keys related to the
application, and will normally be used simultaneously within that application. The application should log in to
the token with the appropriate PIN, use the keys, then log out before terminating. This approach provides a
completely separate logical security boundary for each application, ensuring that no cross-application
leakage can occur.

Each key in a system should have a clearly defined purpose and be used for only that purpose. This limits
the potential damage done by any key's exposure,and lessens the likelihood of misuse.

Secret values entered on a keyboard, such as PINs and clear keys, should always be masked. The SafeNet
ProtectToolkit-C KMU masks all PIN and key component entry.

Set appropriate access control for keys. Even if the key value is safe from exposure, a key could still be used
by unauthorized personnel. For example, a signature generation key (CKA_SIGN = TRUE) should not be
usable for encryption (CKA_ENCRYPT = TRUE). Most keys should be “user” keys (CKA_PRIVATE =
TRUE), meaning they are accessible only after a C_Login has been performed.

Keys can be randomly generated, with their attributes set so they can never be known or extracted outside
the token. More often, however, keys are backed up shortly after they are generated, then locked into the
token with attributes preventing extraction. This is often done with clearly specified procedures, the
application should assist where possible in enforcing these.

Use the Key Management Utility (KMU) for key backup and restore purposes.

Use the FIPS-compliant mode of the device.

SafeNet ProtectToolkit-C Security Caveats

>

CKA_SENSITIVE = FALSE. This attribute setting allows key values to be extracted from the security module
using C_GetAttributeValue. Set to TRUE to prevent this form of key value extraction.

CKA_EXTRACTABLE = TRUE. This attribute setting allows keys to be wrapped (encrypted) by another key.
If the wrapper key is known externally, it can be used to obtain the original key value. A wrapping key (CKA _
WRAP=TRUE) may be created at any time to wrap extractable keys. To prevent this, use CKA_
EXPORTABLE = TRUE; keys with CKA_EXPORT can be created only by the security officer (SO).

Short PINs can be determined by brute force. Use PINs with more than just numeric characters, longer than
6 characters.

Any key that has the attribute CKA_MODIFIABLE = TRUE can have most other attributes, including key
usage attributes, changed. It is best to have persistent keys with this attribute set to FALSE wherever
possible.

Once a session is logged on, all sessions of the same application are also logged on and can access all user
keys on the token.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 385

Chapter 6: Best Practice Guidelines

>

FIPS operation may be slower and have some interoperability problems for some existing PKCS#11
applications.

The PKCS#11 library is a dynamic library the application attaches to, DLL under Win32/64, and shared
object under UNIX. The library is not separately authenticated by library signing techniques used by other
architectures, e.g., JCE and CryptoAPI. Instead, the application relies on the security of the operating
system to assure that substitution or tampering with the library has not occurred. It is reasonable to expect
modern operating systems to be capable of protecting system files in this way.

Application Usability

Usability is an important consideration; if security requirements become an imposition, users are more inclined
to work around them. For example, users forced to change their passwords too often tend to write them down
or choose simple derivatives of the same password over and over again. Secure systems simply don’t work if
they are not usable.

SafeNet ProtectToolkit-C Application Usability

>

SafeNet ProtectToolkit-C allows PINs to be non-numeric and can be quite long (up to 32 characters). In fact,
full 8-bit binary data can be used for PINs, but applications tend to use printable characters.

When naming keys, use the CKA_LABEL attribute and name the key according to its usage and origin (or
scope). For example: “KEK - Database” for a key-encrypting-key for use with an applications database. This
makes the key's purpose clear to both trained and untrained users, who may not normally need to use it.

Wherever possible, use the token label to find key sets belonging to a particular application, rather than slot
numbers. Itis advisable to use separate tokens in separate slots for separate applications.

For server-type applications, it may not be possible to perform a login every time the system is restarted.
This may force keys to be made non-private so that they are accessible without logging in, or the application
will have to obtain the login password from some static location — either hard-coded or in some environment
variable etc depending on the platform.

Learn and use the SafeNet ProtectToolkit-C additional libraries (CTEXTRA and CTUTIL) which have been
provided to implement common PKCS#11 application features.

SafeNet ProtectToolkit-C Usability Caveats

>

The SafeNet ProtectToolkit-C token browser is a developer’s tool and is therefore very low-level. It can be
tricky for the user unfamiliar with it or PKCS#11.

Watch out for embedded and trailing spaces in token and object label names. Some PKCS#11
implementations do exact matches and will not regard labels with and without the NULL termination as
equal.

Many applications only work on slot 0, making interoperability between them on the same platform
impossible.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 386

Chapter 6: Best Practice Guidelines

Performance

The product should not perform poorly with security enabled, or users may be tempted to switch it off to meet
performance criteria.

SafeNet ProtectToolkit-C Performance

> Intightloops, itis best to remove as much invariant code as possible. This goes for SafeNet ProtectToolkit-
C session startup, login, key generation / find, and even the cipher initialization. That way only the code that
does the cryptographic operation is in the inner loop.

> Use session keys wherever possible, since they can be created and destroyed much more quickly than
token keys. However, watch out for object leaks when using session objects; they will not be visible to
anything but the application that creates them.

> Avoid having too many objects on a token, since object lookups are performed by traversing all objects until
the correct one is found. Once an object is found it should not need to be searched for again.

> Multiple adapters (an adapter cluster) can be combined to increase overall throughput, where independent
streams of cryptographic operations can be allocated to different devices. Key replication is required if
cryptographic operations need to be performed by any adapter in the cluster.

SafeNet ProtectToolkit-C Performance Caveats

> Some operations are limited by a slower operation inside the security module. RSA key generation is a good
example. Other operations may be limited by the speed at which data can cross the application—security
module interface.

> Performance figures quoted by some PKCS#11 device vendors may be difficult to obtain in real-world
application. Cprov includes a PKCS#11 utility that measures performance using only the standard SafeNet
ProtectToolkit-C API. In this case there is no use of undocumented calls to obtain performance figures, and
any application developer should expect to obtain them from any well-written PKCS#11 application.

> Performance is often irrelevant for operations that are not time-critical or repetitive.

> FIPS-compliant operation may be slower.

Capacity

Tokens have two kinds of memory: persistent (token) memory and session memory. Keys and other objects
may be created and managed in either, and each has its own advantages and capacities.

SafeNet ProtectToolkit-C does not impose a fixed limit on the number of Tokens or the number of objects in
one token. Tokens and objects may be created until the persistent memory is full. However HSM performance
will decrease as the number of slots and objects increases. For all practical purposes, the performance will be
unacceptably degraded before the memory is full.

As a guideline, the developer should not design a system that requires more than 50 Tokens or more than 100
objects in any one token.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 387

Chapter 6: Best Practice Guidelines

SafeNet ProtectToolkit-C Capacity Improvement

> Externally-stored keys should be encrypted with a key-encrypting key. This way, only the master KEK needs
to be stored on the device. All working keys are unwrapped (C_UnwrapKey) prior to use and destroyed
afterwards.

NOTE They can usually be unwrapped as session keys. This technique is common for
managing a large set of terminals (EFTPOS or other) that have randomly-generated terminal
master keys.

> Use derived keys from a master key stored on the security module. The working key is derived by
encrypting some application-supplied data with the master key and using the cipher text data to create a
key value. This technique is common for managing a large set of terminals (EFTPOS or other) that have
terminal master keys derived from their terminal identifiers. The terminal identifier is usually used as the
application-supplied data.

> Back up and restore keys rather than leaving old key sets online. After a key rollover, old key sets should not
remain online any longer than necessary.

> Keys may be spread across the storage capacity of multiple HSMs. Cryptographic requests will have to be
directed to the HSM containing the necessary specific key.

SafeNet ProtectToolkit-C Capacity Caveats

> Keys and other objects take up memory according to the number and individual sizes of the attributes that
make them up. The number of attributes may also change for different versions of PKCS#11.

> Memory leaks may happen in both token (persistent) memory and session memory. Detecting and plugging
the leaks can be quite difficult. Some development tools (CTCONF) take memory usage snapshots that
can help track them down.

> Low memory conditions may make the device fail in unexpected ways.

Setup / Configuration

An application may initialize the token and key sets, or it may presume that they have already been set up. The
latter is normally the case and SafeNet ProtectToolkit-C includes initialization applications to perform this
function.

The ProtectServer configuration and management strategy is based on the Administrator token created
automatically on all adapters. Please refer to the SafeNet Protect Toolkit-C Administration Guide for more
details.

SafeNet ProtectToolkit-C Setup / Configuration

> Decide early how many tokens should be created for the HSM configuration. Changing the number of
tokens / slots is a significant change. Generally, one token should be used per application, but there may be
necessary exceptions.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 388

Chapter 6: Best Practice Guidelines

> Decide the security settings. FIPS mode enables a collection of different security settings (see the SafeNet
ProtectToolkit-C Administration Guide for details), some of which will impact performance. Take this into
consideration when writing applications.

> Decide how to manage the user and security officer (SO) PINs for each token. The PINs protect different
services and it is important to note that, when not in FIPS mode, both keys and cryptographic services can
be used when no PIN has been provided.

> Plan for operations to backup / restore to disk or smart card on working key sets. This will influence what key
attributes to set for various keys and may require backup / restore master keys. Refer to the SafeNet
ProtectToolkit-C Administration Guide for more information on the available backup options.

> Use the KMU to manually set up key sets, or the CTKMU console application to set them up from a batch
file. A simple custom application may also be used to set up a key set; both KMU and CTKMU use PKCS#11
functions that any application can call.

SafeNet ProtectToolkit-C Setup/Configuration Caveats

> The administrator token in SafeNet ProtectToolkit-C V3.x may cause confusion, since it appears as a
standard PKCS#11 token. This token contains special objects that should not be accessed by any
applications other than the SafeNet ProtectToolkit-C supplied tools.

> Server applications may require the abillity to run from a reboot without any assistance or input (including
PINs) from a human operator. This may affect how login PINs are presented to the token.

Maintainability

Security systems must be maintainable to change with security policy demands. For example, security
vulnerabilities have been discovered in certain PKCS#11 mechanisms, and these are no longer available in
FIPS Mode (see the SafeNet ProtectToolkit-C Administration Guide for more information). New algorithms are
introduced and others are phased out.

Many changes in security applications also relate to the increased use of PKI systems, with related public key
certification and cryptographic demands.

SafeNet ProtectToolkit-C Maintenance

> Give keys meaningful names (CKA_LABEL) referring to their usage and origin. For example: “KEK -
Database” for a key-encrypting-key for use with an applications database.

> Use supplied PKCS#11 helper functions from CTUTIL library. These are provided to perform most
common PKCS#11 operations and have been thoroughly tested.

> Use appropriate key sizes and cryptographic algorithms, and allow for key sizes to increase.

> Write portable code. SafeNet ProtectToolkit-C is available on many platforms from Win32/64 to UNIX, and
the best applications are most likely to be ported.

SafeNet ProtectToolkit-C Maintenance Caveats

> Watch out for spaces and NULL (\0’) characters in SafeNet ProtectToolkit-C token and object labels.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 389

Chapter 6: Best Practice Guidelines

> Attribute template handling code can become very messy, and there is a tendency to use global variables.
Local variables are better and can be made ‘static’ to avoid stack-based initialization compiler warnings.

Debugging

Various development and debugging assistance tools are provided in the SafeNet ProtectToolkit-C SDK,
including a full software emulation variant of the PKCS#11 library. One other such tool is the SafeNet
ProtectToolkit-C logger, a Cryptoki library replacement that intercepts all SafeNet ProtectToolkit-C calls and
reports them with their arguments to a log file before completing the call to the real Cryptoki library. The call
results, return code, and arguments are likewise recorded to the same log file.

SafeNet ProtectToolkit-C Debugging Techniques

> Use the SafeNet ProtectToolkit-C token browser (CTBROWSE) to set up and inspect tokens and keys. The
token browser can also be used to verify cryptographic operations, since just about any SafeNet
ProtectToolkit-C function can be called.

> Use the software-only emulation of PKCS#11 to avoid any hardware issues, including installation issues.
This allows effective PKCS#11 development and debugging to be done on a laptop with no PCI bus for
expansion cards, or when not connected to the same network as the HSM hardware.

> Use the SafeNet ProtectToolkit-C logger to obtain PKCS#11 activity traces. This is useful for reporting
problems to Gemalto support staff.

> Make all keys token keys (CKA_TOKEN = TRUE), rather than session keys. This can help to track down
object leaks.

> Make all keys CKA_SENSITIVE=FALSE so they can be inspected with the token browser at any time.
> Use the Key Verification Codes (KVC) to check a key’s value without having to see the key’s value.

> Give every key a CKA_LABEL whether the application uses it or not. If there is an object leak where many
key objects are being managed, the label may be the only way of tracking down the source code that
created it.

SafeNet ProtectToolkit-C Debugging Caveats

> Remember to switch off all debugging support code once the application is working, since some debugging
techniques require disabling of normal security options. e.g. CKA_ SENSITIVE=FALSE. If this code
remains active in a production system, security may be compromised.

Interoperability

PKCS#11 is a standard security module interface defined specifically for removable tokens like smart cards,
butit is also applicable to non-removable devices. Many vendors have adopted this interface, so the likelihood
of any particular application being required to operate with more than one PKCS#11 device is quite high. This
interoperability is highly beneficial to the application developer.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 390

Chapter 6: Best Practice Guidelines

SafeNet ProtectToolkit-C Interoperability

> Look for PKCS#11 security modules that have high interoperability with standard PKCS#11 applications.
Common PKCS#11 applications include Netscape, Entrust, Identrus etc.

> Testwith multiple devices. Without testing, it is impossible to know for certain that an application is
interoperable.

Interoperability Caveats

> Since there is no central compliance-testing lab for generic PKCS#11 implementations, many
implementations with low interoperability also exist. Instead, various application-specific compliance test
suites have been used.

> Vendor-defined extensions will not be present on other vendors' implementations. These should be used
only when there is no alternative, or where vendor independence is not an issue.

Programming in FIPS Mode

When the device is set to FIPS-compliant mode (see the SafeNet ProtectToolkit-C Administration Manual), the
following Security Mode flags are set, altering the behavior of PKCS#11. Programmers must consider these
restrictions when designing applications.

No Public Crypto

When this flag is TRUE, each token will have the CKF_LOGIN_REQUIRED flag set and all the cryptographic
C_xxxInit functions and key operation functions: C_GenerateKey, C_GenerateKeyPair, C_WrapKey, C_
UnwrapKey, C_DeriveKey, C_DigestKey will fail unless the session state is in a User mode (that is, either
the USER or SO must be logged in).

If the session state is notin a User mode, any attempt to write to a token will fail (that is, using the functions C_
CreateObject, C_DestroyObject and C_SetAttributeValue).

No Clear PINS

When this flag is TRUE, the device will not allow clear-text authentication data to pass through the host data
port.

With this flag enabled, the C_InitToken function will fail with the error result CKR_ACCESS_DENIED. In order
to initialize tokens, the SafeNet extension function CT_InitToken must be used. The SafeNet tools ctconf and
gCTAdmin are aware of this restriction and will automatically use the appropriate function.

The other functions that supply PINs to the adapter, C_InitPin, C_Login, C_SetPin, and CT_InitToken, will
encrypt the PINs before supplying the request to the adapter. The C_CreateObject, C_GenerateKey, C_
SeedRandom functions will also be encrypted, as they may contain sensitive values. The encryption and
decryption is performed by the Secure Messaging System (SMS) and any application will see the request
AFTER it has been verified and decrypted by the SMS.

Because the SMS automatically encrypts the PINs, there is no effect on the application.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 391

Chapter 6: Best Practice Guidelines

Finally, with this flag enabled, secret and private key objects will always have their CKA_SENSITIVE attribute
set to TRUE. Any attempt to create a non-sensitive key (that is, set CKA_SENSITIVE=FALSE) or specify CKA _
SENSITIVE=FALSE for any object on the device will fail.

An application will fail if it attempts to create, derive, or unwrap keys with CKA_SENSITIVE=FALSE.

The No Clear PINs flag must be set to enable Full Secure Messaging
Encryption and Full Secure Messaging Signing.

Authentication Protection

This flag is TRUE and all requests coming from an authenticated user (i.e. a request from a logged in user)
must be cryptographically signed.

The signature verification is performed by the SMS and any application will see the request AFTER it has been
verified by the SMS. This flag does not impact on an application.

Security Mode Locked

This flag is TRUE and means the settings of the other flags in this mode structure may not be changed (they
are Read Only).

This flag may be set to TRUE when FALSE but never FALSE when TRUE. The only way to set this flag to
FALSE once it has been set to TRUE is to tamper the device.

Tamper Before Upgrade

This flag is TRUE and all keys, objects and PINs stored in the device’s Secure Memory will automatically be
erased during any OS Firmware Upgrade, FM Upgrade or FM Disable operation.

Designers should consider their key backup and recovery plans when using FIPS mode.

Only-FIPS Approved Algorithms

This flag is TRUE and restricts the PKCS#11 mechanisms available to only the FIPS approved mechanisms.
Some algorithms will have their key sizes limited when this flag is true.

Refer to for the list of FIPS-approved mechanisms.

Key Management

Key management is critical to successful deployment of a secure application. It is important to use the right
tools and follow standard techniques wherever possible.

Backup and Restore

The KMU provides key backup and restore facilities for keys. Backup operations can only be performed if the
keys were created with the right attributes.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 392

Chapter 6: Best Practice Guidelines

The recommended procedure for key backup is to use the CKA_EXPORT and CKA_EXPORTABLE attributes
for the KEK and working keys, respectively. These are preferable to CKA_WRAP and CKA_EXTRACTABLE
because there is no control on setting the CKA_WRAP attribute (see). The
CKA_EXPORT attribute can be set to TRUE on a key only when the security officer (SO) is logged in to the
token. This prevents working key exposures by introducing a known KEK to the device. The SO creates export
keys, while the user is able to use them but not create them.

Only keys that have the CKA_EXPORTABLE attribute set to TRUE can be exported, and only by keys that have
the CKA_EXPORT attribute setto TRUE. This allows the possibility of keys that can never be exported from the
device, or can be exported a limited number of times.

NOTE The backup/restore master KEK must be managed in clear components, for split key
entry, or backed up with redundancy separately, either to disk or smart cards. The
redundancy is a defense against one of the master key sets being physically damaged or one
of the custodians being unable or unwilling to participate in the restore operation. It is normal
in any KEK hierarchy for the highest-level keys to be managed by a semi-manual process
under the control of highly trusted personnel. These keys are critical to the restore operation,
and their loss would make restore operations impossible.

Key Replication
Key replication is normally done for one of two reasons:
> Fault-tolerant redundancy

> Load balancing

NOTE The normal key backup with a restore per replication is all that is required to do this
job. There is no special key replication procedure. The backup/restore key will need to be
presentin all devices where the keyset will be replicated. For root-level keys, a semi-manual
procedure is required as in key restorations (clear components or Smart Card key injection).

Key Generation Variations

DSA and DH key generation is a two step process, where generation parameters produced in step one may be
used repeatedly for key pair generation in step two. SafeNet PKCS#11 specifies that step one is outside the
API while step two, generation of the actual key pair, is inside. This implementation allows step one to be done
inside the library. The support is invoked by not supplying the required “parameters” values in the key
templates. Under these circumstances a fully compliant PKCS#11 implementation would return CKR _
TEMPLATE_INCOMPLETE.

Note that the DSA and DH parameters may be generated separately using the other extension CKM_xxx_
PARAMETER_GEN making this extension unnecessary. The use of the alternative mechanism (CKM_xxx_
PARAMETER_GEN) is recommended.

PKCS#11 Interpretations

> The handle for an object may change over the lifetime of the token or object. The handle is allocated to the
object whenitis read from the token.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 393

Chapter 6: Best Practice Guidelines

> C_GetObjectSize reports the sum of the sizes of all the attributes combined for the object. This gives a
good indication of the amount of memory committed to the object although there would be some storage
overhead for persistent objects.

> Certain key wrapping restrictions are not observed. For example, wrapping a multi DES key with a single
DES key is not prevented.

> All key sizes for secret key algorithms, as reported by C_GetMechanisminfo, are reported in bytes not
bits.

Software-Only Version Specific
> Token serial numbers are all fixed as “0”.

> Token removal processing has not been supported since software tokens cannot really be removed in the
normal sense. The token can actually be removed by deleting, or renaming the “token” directory found in
the “slot” directory, but automatic detection has not been implemented.

> File system errors are typically reported as CKR_DEVICE_ERROR.

Operator Authentication
SafeNet ProtectToolkit-C provides several methods of operator authentication.

> The conventional C_Login allows the user PIN to be presented directly to the Token.

> The PIN Challenge feature allows the operator to authenticate to a token by requesting and responding to a
random challenge. This is a form of bi-directional authentication protocol. The main advantage of this
system over the normal PKCS#11 C_Login command is that the clear PIN value never leaves the proximity
of the operator. Itis particularly useful when the operator is physically remote from the HSM.

> Temporary PINs allow a process to pass user authentication to another process without having to hold a
long-term sensitive data authentication (such as the PIN) or require the operator to authenticate repeatedly.

A CKO_HW_FEATURE object called CKH_VD_USER allows the application to obtain the random challenge for
either the User Password or SO Password.

The Object has an attribute an application can read to generate and obtain a random challenge.

A new challenge value will be generated each time the attribute is read. A separate Challenge is held for each
registered application. The same challenge can be used for User or SO authentication (see

).
The calling application converts the challenge into a Response by using the following algorithm:

Response = SHA-256(challenge | PVC)
Where PVC = LEFT64BIT(SHAL (password | userTypeByte)

A host-side static library function CT_Gen_Auth_Response is provided in the SDK to assist developers using
this scheme.

The CKH_VD_USER has an attribute an application can read to generate and obtain a Temporary PIN. Only
one SO and one User Temporary PIN may exist at any one time in any single Token. Each read from this
attribute will generate a new Temporary PIN (see).

Any Temporary PINs in a Token are automatically destroyed when the generating process logs off or is
terminated, or the HSM has reset — whichever comes first.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 394

Chapter 6: Best Practice Guidelines

Under Cryptoki, all authentication of users to the HSM is valid for the calling process only. Each application
must authenticate separately. Once a process has authenticated, it is granted appropriate access to the
token's services.

With SafeNet ProtectToolkit-C, if a process forks a new process then the new process must authenticate itself -
it can not inherit the authentication of the parent.

The Temporary PIN feature is a method where a parent process can pass on its authentication to a child
process without having to pass the sensitive PIN value.

The Response and Temporary PIN are passed to the HSM using the C_Login function. The Function will be
extended such that unused bits in the userType parameter will be set to indicate that a Response value or
Temporary PIN is being used instead of the normal password.

The following bits are added to the userType parameter of the C_Login function to specify the type of
authentication required:

#define CKF AUTH RESPONSE 0x00000100
#define CKF AUTH TEMP PIN 0x00001000

Operator Authentication Use Cases

Setup
User sets the User and SO PINs in the usual manner (using ctkmu or ctconf tools or other applications)

Programmatic Challenge Response Activation
. Remote client initiates activation by sending a message to the server

. Server Process registers itself to HSMs using C_Initialise

. Server Process opens a session to a Token

1
2
3
4. Server Process obtains a Random challenge by calling CT_GetAuthChallenge
5. Server Process sends challenge to Remote client

6. Client computes the response value using CT_Gen_Auth_Response and returns it to the Server
7

. Server Process supplies response as PIN value to the C_Login function using a special userType
parameter value

Pass Authentication to a New Process
1. Server Primary Process authenticates using Programmatic Challenge Response Activation

2. Server Primary Process obtains a temporary pin by calling CT_GetTmpPin

3. For each spawned process, the Primary Process passes the temporary PIN to it using an appropriate
interprocess communication method (or by forking).

4. New Process registers itself to HSMs using C_Initialise
5. New Process opens a session to the Required Token

6. New Process authenticates to Token with C_Login function and the temporary PIN using a special
userType parameter value

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 395

Chapter 6: Best Practice Guidelines

Key Usage Limits
Each private key object on a token may have usage limits applied by the START_DATE, END_DATE,
DESTROY_ON_COPY, USAGE_COUNT and USAGE_LIMIT plus the CKA_ADMIN_CERT attributes.

The START_DATE and END_DATE attributes enforce limits on the use of a key based on the date.

The USAGE_COUNT and USAGE_LIMIT attributes enforce limits on the use of a key based on the number of
operations of that key. The USAGE_COUNT attribute increases with each use of the key until USAGE_LIMIT is
reached. If USAGE_COUNT equals or is greater than USAGE_LIMIT, the key is locked and cannot be used.

In order to stop abuse of the USAGE_COUNT/USAGE_LIMIT controls, any Object with a non-empty CKA _
USAGE_LIMIT attribute will be automatically deleted after a successful Copy operation.

Without this rule, a key and its attributes may be copied and therefore the number of operation remaining is
automatically doubled.

The START_DATE, END_DATE, USAGE_COUNT and USAGE_LIMIT attributes can be supplied in the
template when a key is created or imported. The C_SetAttributeValue command can be used to add these
attributes to a key if the object is modifiable. But the C_SetAttributeValue command cannot be used to
modify these attributes.

The CKM_SET_ATTRIBUTES ticket mechanism changes the START_DATE, END_DATE, USAGE_COUNT
and USAGE_LIMIT attributes of a specified object when used with the CT_PresentTicket function.

Programmatic Use Cases for a Developer

Create Usage Limited Key Object
Developer uses C_GenerateKeyPair to create a new key pair. The private key template should include
limitation attributes and specify CKA MODIFIABLE=False.

Set Usage Limits of an Object Directly
1. Developer uses CT_SetLimitsAttributes() to set usage limitation attributes. Note the key must have
CKA MODIFIABLE=True.

2. Developer sets CKA MODIFIABLE=False by calling CT_MakeObjectNonModifiable().

Update Usage Limits of an Object Indirectly
1. Developercalls CT GetObjectDigest onthe remote machine (Recommend use of SHA-256
algorithm).

2. Developer sends Object Digest to the Master machine.

3. Optional: on Master machine, Developer locates signing key and reads its CKA_SUBJECT_STR and CKA _
USAGE_COUNT attributes. The CKA_SUBJECT_STR value can be used as the issuerRDN value to identify
the signing key in the certificate. The CKA_USAGE_COUNT attribute can be used as the certificate serial
number.

4. Developeruses CT_Create_Set_Attributes_Ticket_Info() to create a ticketinfo data block. The CT_
SetCKDateStrFromTime() function can help to construct CKA_START_DATE and CKA_END_DATE
values.

5. Developer uses the signing key to create a signature of the ticketinfo data block. For RSA signing key the
CKM_SHA256_RSA PKCS mechanism is recommended.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 396

Chapter 6: Best Practice Guidelines

6. Developer uses CT_Create_Set_Attributes_Ticket() to construct the Ticket data block.
7. Developer arranges that the Ticket data block is sent to the remote server machine.

8. Developer uses CT_PresentTicket() with CKM_SET_ATTRIBUTES mechanism on remote machine to
change limits attributes on target key.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 397

CHAPTER 7:
ctbrowse — Token Browser

The ctbrowse utility is a Windows GUI application for creating tokens and objects that perform simple
operations, such as encryption, decryption, signing and verification of a signature, using the mechanisms
provided by the token.

This utility allows you to create or view a key pair and certificates. By selecting an object, you can view its
properties. If a certificate object is selected, you can view the structure (ASN.1 format) of the certificate and
encode it to various formats such as Base64 or DER.

With ctbrowse, you can create and verify a signature based on the signing mechanism.

ctbrowse is part of the SafeNet ProtectToolkit-C SDK and is installed as part of that product. See the SafeNet
ProtectToolkit-C Administration Guide for more information.

Compliance

This application expects PKCS#11 V 2.20-compliant implementation and will use SafeNet extensions (see the
next section) if they are available.

PKCS#11 Extensions Used

SafeNet's PKCS#11 implementation provides additional services beyond the standard definition of PKCS#11,
particularly in the area of Certificate services. For example:

> Uses non-standard Attribute enumeration extension, although this version will fall back to standard
methods to enumerate attributes where this extension is not available.

> PKCS#10 and X.509 creation from public key (see)
> ASN.1 decoder/dumper
> Allows use of additional vendor defined mechanisms and extensions to PKCS#11

See for a table of SafeNet vendor-defined mechanisms
and extensions to PKCS#11.

Using ctbrowse with SafeNet ProtectToolkit-J

SafeNet ProtectToolkit-J is SafeNet’s Java Cryptography Architecture (JCA) and Java Cryptography Extension
provider (JCE) software.

Tokens and keys created with SafeNet ProtectToolkit-J can be used and manipulated with ctbrowse.
Likewise, any tokens and keys set up with ctbrowse will be fully compatible with SafeNet ProtectToolkit-J. For
more information, consult the Key Management section in the SafeNet ProtectToolkit-J Reference Guide.

This chapter contains the following sections:

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 398

Chapter 7: ctbrowse — Token Browser

vV V VvV VvV V

User Interface

When opened, the ctbrowse window contains two panels, left and right. The left panel contains slots, tokens,
and objects; the right panel contains services.

[@ CRYPTOKI Token Browser L= [[|

File Options Help

m CRYPTOKI V 2.20 [Safenet, Inc.]
------ & ProtectServer K6:39425 [0] Digest Sign Recaver
‘3 HSM_ O “erify Recowver
------ &2 session [3] - Mot logged in i)
------ f Objects Decrypt Sign Encrypt
4 & Clock erify Decrypt
- @ Monotonic Counter Generate Random
bz @ Vendor Defined User Sign
------ % Mechanisms YOR
...... & ProtectServer K6:58211 [1] ey
------ & ProtectServer K6:27102 [2] DECODE
------ & ProtectServer K6:03739 [3]
------ & ProtectServer K& [4]

b

Initially, the left panel lists only one item, representing the linked PKCS#11 version. This item represents a tree
control. Double-clicking items on the tree will expand the available slots. Double-click new slot items to show
tokens in slots.

NOTE More than one slot containing a token may be available. All slots can be opened and
browsed independently.

The left panel shows a typical ctbrowse session, where the first token (0) has been opened to display its
objects and mechanisms. The numbers in square brackets [] represent the slot identifiers used to address
these items.

The browser can show more than one slot and can be combined with other SafeNet ProtectToolkit-C products,
such as the remote client/server, SafeNet ProtectToolkit-C ProtectServer (PCl adapter) and SafeNet
ProtectToolkit-C ProtectHost, to allow it to show slots from other PKCS#11 devices, including foreign (non-
SafeNet) PKCS#11 devices.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 399

Chapter 7: ctbrowse — Token Browser

Tree View

The figure below depicts the tree hierarchy. Tree items are identified by labeled icons. The * indicates more
than one item at that level of the tree.

Figure 7: Tree Hierarchy

PKCS#11
I— Slot*
L Token

Session*

Objects
I— Object*

Attribute

Mechanisms

— Mechanism*

Token Management Services

Token management operations are invoked by right-clicking the desired tree item and selecting from the pop-
up menu.

The table below lists the menu items available on each level of the tree hierarchy.
Tree Item Service Description
CRYPTOKI @ Getinfo Shows CRYPTOKI version, manufacturer and description.
Slot Create Initializes a token on the slot selected. Note that this uses a nonstandard extension to
token PKCS#11. If a token already exists, the user will be prompted to confirm re-initialization

of the token. Re-initialization will erase all information currently stored on the token.

Get info Shows slot ID, type, manufacturer and description

Token Init token Initializes a token and sets the security officer PIN. Note this will erase all the token’s
contents.
Open Opens a CRYPTOKI session to the token.
Session

Closeall = Closes all open sessions for the token.
Sessions

Get info Shows token type, manufacturer, model, serial number, etc.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 400

Chapter 7: ctbrowse — Token Browser

Tree Item Service

Session Close
session

Login
Logout

Init user
PIN

Set PIN
Get info

Objects Create
Object

Create
Secret
Key

Unwrap

Generate
Key

Generate
Key Pair

Object Destroy
Copy

Set
attribute

Wrap

Derive
key

Show
KvC

Get info

Description

Closes the right-clicked session.

Logs into the token.
Logs out from the token.

Initializes the user PIN. Note: the security officer must be logged in to perform this
operation.

Set the PIN of the current user. This may be the security officer or normal user.
Shows the session status and flags.

Allows a new object to be created.

Create a secret key. The key value is entered via the keyboard.

Unwraps a previously wrapped key.

Generate a secret key. The key value is randomly generated.

Generate an asymmetric key pair. The key value is randomly generated.

Deletes an object.
Makes a copy of an object.

Sets an attribute for an object.

Wraps a key value.

Derives a shared secret key using Diffie Hellmann. Derives a certificate request, or
X.509 certificate.

Calculates and displays the KVC of the object

Shows object size and object handle number.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 401

Chapter 7: ctbrowse — Token Browser

Tree Item Service Description

Attribute Edit Allows an attribute’s value to be changed, imported or exported. Note that some
attributes are defined by PKCS#11 to be unchangeable after being initially set. Attributes
can be edited in ASCIl or HEX and can also be viewed in Base-64 or decoded ASN. 1

syntax for encoded values.

Mechanism Get info Shows mechanism info.

Example Service - Generate Key Pair

Generating a key pair is one of the management services available. The Generate Key Pair dialog is opened by
right-clicking on an objects tree item in the Token Browser window and choosing Generate Key Pair from the

popup context menu.

&3 CRYPTOKI Token Browser

:@ﬁ

‘File Options Help

b CRYPTOKIV 2.20 [Safenet, Inc.]
------ & ProtectServer K6:39425 [0]

------ & ProtectServer K6:58211 [1]

Create Object
Create Secret Key

Generate Key Pair
------ & ProtectServer K& 11107 5]
------ & ProtectServer K6 [6]

.8 session [30009] - User logged in

Digest Sign Recower
Yerify Recover
Encrypt
Decrypt Sign Encrept
Werify Decrypt
Sign
AOR Werify

Unwrap Key
DECODE
Generate Key

The figures below show how the labels and fields of the Generate Key Pair dialog box typically change
according to the mechanism selected for key pair generation.

I NOTE The check boxes are enabled and disabled according to the selected Mechanism.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

402

Chapter 7: ctbrowse — Token Browser

Generate Key Pair

-

Mechanism [RSA_PKCS_KE'Y_PAIR_GEN ~]
Bit size |1024 Cancel
-Fublic Key- Private Key-
Label | Lahel |
Exponent | F4 Subject |
[¢ Persistant [Private [+ Persistant [Private
[v Encrypt [¥ Wrap [v Decrypt [v Extractable
[v “erify [v Derive [v Sign [v Unwrap
v Modifishle [Export v Modifiahle [# Sensitive
[v Derive [v Usage count
[v Import v Exporable

Generate Key Pair

[Sign local key

techanism C_KEY_PAIR_GEN
MNamed curve 102tnb1 911 ﬂ Cancel
-Fublic Key- Private Key-
Label | Label |
Subject |
[v Persistant [Private [+ Persistant [Private
[v Encrypt [[v Decrypt [v Extractahle
[v Wetify [v Derive [v Sign u
¥ Modifishle | Export [+ Madifiable [V Sensitive
[v Derive [v' Usage count
[[v' Exportshle

Cryptographic Services

[Sign local key

The service buttons in the right-hand panel allow key objects to be used for cryptographic operations such as

encryption and digital signing. To use these services, select the key item from the tree and then click the
required button.

Clicking a button opens the associated dialog to guide the user through the operation of that service.

The next figure shows a typical dialog for Encrypt/decrypt and sign/verify services.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

403

Chapter 7: ctbrowse — Token Browser

Encryption i)

techanism |DES_CE}C ﬂ
Farameter | IE|
Keny |HandDmDES
Init

Input Hex |

Ao
Fesult Hex
ASc
Encrypt ‘ Update ‘ Final ‘
Cancel ‘

The Key field shows the type of key being used, and the Mechanism list shows mechanisms valid for the

chosen key. A parameter for the mechanism should be entered if required. See
for more information on mechanism parameters.

The Parameter, Input, and Result fields all allow display in either hexadecimal or ASCII (text) format. The
hexadecimal display is useful for the input, or display, of binary data that cannot normally be displayed. Use the

[Hex]/[Asc] buttons to toggle between the two display options.

I NOTE These entry fields support cut-and-paste for easier input.

To encrypt information:

Enter a parameter (if required by the mechanism).
Click Init.

Enter an Input value (information to be encrypted).

Db~

Click Encrypt.
The encrypted text is displayed in the result field.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

Chapter 7: ctbrowse — Token Browser

Encryption 2.5 o

bechanisrm |DES_CE}C ﬂ
Hex
P t
arameter | ASC
Key |HandDmDES
it
Input Encrypted Text ﬂl
A
Fesult FC20AR3F7CBRDFADEY7FECEBBDASROE4S Hex
AT
Encrypt ‘ Update ‘ Final ‘
Cancel ‘

Drag and Drop

Objects such as key values can be copied from one token to another by dragging and dropping the object.

NOTE The object must have the CKA_EXTRACTABLE attribute set to TRUE to allow this
operation.

Dropping a public key object onto a private key object will create an X.509 certificate request (PKCS #10
format). This is used to encode a public key together with a subject name (the owner of the key) for distribution
to a Certification Authority (CA).

The public key used is from the object being dragged. The subject's name is taken from the CKA_SUBJECT or
CKA_SUBJECT_STR attributes of that public key. These attributes were supplied when the key was
generated.

NOTE Certificate Requests should be signed with the private key that matches the public key
inside the certificate request. The certificate request is created as an object on the token from
where the public key was taken.

The secret key used to sign the PKCS#10 encoding may be from another token, but should be the secret key
that matches the public key being encoded.

Dropping a PKCS#10 certificate request object onto a private key object will create an X.509 certificate. X.509
certificates are the standard way to securely bind a public key together with a subject name (the owner of the
key) for public distribution. X.509 certificates are normally signed by a trusted Certification Authority (CA), also
known as the certificate's "issuer". The public key and subject name is extracted from the PKCS#10 object (the
one being dragged) and the issuer's name is taken from the CKA_SUBJECT or CKA_SUBJECT_STR
attributes of the private key used to sign the certificate (the target of the drag).

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 405

Chapter 7: ctbrowse — Token Browser

X.509 certificates also have a serial number that is taken from the CKA_USAGE_COUNT attribute that must
also be present on the signing key. The certificate is created as an object on the token from where the
certificate was requested. The secret key used to sign the X.509 encoding may be from another token and is
normally a highly trusted (CA) signing key.

Calculate Parameter Value for CK_ RSA PKCS PSS PARAMS

A new mechanism parameter structure was created, CK_ RSA PKCS_ PSS PARAMS, foruse by RSA PKCS
PSS mechanisms. When RSA_ PKCS PSS mechanisms are selected as signing mechanisms in ctbrowse, the
parameter value must be properly configured. Providing an incorrect parameter value will result in ctbrowse
reporting a Mechanism Invalid error.

To calculate the parameter value for CK_RSA_PKCS_PSS_PARAMS:

1. To calculate the parameter value for CKM_RSA PKCS PSS mechanisms you must determine the value of
hashAlg, mgf, and sLen.

Field Value

hashAlg The value for hashAlg is based on the mechanism selected from the Mechanism Field in ctbrowse.
For example if the selected mechanismis SHA265 RSA PKCS PSS then the value for hashAlg
would be CKM_SHA256.

mgf The value for mgf is based on the mechanism selected from the Mechanism Field in ctbrowse. For
example if the selected mechanismis SHA265 RSA PKCS_ PSS then the value for mgf would be
CKG MGF1 SHA256.

sLen The length, in bytes, of the salt value used in the PSS encoding; typical values are the length of the
message hash and zero. For example, if hashAlg, mgf, and sLen are 4 bytes each, the salt length
value would be 0x0000000C.

2. Convert the value of hashAlg, mgf, and sLen to network byte order using htonl.

3. Enter the values in network byte order into the Parameter field in ctbrowse without any delimiters in the
order of hashAlg, mgf, and sLen.

4. Select the Init button.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 406

CHAPTER 8:
API Tutorial: Development of a Sample
Application

/

This tutorial deals with one of the sample applications that are provided with SafeNet ProtectToolkit-C, namely
FCrypt.

The FCrypt application enables files to be encrypted for a given recipient and then decrypted by that recipient.
Since the encrypted file contains a Message Authentication Code (MAC), the recipient of a document will also
be able to verify that the encrypted file was not modified.

In order to follow this example effectively, the reader is strongly encouraged to open or print the source of the

application as a reference. The source code for FCrypt can be found in the file ferypt.c within your chosen
install directory.

This tutorial contains the following sections:

N o a s~ e Dhd =

Required Header Files

You will note in the initial code segments that, apart from the standard header files, we include the SafeNet
ProtectToolkit-C set of required library files.

#include "cryptoki.h"

#include "ctextra.h"

#include "ctutil.h"
#include "chkret.h"

Whereas cryptoki.h is the required PKCS#11 header, the remainder implement some of the advanced or
extended features of the SafeNet ProtectToolkit-C implementation, such as error feedback.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 407

Chapter 8: API Tutorial: Development of a Sample Application

Runtime Switches

We want to develop FCrypt to be able to take a series of command line inputs to allow us to decrypt a
message, use password-based encryption (pbe) or to display time information for a cipher operation. With that
in mind, the following flags are defined appropriately.

static int dflag = 0;

/* 1 - decrypt */static int tflag = 0;

/* 1 - time */static int pflag = 0;

/* 1 - use pbe */

Encrypt Functions

1. Forourfile encryption and subsequent decryption, we define the following two functions:

int encryptFile(char * sender, char * recipient, char *ifile,char * ofile);
int decryptFile(char * sender, char * recipient, char *ifile,char * ofile);

We want the encrypt function to take the public key of the receiving party (recipient), encrypt the data (ifile)
with the given key and sign the encrypted data with the sender's private key (sender), before outputting and
encoding the file to the output file (ofile).

For error handling purposes, we define the function as follows:

#undef FN
#define FN "encryptFile:"
int encryptFile(char * sender, char * recipient,char * ifile, char * ofile)

2. We now need to define the required PKCS#11 data types pertaining to the session, slot identification, and
object handles we will use for the sender and recipient keys.

/* sender slot key session handles */
CK_SLOT ID hsSlot;

CK_OBJECT HANDLE hsKey = 0;

CK SESSION HANDLE hsSession;

/* recipient slot key session handles */
CK_SLOT ID hrSlot;

CK OBJECT HANDLE hrKey;

CK_SESSION HANDLE hrSession;

3. We must also allocate variables to define the type of mechanism, digest, and key information during
encryption.

CK RV rv; /* Return Value for PKCS#11 function */
CK_MECHANISM mech; /* Structure for cipher mechanism
*/

CK BYTE iv[8]; /* Init. Vector used with CBC
encryption */

CK BYTE digest[80];

CK SIZE len;

CK_OBJECT HANDLE hKey; /* random encrypting key */
CK BYTE wrappedKey[2 * 1024];

CK SIZE wrappedKeylen;

CK BYTE signature[2 * 1024];

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 408

Chapter 8: API Tutorial: Development of a Sample Application

unsigned long fileSize;
unsigned long encodedSize;

Earlier, we said that we wanted to be able to perform password-based encryption via a runtime switch, so
accordingly this is the first instance that we check for with our pflag variable.

4. Our next step is to define our secret key that we will use to encrypt the data. The key type to be used is
double-length DES. The CK_BBOOL refers to a byte-sized Boolean flag that we have defined as either
TRUE or FALSE for easier reference.

CK_ATTRIBUTE is a structure that includes the type, value, and length of an attribute. Since every
PKCS#11 key object is required to be assigned certain attributes, this structure is later used during our key
derivation and generation to assign those attributes to the key.

if (pflag) {

/* use PBE to do the encryption */

static CK OBJECT CLASS at class = CKO SECRET KEY;

static CK KEY TYPE kt = CKK DES2;

static const CK BBOOL True = TRUE;

static const CK BBOOL False = FALSE;

CK ATTRIBUTE attr[] = {

{CKA CLASS, &at class, sizeof(at class)}, {CKA KEY TYPE, &kt, sizeof(at class)}, {CKA
EXTRACTABLE, (void*)&True, sizeof (True)}, {CKA SENSITIVE, (void*)&False, sizeof (False)}, {CKA
DERIVE, (void*)&True, sizeof (True)}};

5. The params variable is defined using the PKCS#11 definition CK_PBE_PARAMS, a structure that provides
all of the necessary information required by the PKCS#11 password-based encryption mechanisms.
CK_BYTE iv[8];

CK_PBE_PARAMS params;

memset (¶ms, 0x0, sizeof (CK PBE PARAMS)) ;
params.pInitVector = iv;

params.pPassword = sender;
params.passwordLen = strlen (sender);
params.pSalt = NULL;

params.saltlLen = 0;

params.iteration = 1;

6. PKCS#11 also uses a structure for defining the mechanism. Within CK_ MECHANISM we need to specify the
mechanism type, a pointer to the parameters we defined earlier and the size of the parameters. The
mechanism type we willuse is CKM_PBE SHA1 DES2 EDE CBC thatis used for generating a 2-key triple-
DES secret key and IV from a password and a salt value by using the SHA-1 digest algorithm and an
iteration count.
memset (¢émech, 0x0, sizeof (CK MECHANISM)) ;
mech.mechanism = CKM PBE SHAl DES2 EDE CBC;

mech.pParameter = ¶ms;
mech.parameterLen = sizeof (CK _PBE PARAMS) ;

7. We have now set up our required structures, and the next step is to open a session between the application
and a token in a particular slot using the PKCS#11 call C_OpenSession. This call requires the slot ID flags
which indicate the type of session, an application-defined pointer to be passed to the notification callback;
an address of the notification callback function, and a pointer to the location that receives the handle for the
new session.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 409

Chapter 8: API Tutorial: Development of a Sample Application

rv = C OpenSession(0, CKF RW SESSION|CKF SERIAL SESSION,NULL,NULL, &hsSession);
if (rv) return 1;
hrSession = hsSession;

8. Once we have successfully opened a session with the token, we now want to generate the key that we will
use to encrypt our input file. The C_GenerateKey function will generate a secret key and thereby create a
new key object. This function call requires the session’s handle, a pointer to the key generation
mechanism, a pointer to the template for the new key, the number of attributes in the template and a pointer
to the location that receives the handle of the new key.

The CHECK_RV() function call is part of the SafeNet ProtectToolkit-C extended capability for better error
feedback and handling.

rv = C GenerateKey (hsSession, &mech, attr, NUMITEMS (attr),&hKey);
CHECK RV (FN "C GenerateKey:CKM PBE SHAl DES2 EDE CBC", rv);if (rv) return 1;

9. If we are not using the password-based encryption switch at program execution, the desired reaction is to
perform file encryption using RSA, and hence we will need to generate the secret key value for the
operation.

The function FindKeyFromName is part of the SafeNet ProtectToolkit-C CTUTIL library to provide
extended functionality. Itis used here to locate the keys which are passed into FCrypt at the command line
and return the slot ID, session handle and object handle of those keys.

else {

/* use RSA to encrypt the file */

/* locate encrypting key */

rv = FindKeyFromName (sender, CKO PRIVATE KEY,

&hsSlot, &hsSession, &hsKey);if (rv) {fprintf(stderr, "Unable to access sender (%s)key\n",

sender);CHECK RV(FN "FindKeyFromName", rv);if (rv) return 1;

}

/* locate signing key */

rv = FindKeyFromName (recipient, CKO CERTIFICATE,

&hrSlot, &hrSession, &hrKey);if (rv) {rv = FindKeyFromName (recipient, CKO_ PUBLIC KEY,
&hrSlot, &hrSession, &hrKey);

}

if (v) |

fprintf (stderr, "Unable to access recipient (%s)

key\n", recipient) ;CHECK RV (FN "FindKeyFromName", rv);if (rv) return 1;}

10.To achieve acceptable performance during file encryption and decryption we need to use a symmetric key
cipher such as DES. The DES key we generate for this purpose is to be wrapped with the recipient’'s RSA
key so it can later be unwrapped and used for decryption without the value of the key ever being known.

a. Rather than simply using the same key for each file encryption, we will generate a random DES key for
each encryption of the input file. The mechanism used hereis CKM DES2 KEY GEN thatis used for
generating double-length DES keys.

b. The key wrapping is performed with the C_WrapKey function that encrypts (wraps) a private or secret
key. The function requires the session handle, the wrapping mechanism, the handle of the wrapping
key, the handle of the key to be wrapped, a pointer to the location that receives the wrapped key and a
pointer to the location that receives the length of the wrapped key.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 410

Chapter 8: API Tutorial: Development of a Sample Application

C.

For the wrapping mechanism we will choose CKM RSA PKCS that is a multi-purpose mechanism based
on the RSA public-key cryptosystem and the block formats defined in PKCS #1. It supports single-part
encryption and decryption, single-part signatures and verification with and without message recovery,

key wrapping and key unwrapping.

/* create a random des key for the encryption */
memset (&mech, 0, sizeof (mech)) ;

mech.mechanism = CKM DES2 KEY GEN;

/* generate the key */

rv = C _GenerateKey (hrSession, &mech,
wrappedKeyTemp, NUMITEMS (wrappedKeyTemp), &hKey);
CHECK RV (FN "C GenerateKey", rv);

if (rv) return 1;

/* wrap the encryption key with the recipients public key */
memset (&mech, 0, sizeof (mech)) ;

mech.mechanism = CKM RSA PKCS;

memset (wrappedKey, 0, sizeof (wrappedKey)) ;
wrappedKeyLen = sizeof (wrappedKey) ;

rv = C WrapKey (hrSession, &mech, hrKey, hKey,
wrappedKey, &wrappedKeylen) ;

CHECK RV (FN "C WrapKey", rv);

if (rv) return 1;

11.Now that we have a random secret key to perform the encryption with, we will need to set the required

mechanism and parameters prior to encrypting the input file. As a mechanism for the encryption we will

choose CKM_DES3_CBC_PAD which is using triple-DES in Cipher Block Chaining mode and PKCS#1
padding.

An application cannot call C_Encrypt in a session without having called C_Encryptlnit first to activate an
encryption operation. C_Encryptlnit requires the session’s handle, a pointer to the encryption mechanism

and the handle of the encryption key.

In the same manner as we initialized and set up, our digest operation is to be the signature verification to

send along to the recipient with the encrypted data. The mechanism used for our digest is SHA-1 that is

defined in PKCS#11 terms as CKM_SHA 1.

/* set up the encryption operation using the random key */
memset (&mech, 0, sizeof (CK MECHANISM)) ;
mech.mechanism = CKM DES3 CBC_ PAD;

memset (iv, 0, sizeof (iv));

mech.pParameter = iv;

mech.parameterLen = sizeof (iv);

rv = C EncryptInit (hrSession, &mech, hKey);
CHECK RV (FN"C EncryptInit", rv);

if (rv) return 1;

/* Set up the digest operation */

memset (&mech, 0, sizeof (CK MECHANISM)) ;
mech.mechanism = CKM SHA 1;

rv = C DigestInit (hrSession, &mech);

CHECK RV(FN "C DigestInit", rv);

if (rv) return 1;

12.We are now ready to process our input file by encrypting the data, generating the message digest and
writing the output to file.
/*
** Process the file.

*/

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

41

Chapter 8:

API Tutorial: Development of a Sample Application

{
FILE * ifp;
FILE * ofp;
CK SIZE
CK_SIZE
unsigned

/* input */

/* output */

curlen;

slen;

char buffer[10 * 1024];

char encbuffer[10 * 10247];

int br; /* bytes read */

unsigned int totbw; /* total bytes written */
/* open input and output file pointers */

ifp = fopen(ifile, "rb");

if (ifp == NULL) {

fprintf (stderr,

unsigned
unsigned

return -1;
}

ofp = fopen(ofile, "wb");
if (ofp == NULL) {
fprintf (stderr,

"Cannot open %s for input\n",ofile);

"Cannot open %s for input\n",ifile);

return -1; }

If the password based encryption switch wasn'’t set, the first instance we write to file is the DES secret key

wrapped by the recipient’s public key.

if (! pflag)
long) wrappedKeyLen) ;br = fwrite (&encodedSize, 1,
(wrappedKey, 1, (int)wrappedKeyLen, ofp);
}
/* get the file length */
{
struct stat buf;
int result;
result = fstat(fileno(ifp), &buf);
if(result != 0) {
fprintf (stderr, "Cannot get file size for
$s\n",
ofile);

return -1;

}

{/* write the encrypted key to the output file */encodedSize =
sizeof (encodedSize),

htonl ((unsigned

ofp) ;br = fwrite

fileSize = buf.st size;

/*

fileSize = filelength(fileno(ifp));

*/

}

fileSize = (fileSize + 8) & ~7; /* round up for padding */
/* write file size to output file */

encodedSize = htonl (fileSize); /* big endian */

br = fwrite(&encodedSize, 1, sizeof (encodedSize), ofp):;

13.Since our mode of encryption is cipher block chaining (CBC) we need to perform our output using four

definitive looping steps until our data is processed.

a. Forthe digest we use the PKCS#11 function C_Digest_Update, which continues a multiple-part
message-digesting operation, processing another data part. The function requires the session handle,
a pointer to the data part and the length of the data part.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

412

Chapter 8: API Tutorial: Development of a Sample Application

b. For the encryption, we use C_EncryptUpdate, which continues a multiple-part encryption operation,
processing another data part. The function requires the session handle, a pointer to the data part; the
length of the data part; a pointer to the location that receives the encrypted data part and a pointer to the
location that holds the length in bytes of the encrypted data part.

/* read, encrypt, digest and write the cipher text in chunks
*/ totbw = 0;

for (;7) {

br = fread(buffer, 1, sizeof (buffer), ifp);
if (br ==)

break;

/* digest */

rv = C DigestUpdate (hrSession, buffer, (CK SIZE)br); CHECK RV(FN "C DigestUpdate", rv);
if (rv) return 1;

/* encrypt */

curLen = sizeof (encbuffer);

rv = C_EncryptUpdate (hrSession, buffer, (CK SIZE)br, encbuffer, &curlLen);
CHECK RV (FN "C EncryptUpdate", rv);

if (rv) return 1;

/* write cipher text */

br = fwrite(encbuffer, 1, (int)curlen, ofp);

totbw += br;}

14.0nce all the data has been processed, we need to finalize the encryption and digest operation.

a. To finish the encryption, we use the C_EncryptFinal call, which finishes a multiple-part encryption
operation. The function requires the session handle, a pointer to the location that receives the last
encrypted data part, if any, and a pointer to the location that holds the length of the last encrypted data
part.

b. For finalizing the digest, we call C_DigestFinal, which finishes a multiple-part message-digesting
operation, returning the message digest. The function requires the session’s handle, a pointer to the
location that receives the message digest and a pointer to the location that holds the length of the
message digest.

/* finish off the encryption */

curlen = sizeof (encbuffer);

rv = C_EncryptFinal (hrSession, encbuffer, &curLen);
CHECK RV (FN "C EncryptFinal", rv);

if (rv) return 1;

if (curlLen) {

br = fwrite (encbuffer, 1, (int)curlen, ofp);
totbw += br;}

if (totbw != fileSize) {

fprintf (stderr, "size prediction incorrect %1d,
%1d\n", totbw, fileSize);}

/* finish off the digest */

len = sizeof (digest);

rv = C DigestFinal (hrSession, digest, &len);
CHECK RV (FN "C DigestFinal", rv);

if (rv) return 1;

15.1f the password-based encryption flag was set, we use the digest created in the above process as our
signature, since there is no recipient key to sign the data with. For our DES encryption we will sign the
digest with our recipient’s public key.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 413

Chapter 8: API Tutorial: Development of a Sample Application

a. The function C_Signlinit is our first call and initializes a signature operation, where the signature is an
appendix to the data. The function requires the session’s handle, a pointer to the signature mechanism
and the handle of the signature key.

b. We also need to specify a mechanism to use for our signature operation, in this case CKM_RSA PKCS,
which is an RSA PKCS #1 mechanism.

c. The signature generation is performed with the call to C_Sign that signs data in a single part, where the
signature is an appendix to the data. The function requires the session’s handle, a pointer to the data,
the length of the data, a pointer to the location that receives the signature, and a pointer to the location
that holds the length of the signature.

if (pflag) {

slen = len;

memcpy (signature, digest, slen);

}

else {/* Set up the signature operation */memset (&mech, 0, sizeof (CK_
MECHANISM)) ;mech.mechanism = CKM RSA PKCS;rv = C_SignInit (hsSession, &mech, hsKey) ;CHECK RV
(FN "C SignInit", rv);if (rv) return 1;slen = sizeof (signature);rv = C Sign(hsSession,
digest, len, signature, &slen);CHECK RV(FN "C SignInit", rv);if (rv) return 1;

}

/* write the signature to the file */

encodedSize = htonl ((unsigned long) slen);

br = fwrite (&encodedSize, 1, sizeof (encodedSize), ofp);

br = fwrite(signature, 1, (int)slen, ofp);

/* clean up */

fclose (ifp);

fclose (ofp);

}

C CloseSession (hrSession);

C CloseSession (hsSession);

return 0;

}

Decrypt Function

For our decryption, we want to basically reverse the processes that were covered previously in the encryption
section.

1. Following the initial function setup, we firstly check for our input and output files.

2. Once file existence is established, we test for our password-based encryption runtime switch. It can be
seen that once again we generate the same secret key from the input password that we will need for the
decryption. Since this was a secret key cipher, we use the same key for encryption as well as decryption.

#undef FN

#define FN "decryptFile:"

int decryptFile(char * sender, char * recipient,char * ifile, char * ofile)
{

CK_SLOT ID hsSlot;

CK OBJECT HANDLE hsKey;
CK_SESSION HANDLE hsSession;
CK SLOT ID hrSlot;

CK_OBJECT HANDLE hrKey;
CK_SESSION HANDLE hrSession;
CK RV rv;

CK MECHANISM mech;

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 414

Chapter 8: API Tutorial: Development of a Sample Application

CK_BYTE digest[80];
CK SIZE len;
CK_OBJECT HANDLE hKey;
CK BYTE wrappedKey[2 * 1024];
CK SIZE wrappedKeylen;
CK BYTE signature[2 * 1024];
CK_BYTE iv[8];
unsigned long encodedSize;
FILE * ifp;
FILE * ofp;
int br;
ifp = fopen(ifile, "rb");if (ifp == NULL) {fprintf(stderr, "Cannot open %s for
input\n",ifile);
return -1;
}
ofp = fopen(ofile, "wb");
if (ofp == NULL) {
fprintf (stderr, "Cannot open %s for input\n",ofile); return -1; }
if (pflag) {/* use PBE to do the encryption */static CK OBJECT CLASS at class = CKO SECRET
KEY;static CK KEY TYPE kt = CKK DES2; static const CK BBOOL True = TRUE;static const CK BBOOL
False = FALSE;CK ATTRIBUTE attr[] = {

{CKA CLASS, &at class, sizeof(at class)}, {CKA KEY TYPE, &kt, sizeof(at class)}, {CKA
EXTRACTABLE, (void*)&True,
sizeof (True) },

{CKA SENSITIVE, (void*)s&False,
sizeof (False) },

{CKA DERIVE, (void*)&True, sizeof(True)} };CK BYTE iv[8]; CK PBE PARAMS params; memset
(¶ms, 0x0, sizeof (CK PBE PARAMS));params.plnitVector = iv;params.pPassword =
sender;params.passwordLen = strlen(sender);params.pSalt = NULL;params.saltlLen =
0;params.iteration = 1;
memset (émech, 0x0, sizeof (CK MECHANISM));mech.mechanism = CKM PBE SHAl DES2 EDE
CBC;mech.pParameter = ¶ms;mech.parameterlLen = sizeof(CK_PBE_PARAMS);
rv = C OpenSession (0,

CKF_RW_SESSION | CKF_SERIAL_SESSION, NULL,

NULL, &hsSession);

if (rv) return 1;

hrSession = hsSession;

rv = CiGenerateKey(hsSession, &mech, attr,

NUMITEMS (attr),

&hKey) ;CHECK RV (FN "C GenerateKey:CKM PBE SHAl DES2 EDE CBC", rv);if (rv) return 1;
memset (émech, 0x0, sizeof (CK MECHANISM));mech.mechanism = CKM SHAl KEY DERIVATION;

rv = C DeriveKey (hsSession, &mech, hKey, attr,NUMITEMS (attr), &hrKey);CHECK RV(EN "C
DeriveKey:CKM SHAl KEY DERIVATION", rv); if (rv) return 1;}

3. Forour public key cipher, we will use the recipient’s private RSA key to unwrap the secret DES key
contained in the input file. The DES key will then be used to decrypt the file.

The PKCS#11 function C_UnwrapKey is used to decrypt (unwrap) a wrapped key, creating a new private
key or secret key object. This function requires the session handle, a pointer to the unwrapping mechanism,
the handle of the unwrapping key, a pointer to the wrapped key, the length of the wrapped key, a pointer to
the template for the new key, the number of attributes in the template, and a pointer to the location that
receives the handle of the recovered key.

else {

/* decrypting */

rv = FindKeyFromName (sender, CKO CERTIFICATE,

&hsSlot, &hsSession, &hsKey);if (rv) {rv = FindKeyFromName (sender, CKO_ PUBLIC KEY,

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 41 5

Chapter 8: API Tutorial: Development of a Sample Application

&hsSlot, &hsSession, &hsKey);
}
if ((rv) {
fprintf (stderr, "Unable to access sender (%s)key\n",
sender) ;CHECK RV (FN "FindKeyFromName", rv);if (rv) return 1;
}rv = FindKeyFromName (recipient, CKO_PRIVATE KEY, &hrSlot, &hrSession, &hrKey);if (rv)
{fprintf (stderr, "Unable to access recipient (%s)
key\n", recipient) ;CHECK RV (FN "FindKeyFromName", rv);if (rv) return 1;}
/* read the encrypted key to the file */br = fread(&encodedSize, 1, sizeof (encodedSize),
ifp);wrappedKeyLen = (CK SIZE) ntohl ((unsigned long)
encodedSize) ;br = fread(wrappedKey, 1, (int)wrappedKeylLen, ifp);
/* unwrap decryption key with the recipients private key
*/
memset (&mech, 0, sizeof (mech)) ;
mech.mechanism = CKM RSA PKCS;
rv = C UnwrapKey (hrSession, &mech, hrKey,
wrappedKey, wrappedKeylen, wrappedKeyTemp, NUMITEMS (wrappedKeyTemp), &hKey) ;
CHECK_RV(FN "C UnwrapKey", rv) ;
if (rv) return 1;

}

4. Now that we have recovered the decryption key, we perform our initialization in exactly the same manner as
for our encryption, but using the function C_Decryptlnit. The digest is calculated in the same manner used
for the encryption.

5. For the file decryption we are using the functions C_DecryptUpdate and C_DecryptFinal which take the
same parameters as their encrypt counterparts.

/* set up the decryption operation using the random key */
memset (émech, 0, sizeof (CK MECHANISM)) ;
mech.mechanism = CKM DES3 CBC PAD;
memset (iv, 0, sizeof (iv));
mech.pParameter = iv;
mech.parameterLen = sizeof (iv);
rv = C DecryptInit (hrSession, &mech, hKey);
CHECKﬁRV(FN"CiEncryptInit", rv);
if (rv) return 1;
/* Set up the digest operation */
memset (émech, 0, sizeof (CK MECHANISM)) ;
mech.mechanism = CKM SHA 1;
rv = C DigestInit (hrSession, &mech);
CHECK RV(FN "C DigestInit", rv);
if (rv) return 1;
{
CK SIZE curLlen;
CK SIZE slen;
unsigned char buffer[10 * 1024];
unsigned char decbuffer[10 * 1024];
unsigned int br;
br = fread(&encodedSize, 1, sizeof (encodedSize), ifp);
encodedSize = htonl (encodedSize);
for (;encodedSize > 0;) {
br = sizeof (buffer);
if (encodedSize < br)

br (unsigned int)encodedSize;br = fread(buffer, 1, br, ifp);encodedSize -= br;if (br) {
curLen = sizeof (decbuffer); rv = C DecryptUpdate (hrSession, buffer, (CK SIZE) br,
decbuffer, &curlen); CHECK RV (FN "C DecryptUpdate", rv); if (rv) return 1l;rv = C_

DigestUpdate (hrSession, decbuffer,

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 416

Chapter 8: API Tutorial: Development of a Sample Application

curlLen); CHECK RV(FN "C DigestUpdate", rv); if (rv) return 1;br = fwrite(decbuffer, 1,
(unsigned

int) curlen,

ofp) ;

}}curLen = sizeof (decbuffer);rv = C DecryptFinal (hrSession, decbuffer, &curLen);CHECK RV (FN "C
DecryptFinal", rv);

if (rv) return 1;if (curlen) {br = fwrite(decbuffer, 1, (unsigned int)curlen,

ofp); rv = C DigestUpdate (hrSession, decbuffer, curLen);CHECK RV(FN "C DigestUpdate", rv);
}

len = sizeof (digest);

rv = C DigestFinal (hrSession, digest, &len);

CHECK RV(FN "C DigestFinal", rv);

if (rv) return 1;

6. Finally, we verify the signature contained in the data file. Since the signature is identical to the digest when
using the password-based encryption option, it is a simple matter of comparing the two. For our DES
encryption on the other hand, we need to verify the signature against the sender’s public key.

To perform this we start by calling C_Verifylnit that initializes a verification operation, where the signature
is an appendix to the data. This function requires the session’s handle, a pointer to the structure that
specifies the verification mechanism and the handle of the verification key.

/* read the signature from the file */br = fread(&encodedSize, 1, sizeof (encodedSize),
ifp);slen = (CK_SIZE) ntohl((unsigned long) encodedSize);br = fread(signature, 1, (unsigned
int)slen, ifp):;

if (pflag) {

if (memcmp (digest, signature, len)) {fprintf(stderr, "Verify failed\n");return 1;
}

}

else {

/* Set up the signature verify operation */

memset (émech, 0, sizeof (CK MECHANISM)) ;

mech.mechanism = CKM RSA PKCS;

rv = C VerifyInit (hsSession, &mech, hsKey);

CHECK RV(FN "C VerifyInit", rv);

if (rv) return 1;

rv = C Verify(hsSession, digest, len, signature, slen);

if ((rv) {

C ErrorString(rv,ErrorString, sizeof (ErrorString));fprintf(stderr, "Verify failed 0x%x, %s\n",
rv, ErrorString); }}

/* clean up */

fclose (ifp);

fclose (ofp);

}

C CloseSession (hrSession);

C CloseSession (hsSession);

return (int)rv;

}

FCrypt Usage

When no command line inputs are received by the application, it can be useful to show the required inputs on
screen in a help context.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 41 7

Chapter 8: API Tutorial: Development of a Sample Application

void usage (void) { printf("usage fcrypt -d [-s<sender>] [-r<recipient>]

[-o<output file>] <input file>\n");printf(" or\n");printf("usage fcrypt -d [-p<password>] [-
o<outputfile>]

<input file>\n");printf(" -d decrypt\n");printf(" -p PBE password\n");printf(" -s Sender
name\n");printf(" -r Recipient name\n");printf(" -o output file name\n");printf(" -t Report
timing infol\n");printf("\nKey naming syntax :\n");printf(" <token name>(<user pin>)/<key
name>\n");printf(" for example, -sAlice(0000)/Sign\n"

)i}

Wrapped Encryption Key Template

The DES encryption key that we wrap with the user RSA key will need to have its attributes specified within a
template as follows:

/* Wrapped encryption key template */static char True = TRUE;static CK OBJECT CLASS Class = CKO_
SECRET KEY;static CK KEY TYPE Kt = CKK DES2;static CK ATTRIBUTE wrappedKeyTemp[] = {

{CKA CLASS, &Class, sizeof (Class)}, {CKA KEY TYPE, &Kt, sizeof (Kt)}, {CKA EXTRACTABLE, &True, 1},
{CKA ENCRYPT, &True, 1},1};

Assembling the Application

1. Now bring all the required components for the FCrypt application together in the main application body.

#undef FN

#define FN "main:"

int main(int argc, char ** argv)

{ CK RV rv; int err = 0O;char * arg;char * sender = NULL; /* provides signing key */char *

recipient = NULL; /* provides encryption key */char * ofile = "file.enc"; /* default output
file name
*/ printf("Cryptoki File Encryption $Revision: 1.1 $\n");printf("Copyright (c) SafeNet, Inc

1999-2006\n");

2. Thefirst call within a PKCS#11 application must be C_Initialize, which initializes the PKCS#11 library. The
function takes as an argument either value NULL_PTR or points to a CK_C_INITIALIZE_ARGS structure
containing information on how the library should deal with multi-threaded access — no threading information
is required for SafeNet ProtectToolkit-C, so a NULL_PTR s used as the argument.

3. The function call to CT_ErrorString is part of the SafeNet ProtectToolkit-C extended capability within
CTUTIL.H and converts a PKCS#11 error code into a printable string.
/* This must be the first PKCS#11 call made */
rv = C Initialize (NULL PTR);
if ((rv) {
C ErrorString(rv,ErrorString,sizeof (ErrorString)); fprintf (stderr, "C Initialize error %x,
%$s\n", rv,ErrorString);}

4. Since SafeNet supports versions of PKCS#11 that are incompatible with one another, the
CheckCryptokiVersion function is called to ensure that an application compiled for V1.X compliance is
not going to fail if it links against a V 2.X-compliant DLL and vice versa. This function is part of the extended
SafeNet ProtectToolkit-C functionality within CTUTIL.H and ensures that the version of PKCS#11 is
correct.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 418

Chapter 8: API Tutorial: Development of a Sample Application

/* Check PKCS#11l version */
rv = CheckCryptokiVersion();
if (rv) {printf("Incompatible PKCS#11l version (0x%x)\n", rv); return -1;
}
/* process command line arguments */
for (argv++; (arg = *argv) != NULL; argv++) {
if (arg[0] == '-' || arg[0] == "/"') |
switch(arg[l]) |
case 'd':
dflag = 1;break;
case 't':
tflag = 1;
break;
case 'o':
ofile = arg+2;
break;
case 's':
sender = arg+2;
break;
case 'r':
recipient = arg+2;
break;
case 'p': recipient = sender = arg+2; pflag = 1; break;
default:
usage () ;
return 1;
}
}

else {

time t now, tl, t2; /* we will time the operation */

if (sender == NULL || recipient == NULL) {usage(); return 2;

}

if (tflag) {/* Mark the time now */for (tl = now = time(NULL); now == tl;)

tl = time (NULL) ;
}
/* process the file */if (dflag)err = decryptFile(sender, recipient, arg,ofile);else err =
encryptFile(sender, recipient, arg,ofile);
/* report error or timing */if (err) {fprintf(stderr, "Error %scrypting file
%s\n", dflag?"de":"en", arg); l}else if (tflag) {
t2 = time (NULL) ;
printf ("$d seconds\n", t2-tl);

}
}
}
/* shut down PKCS#11 operations */

5. When the application is done using PKCS#11, it calls the PKCS#11 function C_Finalize and ceases to be a
PKCS#11 application. It should be the last PKCS#11 call made by an application. The parameter is
reserved for future versions and should be setto NULL_PTR.

rv = C Finalize (NULL PTR);

if (rv) {C ErrorString(rv,ErrorString,sizeof (ErrorString));fprintf(stderr, "C Finalize error
$x, %s\n", rv,

ErrorString);

}

return err;

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 419

CHAPTER 9:
PKCS#11 Logger Library

The logger library produces a log of all PKCS#11 function calls called by an application. It is a useful tool for
debugging applications that are developed using the SafeNet ProtectToolkit-C API.

This library can be used with SafeNet ProtectToolkit-C in any of the three operating modes; hardware,
client/server or software only.

This chapter contains the following sections:
>

>
>
>

Logger Architecture and Functionality

Figure 8: PKCS#11 Logger Architecture Model

Application
Log File +— Logger Library
ProtectToolkit C

Host Library

The logger is interposed between the application and the SafeNet ProtectToolkit-C host library. There, it
intercepts PKCS#11 function calls and responses. Details are logged to the log file before the messages are
passed through to their intended destination.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 420

Chapter 9: PKCS#11 Logger Library

For each PKCS#11 call, the logger creates an entry in the log file. By default, these entries contain the following
details:

\"

the calling process ID (PID)
> thethread ID (TID)

> the date and time of the call

> all numeric data

> buffer addresses

> contents of buffer addresses at the input and output of functions (excluding PIN values)
Optionally, the logger may be configured to:

> return the PIN values used to login to tokens that are provided to the C_Login function
> remove any or all of the following from the output:

> the calling process ID (PID)

> thethread ID (TID)

> the date and time of the call

>

contents of buffer addresses at the input and output of functions

Logger Setup

As discussed above, the logger logs information passing between an application and the SafeNet
ProtectToolkit-C host library to a log file. The following configuration steps must be carried out before starting
the application.

1. Activate logging by setting up redirection of SafeNet ProtectToolkit-C host library calls sent from the
application so that they are instead delivered to the logger.

2. Store the name and filepath of the SafeNet ProtectToolkit-C host library file for the logger to use when
forwarding the redirected calls it receives to their intended destination.

If required, you may also:
3. Change the name and location of the log file from the default values.
4. Change the amount of detail recorded by the logger from the default settings.

Each of these steps is covered in detail in the sections that follow. Once they have been carried out, the logger
is active whenever the application is running. To deactivate the logger, see

Activating Logging

Logging is activated by setting up redirection of SafeNet ProtectToolkit-C host library calls sent from the
application so that they are instead delivered to the logger. This procedure differs between Windows and UNIX
systems. To activate logging, consult the section below applicable to your operating system.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 421

Chapter 9: PKCS#11 Logger Library

Windows Systems

To activate logging on a Windows-based system, SafeNet ProtectToolkit-C host library calls are redirected to
the logger by replacing the path to the SafeNet ProtectToolkit-C host library (Cryptoki provider) that was added
to the Path environment variable during installation, with the path to the logger. The SafeNet ProtectToolkit-C
host library and the logger are both named cryptoki.dll so the application does not detect any difference and
is unaffected by this change.

The path to the logger that must replace the host library path is:
<installation directory>\bin\logger

For example, if the installation path is:

C:\Program Files\SafeNet\Protect Toolkit 5\Protect Toolkit C SDK\bin\hsm

Replace it with:

C:\Program Files\SafeNet\Protect Toolkit 5\Protect Toolkit C SDK\bin\logger

To access the Path environment variable for editing, follow standard procedure for your system. Typically, the
following steps are followed:

1. Right click My Computer on the desktop and select Properties.

2. Inthe System Properties dialog box, select the Advanced tab and click the Environment Variables
button.

3. Inthe Environment Variables dialog box, locate and select the Path variable under System Variables
and select the Edit button.

4. Inthe Edit System Variable dialog box, make the change to the Variable Value as outlined above and
click the OK button. Close all other dialog boxes to complete the operation.

UNIX Systems

To activate logging on a UNIX based system, SafeNet ProtectToolkit-C host library calls are redirected to the
logger by:

1. Reassigning the libcryptoki.so (libcryptoki.sl for HP-UX on PA-RISC, libcryptoki.a for AIX) symbolic link
from the SafeNet ProtectToolkit-C host library (Cryptoki provider) that was set up during installation to the
logger shared library liblogger.so (liblogger.sl for HP-UX on PA-RISC, liblogger.a for AlX).

2. Including the logger library in the LD_LIBRARY_PATH (SHLIB_PATH for HP-UX on PA-RISC, LIBPATH on
AIX) environment variable.

The application does not detect any difference and is unaffected by this change.
For example, use the following commands to reassign the libcryptoki.so symbolic link:

cd /opt/safenet/protecttoolkit5/ptk/lib # In —sf liblogger.so libcryptoki.so

Storing SafeNet ProtectToolkit-C Host Library File Details

To store the name of the SafeNet ProtectToolkit-C host library file and the path to it for use by the logger when
forwarding redirected calls, create the configuration item:

ET_PTKC_LOGGER_PKCS11LIB

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 422

Chapter 9: PKCS#11 Logger Library

and set its value to that of the full path required. For example: C:\Program Files\SafeNet\Protect Toolkit
5\Protect Toolkit C SDK\bin\hsm\cryptoki.dll should be added for Windows systems.

This change can be made at the temporary, user or system levels on both UNIX and Windows platforms. Refer
to the Configuration ltems section in the SafeNet ProtectToolkit-C Administration Manual for more
information.

NOTE There are no default values for this item so this step must be completed, otherwise
calls cannot be forwarded and the system will fail.

Storing Log File Details

By default log entries are written to a text file named ctlog.log. The full path is:
> \ctlog.log on Windows systems or
> $HOME/ctlog.log on UNIX systems

To change the file name and or location to something other than the default, create the configuration item, ET_
PTKC_LOGGER _FILE, and set its value to that of the full path required.

This change can be made at the temporary, user or system levels on both UNIX and Windows platforms. Refer
to the Configuration Items section in the SafeNet ProtectToolkit-C Administration Manual for more
information.

Changing Detail Recorded by the Logger

The table below lists the configuration items that control the level of detail recorded by the logger. The meaning
of each configuration item is given, along with the default values that apply in the absence of each particular
configuration item.

To change the level of detail recorded, override any of the default values shown. To do this, create the
corresponding configuration item and set its value to either TRUE or FALSE as required.

The changes can be made at the temporary, user or system levels on both UNIX and Windows platforms.
Refer to the Configuration Items section in the SafeNet ProtectToolkit-C Administration Manual for more
information.

Configuration Meaning
Item

ET PTKC_ If TRUE, the calling process ID (PID) s included in log messages. Default=TRUE
LOGGER_
LOGPID

ET_PTKC_ If TRUE, the thread ID (TID) is included in log messages. Default=TRUE
LOGGER_
LOGTID

ET_PTKC_ If TRUE, the date and time of each message is included in the log. Default=TRUE
LOGGER_
LOGTIME

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 423

Chapter 9: PKCS#11 Logger Library

Configuration Meaning

Item

ET PTKC_ If TRUE, all numeric data, buffer addresses and the contents of buffer addresses at the input and

LOGGER_ output of functions (excluding PIN values)is included in log messages. If FALSE then the contents

LOGMEM of buffer addresses at the input and output of functions is omitted. Numeric data and buffer
addresses are retained. Default=TRUE

ET PTKC_ If TRUE, the PIN values passed to C_Login, that are used to login to tokens, are included in log

LOGGER _ messages. Defauli=FALSE

LOGPIN

Deactivating Logger Operation

To deactivate the logger, the steps taken in must be reversed. Consult the
applicable section for your system.

Windows Systems

The path to the logger added to the PATH environment variable must be replaced by the path to the SafeNet
ProtectToolkit-C host library required.

For example, if SafeNet ProtectToolkit-C is being used in hardware mode in conjunction with a SafeNet
ProtectServer adapter, and the path to the logger is:

C:\Program Files\SafeNet\Protect Toolkit 5\Protect Toolkit C SDK\bin\logger

In the PATH replace with:

C:\Program Files\SafeNet\Protect Toolkit 5\Protect Toolkit C SDK\bin\hsm

UNIX Systems

The symbolic link libcryptoki.so (libcryptoki.sl for HP-UX on PA-RISC, libcryptoki.a for AIX) must be re-
assigned to the SafeNet ProtectToolkit-C host library required.

For example, if SafeNet ProtectToolkit-C is being used in hardware or client/server mode, the commands to
use would be:

cd /opt/safenet/protecttoolkit5/ptk/lib# 1ln -sf liblogger.so libcthsm.so

In software-only mode, use the following commands:

cd /opt/safenet/protecttoolkit5/ptk/lib# 1ln -sf liblogger.so libctsw.so

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 424

CHAPTER 10:
PKCS#11 Command Reference

This chapter provides a reference guide to PKCS#11 functions. It contains the following sections:

V VvV V V V V V V V V V VvV VvV V

"General Purpose Functions" on the next page

"Slot and Token Management Functions" on page 428
"Session Management Functions" on page 436

"Object Management Functions" on page 442
"Encryption Functions" on page 447

"Decryption Functions" on page 449

"Message Digesting Functions" on page 451

"Signing and MACing Functions" on page 453
"Functions for Verifying Signatures and MACs" on page 456
"Dual-function Cryptographic Functions" on page 459
"Key Management Functions" on page 461

"Random Number Generation Functions" on page 464
"Parallel Function Management Functions" on page 465

"Extra Functions" on page 466

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

425

Chapter 10: PKCS#11 Command Reference

General Purpose Functions

This section describes the following PKCS#11 functions:

>
>

>

>
C_lInitialize
Synopsis

C Initialize(
CK VOID PTR pInitArgs
)

Description
C_INITIALIZE initializes the Cryptoki library.

The plInitArgs either has the value NULL_PTR or points to a CK_C_INITIALIZE_ARGS structure containing
information on how the library should deal with multi-threaded access.

If the system is currently uninitialized, this function will perform a full initialization. This means that any
configuration changes since the last full initialization will now take effect. If the system is already initialized, this
function will simply prepare it for the new application.

Operation in WLD Mode

When SafeNet ProtectToolkit is configured to operate in WLD mode and C_INITIALIZE() is invoked, the user
slots associated with WLD slots are interrogated to assess their availability. User slots are defined as
associated with a WLD slot when they contain a token with a token label that matches that of the WLD slot.

If, for every WLD slot, there are no associated user slots available, the error CKR_TOKEN_NOT_PRESENT is
returned. If, however, at least one associated user slot is available for at least one WLD slot the error CKR _
TOKEN_NOT_PRESENT will not be returned.

NOTE The token labels for WLD slots are defined in the WLD environment variables ET_
PTKC_WLD_SLOT n. Refer to the SafeNet ProtectToolkit-C Administration Manual for
details regarding configuration of WLD environment variables.

C_Finalize

Synopsis
C Finalize(

CK VOID PTR pReserved
)

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 426

Chapter 10: PKCS#11 Command Reference

Description
This function behaves as specified in PKCS#11, but with the following additional features:

If there are no other active applications, SafeNet ProtectToolkit-C will free all allocated resources. The next call
to C_INITIALIZE will therefore perform a full initialization of the system updating for any configuration
changes.

C_GetInfo

Synopsis
C GetInfo(

CK_INFO_PTR pInfo
)

Description
This function behaves as specified in PKCS#11.

The cryptokiVersion value is 2.11.

The manufacturerld is "SafeNet, Inc.”

The flags are all zero.

The libraryDescription is “ProtectServer ”, “CSA8000”, “CSA7000” or “Software Only” as appropriate.*

The libraryVersion represents the current version release number

C_GetFunctionList

Synopsis
C GetFunctionList (

CK_FUNCTION LIST PTR PTR PTR ppFunctionList
)

Description
This function behaves as specified in PKCS #11.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 427

Chapter 10: PKCS#11 Command Reference

Slot and Token Management Functions

This section describes the following PKCS#11 functions:

V V. VvV VvV vV V VvV V V VvV V

C_GetSlotList

Synopsis

C GetSlotList(
CK BBOOL tokenPresent,
CK SLOT ID PTR pSlotList,
CK _ULONG_ PTR pulCount

)i

Description
This function operates as specified in PKCS#11.

Note however that when multiple devices are installed in a single machine they will appear as a set of
consecutive slots. For example, for two devices using their default configuration, 4 slots are visible. The first
and third slots are normal user slots, the second and fourth slots are the Admin slots for their respective
adapters.

Operation in WLD Mode
When SafeNet ProtectToolkit is configured to operate in WLD mode, this function returns the list of slots
specified in the WLD configuration. Specifically:

> When tokenPresentis FALSE, and pSlotListis NULL_PTR, the value *pulcount is set to hold the number of
WLD Slots.

> When tokenPresentis FALSE, and pSlotList is not NULL_PTR, the value *pulcount is set to hold the number
of WLD Slots and pSlotList contains the list of WLD Slots.

> When tokenPresentis TRUE, and pSlotListis NULL PTR, the value *pulcount is set to hold the number of
WLD Slots that have available HSM Tokens.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 428

Chapter 10: PKCS#11 Command Reference

> When tokenPresentis TRUE, and pSlotListis not NULL_PTR, the value *pulcountis set to hold the number
of WLD Slots that have available HSM Tokens and pSlotList contains the list of WLD Slots that have
available HSM Tokens.

C_GetSlotinfo

Synopsis

C GetSlotInfo(
CK _SLOT ID slotID,
CK_SLOT_INFO PTR pInfo

Description
This function operates as specified in PKCS#11.

The information returned will vary depending on the SafeNet ProtectToolkit-C runtime in use as well as the
actual slot type, for example, if it is a SafeNet ProtectToolkit-C user slot or a Smart Card slot.

This information is returned in the CK_SLOT _INFO structure.

SlotDescription “ProtectServer :xxxx, “Safenet Software Only.” or smart card reader type.*
Where xxxx is the slot serialnumber

ManufacturerlD "SafeNet, Inc.” or smart card reader manufacturer.
Flags CKF_HW_SLOT (hardware only), CKF_REMOVABLE_DEVICE (smart card slots only).
HardwareVersion Current hardware revision or 0.0 for software only.

FirmwareVersion Current firmware version or 0.0 for software only.

Operation in WLD Mode

When SafeNet ProtectToolkit is configured to operate in WLD mode, a random slot from the HSM Token List
for the provided slot ID is chosen, so as not to overload a particular device and the command is forwarded to
that slot. The following WLD specific information is returned in the CK_SLOT_INFO structure:

SlotDescription =~ The slot description specified for the virtual WLD Slot in environment variables ET_ PTKC_WLD _
SLOT n.

Refer to SafeNet Protect Toolkit-C Administration Manual for details.

Flags The CKF_WLD_SLOT bit is set to indicate that it is a WLD Slot.

If there are no HSM Tokens available for the particular slot, then the CKF_TOKEN_PRESENT bit
inis setto 0.

1 This breaks PKCS#11 compliance, as this bit should be set to 0 if and only if CKF_ REMOVABLE_DEVICE is
set. The CKF_REMOVABLE_DEVICE bit is set only for Smart card Slots in the SafeNet implementation.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 429

Chapter 10: PKCS#11 Command Reference

C_GetTokenlInfo

Synopsis
C GetTokenInfo (

CK_SLOT ID slotID,
CK_TOKEN INFO PTR pInfo

);

Description

This function operates as specified in PKCS#11. The information returned will vary depending on the type of
slot specified by the slotlD parameter. This information is returned inthe CK_TOKEN INFO structure.

Label

ManufacturerlD

Model

SerialNumber

Flags

ulMaxSessionCount

ulSessionCount

ulMaxRwSessionCount

ulRwSessionCount

ulMaxPinLen

UIMinPinLength

This is the string specified by the user during the C_InitToken command, unless the token
is the administration token, in which case the value is:

AdminToken(ssss)
Where ssss is the HSM serial number.

"SafeNet, Inc.”

“PSI-E2:PLxxx”
Where xxx is the performance level or smartcard manufacturer.

“XXXX-XXXX”

Where the first field is the HSM serial number and the second field is a randomly assigned
token serial number or the smartcard serial number.

CKF_RNG (for non-smart card slots only) + CKF_CLOCK_ON_TOKEN (if the module’s
clock has been set) + CKF_DUAL_CRYPTO_OPERATIONS + Other flags based on the
current state of the slot. CKF_LOGIN_REQUIRED flag is set if the security mode
specifies “no public crypto”. Admin slot have CKF_ADMIN_TOKEN and CKF_LOGIN_
REQUIRED set.

The value of that CKA_MAX_SESSIONS for the associated slot object.

Determined at run time — this is the total number of session to this Token by all
applications.

The value of that CKA_MAX_SESSIONS for the associated slot object.

Determined at run time — this is the number of RW sessions the calling application has to
the Token.

CK_MAX_PIN_LEN = 32.

This is the value specified in the configuration as shown by the CKA_MIN_PIN attribute of
the slot object.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 430

Chapter 10: PKCS#11 Command Reference

UlTotalPublicMemory
ulFreePublicMemory

ulTotalPrivateMemory
ulFreePrivateMemory

hardwareVersion

Determined at run time.
Determined at run time.
Determined at run time.
Determined at run time.

‘G’.0 (or later)

FirmwareVersion 1.0 (or later)

UtcTime

Operation in WLD Mode

Current time is returned if the modules clock has been set (else ASCII zeros are returned).

When SafeNet ProtectToolkit is configured to operate in WLD mode, a random slot from the HSM Token List
for the provided slot ID is chosen, so as not to overload a particular device and the command is forwarded to

that slot. The following WLD specific information is returned in the CK_TOKEN_INFO structure:

SerialNumber = The serial number specified for the virtual WLD Slot in environment variables ET_PTKC_WLD _

SLOT_n. Refer to SafeNet ProtectToolkit-C Administration Manual for details.

Flags The CKF_WLD_TOKEN bit is set to indicate that it is a WLD Token.

C_WaitForSlotEvent

Synopsis

C WaitForSlotEvent (
CK FLAGS flags,
CK_SLOT_ID PTR pSlot,
CK VOID PTR pReserved

Description
This function operates as specified in PKCS#11 except:

The library cannot block while waiting for an event therefore the CKF_ DONT BLOCK must always be set.
If CKF_DONT BLOCK is not set and there is no event pending on any slot then:

CKR_FUNCTION FAILEDIisreturned.

Slot Events supported:

There are no events supported by this library.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

431

Chapter 10: PKCS#11 Command Reference

C_GetMechanismList

Synopsis

C _GetMechanismList (
CK SLOT ID slotID,
CK MECHANISM TYPE PTR pMechanismList,
CK_ULONG_PTR pulCount

)7

Description
This function operates as specified in PKCS#11.

See the section Mechanisms for a description of the mechanisms supported by this module.

Please note the list of mechanisms may vary at run time depending on Mode settings and other configuration
values. For example the smart card slots do not support any mechanisms.

Operation in WLD Mode

When SafeNet ProtectToolkit is configured to operate in WLD mode, a random slot from the HSM Token List
for the provided slot ID is chosen, so as not to overload a particular device and the command is forwarded to
that slot.

C_GetMechanisminfo

Synopsis

C_GetMechanismInfo (
CK_SLOT_ID slotID,
CK_MECHANISM TYPE type,
CK MECHANISM INFO PTR pInfo

Description

This function operates as specified in PKCS#11 with the following exception. Normally SafeNet ProtectToolkit-
Cwillreturn CKR_ MECHANISM INVALID if the mechanism type is not recognized, however, if the
EntrustReady Mode is set, the structure pointed to by pInfo is cleared and CKR_OK is returned.

See the section Mechanisms for a description of the mechanisms supported by this module.

Operation in WLD Mode

When SafeNet ProtectToolkit is configured to operate in WLD mode, a random slot from the HSM Token List
for the provided slot ID is chosen, so as not to overload a particular device and the command is forwarded to
that slot.

C_InitToken

Synopsis

C InitToken(
CK SLOT ID slotID,
CK CHAR PTR pPin,

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 432

Chapter 10: PKCS#11 Command Reference

CK _ULONG ulPinLen,
CK _CHAR PTR pLabel
)i

Description

This function operates as specified in PKCS#11 but with these following extensions. This function is disabled if
the NoClearPINs flag is set in the Mode register. Any attempt to call this function in this mode will resultin a
resultinthe CKR_ACCESS DENIED error being returned. The Administrator must use the CT ResetToken
function instead.

The “protected authentication path” is not applicable to this module.
The module will detect if a session is active on the token and, if so, return CKR_SESSION_EXISTS.

If the token has been already initialized and the module is not in Entrust-ready modes then the supplied pin is
checked against the current SO pin. If the pin is correct, the token is wiped and the label is set (the SO pin is not
changed).

If the token is currently uninitialized, or the module is in Entrust-ready mode, the token is wiped, and the new
label and SO pin are set.

The Admin token may not be re-initialized, this function will return CKR_SLOT ID INVALID if the specified
slot id is the admin token.

Operation in WLD Mode
When SafeNet ProtectToolkit is configured to operate in WLD mode, this function is not supported and will
return the error CKR_FUNCTION_NOT_SUPPORTED.

CT _InitToken

Synopsis
CT InitToken (
CK_SESSION HANDLE hSession,
CK _SLOT ID slotID,
CK_CHAR PTR pPin,
CK _ULONG ulPinLen,
CK_CHAR PTR pLabel
)

Description
This function is a SafeNet extension to PKCS#11, it allows the Administrator to initialize a new Token.

Itinitializes the token indicated by slotld with the SO pin (pPin and ulPinLen) and pLabel.

The session hSession, must be a session to the Admin Token of the adapter and be in RW User Mode for this
function to succeed otherwise CKR_SESSION HANDLE INVALID isreturned.

The slotld value must refer to a valid slot where the token in the slot must be in an un-initialized state,
otherwise CKR_SLOT ID INVALID isreturned. If the slotID is valid but the token is not present then CKR
TOKEN NOT PRESENT is returned.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 433

Chapter 10: PKCS#11 Command Reference

Operation in WLD Mode
When SafeNet ProtectToolkit is configured to operate in WLD mode, this function is not supported and will
return the error CKR_FUNCTION_NOT_SUPPORTED.

CT_ResetToken

Synopsis
CT ResetToken (
CK SESSION HANDLE hSession,
CK_CHAR PTR pPin,
CK _ULONG ulPinLen,
CK_CHAR PTR pLabel

Description
This function is a SafeNet extension to PKCS#11, it will erase (reset) the token which the session is connected
to.

The session must be in RW SO Mode for this function to succeed otherwise
CKR USER NOT LOGGED IN isreturned.

This function allows Token Security Officers to reset a Token. The module will detect if other sessions are
active on the token and, if so, return CKR_ SESSION EXISTS.

This function will erase all objects it can from the token — depending on the token type some objects will no be
erased. The token is left in an initialized state where the SO pin and label are set as specified by the pPin and
pLabel parameters.

NOTE pPin becomes the new SO pin and need not match the old SO pin value. The session
is automatically terminated by this call.

Operation in WLD Mode
When SafeNet ProtectToolkit is configured to operate in WLD mode, this function is not supported and returns
the error CKR_FUNCTION_NOT_SUPPORTED.

C_InitPIN

Synopsis

C_InitPIN(
CK_SESSION HANDLE hSession,
CK_CHAR PTR pPin,
CK ULONG ulPinLen

);

Description

This function operates as specified in PKCS#11 with the following extensions. When the module is in the
NoClearPins mode, the host library protection system will encrypt the sensitive material before presenting it to
the adapter.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 434

Chapter 10: PKCS#11 Command Reference

The function returns an error if the Token has already had the user pin specified, that is, the SO does not have
the rights to replace a user pin, only initialize it.

Operation in WLD Mode
When SafeNet ProtectToolkit is configured to operate in WLD mode, this function is not supported and will
return the error CKR_FUNCTION_NOT_SUPPORTED.

C_SetPIN

Synopsis
C_SetPIN(
CK_SESSION HANDLE hSession,
CK_CHAR PTR pOldPin,
CK _ULONG ulOldLen,
CK_CHAR PTR pNewPin,
CK _ULONG ulNewLen

Description
This function operates as specified in PKCS#11.

When the module is in the NoClearPINs mode the host library protection system will encrypt the sensitive
material before presenting it to the adapter.

Operation in WLD Mode
When SafeNet ProtectToolkit is configured to operate in WLD mode, this function is not supported and will
return the error CKR_FUNCTION_NOT_SUPPORTED.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 435

Chapter 10: PKCS#11 Command Reference

Session Management Functions

NOTE SafeNet ProtectToolkit-C allows an application to have concurrent sessions with more
than one token. ltis also possible for a token to have concurrent sessions with more than one
application.

This section describes the following PKCS#11 functions:

V V VvV VvV VvV VvV VvV V

C_OpenSession

Synopsis
C OpenSession (
CK SLOT_ID slotID,
CK FLAGS flags,
CK VOID PTR pApplication,
CK NOTIFY Notify,
CK SESSION HANDLE PTR phSession

Description
This function operates as specified in PKCS#11 with the following exceptions:

> The Notify parameter is ignored.
> The CKF_SERIAL SESSION flagisignored.

> PKCS#11 states “If the application calling C_OpenSession already has a R/W SO session open with the
token, then any attempt to open a R/O session with the token fails with error code CKR_ SESSION READ
WRITE SO EXISTS”thisis notenforced with SafeNet ProtectToolkit-C.

Operation in WLD Mode

When SafeNet ProtectToolkit is configured to operate in WLD mode, the first C_OpenSession() call selects a
random token from the list of available WLD tokens to open the session with. Subsequent C_OpenSession()
calls, randomly select a token from those with the least number of sessions.

If successful, a WLD session handle is returned. The WLD session handle is internally mapped to the
appropriate HSM token and session handle.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 436

Chapter 10: PKCS#11 Command Reference

If unsuccessful, for ANY reason, another token is chosen and SafeNet ProtectToolkit-C retries to open a
session utilizing this token. This is repeated until either a session is opened successfully or no more tokens are
available.

If the HSM token used did not result in a session opening successfully for one of the following error conditions,
the token will no longer be considered for WLD for the life of the application:

> CKR_GENERAL_ERROR
> CKR_DEVICE_ERROR
> CKR_MESSAGE_ERROR number space (SafeNet vendor defined)

NOTE When the any of the above error conditions are detected C_OpenSession() will not
return the associated error code as SafeNet ProtectToolkit-C will retry to open a session using
another token until all tokens are exhausted. If there are no tokens available the error CKR _
TOKEN_NOT_PRESENT are returned.

C_CloseSession

Synopsis
C CloseSession(

CK_SESSION HANDLE hSession
)

Description
This function operates as specified in PKCS#11 with the following exception:

> SafeNet ProtectToolkit-C has no capability to “eject” the token from its reader.

C_CloseAllSessions

Synopsis

C CloseAllSessions (
CK_SLOT_ID slotID

)

Description
This function operates as specified in PKCS#11 with the following exception:

> SafeNet ProtectToolkit-C has no capability to “eject” the token from its reader. Further, this function will
perform a “logout” on each token if necessary.

C_GetSessioninfo

Synopsis
C GetSessionInfo(
CK_SESSION HANDLE hSession,
CK_SESSION INFO PTR pInfo
)i

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 437

Chapter 10: PKCS#11 Command Reference

Description
This function operates as specified in PKCS#11 with the following exception

> Any non-zero ulDeviceError value is cleared by this operation.

Operation in WLD Mode
When SafeNet ProtectToolkit is configured to operate in WLD mode, the following WLD specific information is
returned in the CK_SESSION_INFO structure:

SlotID The Slot Number specified for the virtual WLD Slot in environment variables ET_PTKC_WLD_SLOT n.
Refer to the SafeNet ProtectToolkit-C Administration Manual.

Flags The CKF_WLD_SESSION bit is set to indicate that it is a WLD Session.

C_GetOperationState

Synopsis
C GetOperationState (
CK _SESSION HANDLE hSession,
CK_BYTE PTR pOperationState,
CK _ULONG PTR pulOperationStateLen
)i

Description

C_GetOperationState obtains a copy of the cryptographic Operation State for a session, encoded as a string
of Bytes. hSession is the session’s handle; pOperationState points to the location that receives the state;
pulOperationStateLen points to the location that receives the length in bytes of the state.

SafeNet ProtectToolkit-C implements a subset of the full PKCS#11 specification — only the current Message
Digest state and object attribute search state may be saved and restored. This means that the current
encryption, decryption, signing and verification states are not saved by this function.

The state need not have been obtained from the same session (the “source session”) as it is being restored to
(the “destination session”). However, the source session and destination session should have a common
session state (e.g., CKS_RW_USER_FUNCTIONS), and should be with a common token. Message digest
operation states may be carried across logins but not across different Cryptoki implementations.

Operation in WLD Mode
When SafeNet ProtectToolkit is configured to operate in WLD mode, this function is not supported and will
return the error CKR_FUNCTION_NOT_SUPPORTED.

C_SetOperationState

Synopsis

C SetOperationState (
CK _SESSION HANDLE hSession,
CK_BYTE PTR pOperationState,
CK ULONG ulOperationStateLen,
CK _OBJECT HANDLE hEncryptionKey,

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 438

Chapter 10: PKCS#11 Command Reference

CK _OBJECT_ HANDLE hAuthenticationKey

Description

C_SetOperationState restores the cryptographic Operations State of a session from a string of bytes
obtained with C_GetOperationState. SafeNet ProtectToolkit-C implements a subset of the full PKCS#11
specification — only the current Message Digest state and object search state may be saved and restored.

hSession is the session’s handle; pOperationState points to the location holding the saved state;
ulOperationStateLen holds the length of the saved state; hEncryptionKey and hAuthenticationKey must
be zero.

The state need not have been obtained from the same session (the “source session”) as it is being restored to
(the “destination session”). However, the source session and destination session should have a common
session state (for example, CKS_RW _USER_FUNCTIONS), and should be with a common tokenMessage
digest operation states may be carried across logins but not across different Cryptoki implementations.

If C_SetOperationState is supplied with a saved cryptographic Operations State, which it determines is not a
valid saved State, it fails with the error CKR_SAVED STATE INVALID. Invalid States include cryptographic
Operations State from a session with a different session state and cryptographic Operations State from a
different token.

C_SetOperationState can successfully restore the message digest Operations State to a session, even if that
session has an active message digest or object search operation when C_SetOperationState is called. The
ongoing operations are abruptly cancelled. However if the saved state did not contain an active message
digest operation and the current session does, then the C_SetOperationState function will have no effect on
the current operation.

Operation in WLD Mode
When SafeNet ProtectToolkit is configured to operate in WLD mode, this function is not supported and will
return the error CKR_FUNCTION_NOT_SUPPORTED.

C _Login

Synopsis

C Login(
CK _SESSION HANDLE hSession,
CK_USER TYPE userType,
CK_CHAR PTR pPin,
CK ULONG ulPinLen

Description
This function operates as specified in PKCS#11 with the following exceptions:

> |Ifthe security mode NoClearPINs is enabled, then the pin value is encrypted by the host library before it is
supplied to the module.

> To negate a brute force attack on the PIN, after the third failed attempt, a delay is imposed delay
(incrementing in multiples of 5 seconds) until the next presented PIN is checked.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 439

Chapter 10: PKCS#11 Command Reference

For example, after the third failed attempt, the device imposes a delay of 1*5 seconds, after the fourth the
delay is 2*5=10 seconds, after the fifth, the delay is 3*5=15 seconds, and so on.

If a PIN presentation occurs before the delay period has expired, the attempt fails with CKR_PIN_LOCKED.

Operation in WLD Mode

When SafeNet ProtectToolkit is configured to operate in WLD mode, the login state is replicated across all
tokens in user slots associated with the same WLD slot. For example, if an application has 3 sessions, across 3
HSMs, with one session on each HSM then any change in the login state in one session, will result in the
session on the other 2 HSMs being changed to the same session state.

Temporary Pin Login

Under Cryptoki all authentication of users to the HSM is valid for the calling process only. Each application must
authenticate separately. Once a process has authenticated is granted appropriate access to the services of the
token.

With SafeNet ProtectToolkit-C - if a process forks a new process then the new process must authenticate itself
- it can not inherit the authentication of the parent.

The Temporary Pin feature in this spec describes a new applications authentication method where a parent
process can pass on its authentication to a child process without having to pass the sensitive pin value.

Challenge Response Login

A new type of User Authentication is provided. Instead of having to present the Pin value directly to the HSM the
user will request a random challenge, for a specified password, from the HSM and then present a response
computed from the challenge and password using a One Way Function.

The HSM will authenticate the user by verifying the response with the specified password and the most recently
issued random challenge.

Anew CKO_HW_FEATURE object called CKH_VD_USER is provided by the firmware to allow the application
to obtain the random challenge for either the User Password or SO Password.

The Object has an attribute that an application can read to generate and obtain a random challenge.

A new challenge value will generated each time the attribute is read. A separate Challenge is held for each
registered application. The same challenge can be used for User or SO authentication.

The calling application converts the challenge into a Response by using the following algorithm:-
Response = SHA-256 (challenge | PVC)
Where PVC =LEFT64BIT (SHAL (password | userTypeByte)

A host side static library function CT_Gen_Auth_Response is provided in the SDK to assist developers in
using this scheme.

The CKH_VD_USER has an attribute that an application can read to generate and obtain a Temporary PIN.
Only one SO and one User Temporary PIN may exist at any one time in any single Token. Each read from this
attribute will generate a new Temporary PIN.

Any Temporary PINs in a Token are automatically destroyed when the generating process logs off or is
terminated or the HSM has reset — whichever comes first.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 440

Chapter 10: PKCS#11 Command Reference

The Response and Temporary PIN are passed to the HSM using the C_Login function. The Function will be
extended such that unused bits in the userType parameter will be set to indicate that a Response value or
Temporary PIN is being used instead of the normal password.

The following bits are added to the userType parameter of the C_Login Function to specify the type of
authentication required.

#define CKF AUTH RESPONSE 0x00000100
#define CKF AUTH TEMP PIN 0x00001000
C_Logout

Synopsis

C Logout (

CK_SESSION HANDLE hSession
)

Description
This function operates as specified in PKCS #11.

Operation in WLD Mode

When SafeNet ProtectToolkit is configured to operate in WLD mode, the login state is replicated across all
tokens in user slots associated with the same WLD slot. For example, if an application has 3 sessions, across 3
HSMs, with one session on each HSM then any change in the login state in one session, will result in the
session on the other 2 HSMs being changed to the same session state.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 441

Chapter 10: PKCS#11 Command Reference

Object Management Functions

This section describes the following PKCS#11 functions:

V V VvV VvV VvV V VvV VvV VvV V

C_CreateObject

Synopsis
C CreateObject (
CK SESSION HANDLE hSession,
CK_ATTRIBUTE PTR pTemplate,
CK _ULONG ulCount,
CK _OBJECT HANDLE PTR phObject
)i

Description
This function operates as specified in PKCS#11 with the following exceptions:

If the security mode NoClearPINs is enabled, the host library version of the function will encrypt the template
before submitting it to the module and the module function will verify the data was encrypted.

If the object is of type CKO_ PUBLIC KEY, CKO PRIVATE KEY,CKO CERTIFICATEOrCKO
CERTIFICATE REQUEST and the key type is CKK_RSA or CKK DSA, the key is checked for validity.

C_CopyObject

Synopsis
C _CopyObject (
CK_SESSION HANDLE hSession,
CK _OBJECT_ HANDLE hObject,
CK ATTRIBUTE PTR pTemplate,
CK_ULONG ulCount,
CK_OBJECT HANDLE PTR phNewObject

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 442

Chapter 10: PKCS#11 Command Reference

Description
This function operates as specified in PKCS#11. except that if the base object has a valid CKA_USAGE_LIMIT
attribute then the base object is deleted after a successful copy.

NOTE Ifthe “Increased Security” flag is set as part of the security policy, then C_
CopyObject does not allow changing the CKA_MODIFIABLE flag from FALSE to TRUE.

Operation in WLD Mode
When SafeNet ProtectToolkit is configured to operate in WLD mode, this function is not supported and will
return the error CKR_FUNCTION_NOT_SUPPORTED.

CT_CopyObject

Synopsis

CT CopyObject (
CK _SESSION HANDLE hDestSession,
CK _SESSION HANDLE hSourceSession,
CK_OBJECT HANDLE hObject,
CK_ATTRIBUTE PTR pTemplate,
CK _ULONG ulCount,
CK _OBJECT HANDLE PTR phNewObject

Description
This function is a SafeNet extension to PKCS #11. It is identical to the C_CopyObject function, except it is
capable of copying objects from one token to another token where the two tokens belong to the same adapter.

NOTE This function can only be used to copy objects whose attribute CKA _
EXTRACTABLE=TRUE.

This function copies an object from one session to another session, creating a new object for the copy.
hSession is the source session’s handle;

hObject is the destination’s session handle;

hObject is the object’s handle;

pTemplate points to the template for the new object;

vV V VvV VvV V

ulCount is the number of attributes in the template;
> phNewObject points to the location that receives the handle for the copy of the object.

If the base object has a valid CKA_USAGE_LIMIT attribute, then the base object is deleted after a successful
copy.

The template may specify new values for any attributes of the object that can ordinarily be modified (for
example: in the course of copying a secret key, a key’s CKA_EXTRACTABLE attribute may be changed from

TRUE to FALSE, but not the other way around. If this change is made, the new key’s CKA_NEVER _
EXTRACTABLE attribute will have the value FALSE.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 443

Chapter 10: PKCS#11 Command Reference

Similarly, the template may specify that the new key’s CKA_SENSITIVE attribute be TRUE; the new key will
have the same value for its CKA_ALWAYS_SENSITIVE attribute as the original key). It may also specify new
values of the CKA_TOKEN and CKA_PRIVATE attributes (e.g., to copy a session object to a token object).

If the template specifies a value of an attribute which is incompatible with other existing attributes of the object,
the call fails with the return code CKR_ TEMPLATE INCONSISTENT.

If a callto CT_CopyObject cannot support the precise template supplied to it, it will fail and return without
creating any object.

Only session objects can be created during a read-only session. Only public objects can be created unless the
normal user is logged in.

NOTE Ifthe “Increased Security” flag is set as part of the security policy, then C_
CopyObject does not allow changing the CKA_MODIFIABLE flag from FALSE to TRUE.

C_DestroyObject

Synopsis

C DestroyObject (
CK SESSION HANDLE hSession,
CK _OBJECT HANDLE hObject

)

Description
This function operates as specified in PKCS#11.

If the object has the optional attribute CKA DELETABLE set to FALSE the object cannot be deleted with this
functionand CKR_OBJECT READ_ ONLY isreturned.

C_GetObjectSize

Synopsis

C GetObjectsize (
CK _SESSION HANDLE hSession,
CK _OBJECT_ HANDLE hObject,
CK_ULONG_PTR pulSize

Description
This function operates as specified in PKCS#11.

SafeNet ProtectToolkit-C interprets the object size to be the amount of memory guaranteed to be sufficient to
encode the object’s attributes.

C_GetAttributeValue

Synopsis
C GetAttributeValue (
CK_SESSION HANDLE hSession,

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 444

Chapter 10: PKCS#11 Command Reference

CK _OBJECT HANDLE hObject,
CK ATTRIBUTE PTR pTemplate,
CK ULONG ulCount

)i

Description
This function operates as specified in PKCS#11 with the following extensions. With SafeNet ProtectToolkit-C it
is possible to enumerate through all attributes for a given object. This extension is supported as follows.

The first call C_GetAttributeValue operates as follows to initialize the enumeration.

CK_ATTRIBUTE at;
rv = C_GetAttributeValue (hSession, hObject, &at, 0);

Then, to get all the attributes, loop as follows:

for (;;) |
at.type = CKA ENUM ATTRIBUTE;
at.pValue = 0;
rv = C_GetAttributeValue (hSession, hObject, &at, 1);
if (rv == CKR_ATTRIBUTE TYPE INVALID)
break; /* got all the attributes */
}

Sensitive attributes are returned with the type and length information but an empty value, and also return a
result value of CKR_ATTRIBUTE_SENSITIVE. On implementations where this extension is not supported, the
calls to C_GetAttributeType are likely to fail with the CKR_ATTRIBUTE_TYPE_INVALID error code.

With a result code of CKR_OKor CKR_ATTRIBUTE_SENSITIVE, the CK_ATTRIBUTE structure has the type
and valuelLen fields set appropriately for the next attribute, however the pValuefield willbe NULL_PTR. To
retrieve the actual value of the attribute, it is necessary to allocate the required room for the value and then
make a second call to C_GetAttributeValue.

Special processing or access checks may be made if the object is a Hardware Feature. See

C_SetAttributeValue

Synopsis

C _SetAttributeValue (
CK_SESSION HANDLE hSession,
CK _OBJECT HANDLE hObject,
CK ATTRIBUTE PTR pTemplate,
CK ULONG ulCount

)i

Description
This function operates as specified in PKCS#11.

Special processing or access checks may be made if the object is a Hardware Feature. See

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 445

Chapter 10: PKCS#11 Command Reference

C_FindObijectsinit

Synopsis

C FindObjectsInit (
CK SESSION HANDLE hSession,
CK_ATTRIBUTE PTR pTemplate,
CK _ULONG ulCount

)

Description

This function operates as specified in PKCS#11 with the following exception:

PKCS#11 states that to match CKO_HW FEATURE objects this class must be specified in the supplied
template. SafeNet ProtectToolkit-C does not enforce this requirement.

C_FindObjects

Synopsis

C FindObjects (CK _SESSION HANDLE hSession,
CK_OBJECT HANDLE PTR phObject,
CK_ULONG ulMaxObjectCount,
CK _ULONG_ PTR pulObjectCount

Description

This function operates as specified in PKCS#11.

C_FindObjectsFinal

Synopsis
C FindObjectsFinal (

CK_SESSION HANDLE hSession
)i

Description

This function operates as specified in PKCS#11.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

446

Chapter 10:

PKCS#11 Command Reference

Encryption Functions

This section describes the following PKCS#11 encryption functions:

>
>
>
>

C_Encryptlnit

Synopsis

C EncryptInit(
CK_SESSION HANDLE hSession,
CK_MECHANISM PTR pMechanism,
CK_OBJECT HANDLE hKey

)i

Description
This function operates as specified in PKCS#11.

The session will retain its initialized state even when a C_Encrypt or C_EncryptFinal operation has

occurred.

Ifthe CKF LOGIN REQUIRED flag is setfor the Token associated with the provided session the session
state must be either CKS_ RW_USER_FUNCTIONS, or CKS RO _USER FUNCTIONS otherwise the error result

CKR_USER_NOT LOGGED INisreturned.

If the hKey parameter refers to a certificate object this function will perform the same certificate verification as

specifiedinthe C VerifyInit function.

If the object referenced by the hKey parameter has the CKA USAGE COUNT attribute its value is incremented

by this function.
C_Encrypt

Synopsis
C Encrypt (
CK _SESSION HANDLE hSession,
CK_BYTE PTR pData,
CK ULONG ulDatalLen,
CK BYTE PTR pEncryptedData,
CK ULONG PTR pulEncryptedDatalLen
)7

Description
This function operates as specified in PKCS#11 except for the following:

> Symmetric cipher operations are terminated by this function.

> C_Encrypt can be used to terminate a multi-part operation.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

447

Chapter 10: PKCS#11 Command Reference

Although this function will terminate the current encryption operation, the session’s encryption state will not
be cleared.

NOTE If the mechanism in use is a multi-part mechanism and the data supplied exceeds a
single block, that portion of the data is processed regardless of the result returned by the call.
For example if 12 bytes are passed to a DES ECB operation, 8 bytes are processed even
though an error result (due to the padding requirements not being met) is returned.

Cryptoki specifies that a successful return from one of these functions (when not used for length prediction)
should result in the cipher state of that session being reset (to the uninitialized state). SafeNet ProtectToolkit-C,
however, leaves the state initialized so that another operation (using the same key) may be performed without
calling the appropriate C_xxxInit function.

C_EncryptUpdate

Synopsis
C EncryptUpdate (
CK SESSION HANDLE hSession,
CK_BYTE PTR pPart,
CK ULONG ulPartlen,
CK BYTE PTR pEncryptedPart,
CK _ULONG PTR pulEncryptedPartLen
)i

Description
This function operates as specified in PKCS#11.

C_EncryptFinal

Synopsis
C EncryptFinal (
CK _SESSION HANDLE hSession,
CK BYTE PTR pLastEncryptedPart,
CK ULONG PTR pulLastEncryptedPartLen

Description
This function operates as specified in PKCS#11.

Although this function will terminate the current encryption operation the session’s encryption state will not be
cleared.

Cryptoki specifies that a successful return from one of these functions (when not used for length prediction)
should resultin the cipher state of that session being reset (to the uninitialized state). SafeNet ProtectToolkit-C,
however, leaves the state initialized so that another operation (using the same key) may be performed without
calling the appropriate C_xxxInit function.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 448

Chapter 10: PKCS#11 Command Reference

Decryption Functions

This section describes the following PKCS#11 decryption functions:

>
>
>
>

C_Decryptinit

Synopsis

C DecryptInit(
CK_SESSION HANDLE hSession,
CK_MECHANISM PTR pMechanism,
CK_OBJECT HANDLE hKey

)i

Description
This function operates as specified in PKCS#11.

The session will retain its initialized state even whena C_Decrypt orC_DecryptFinal operation has
occurred.

Ifthe CKF_LOGIN REQUIRED flag is setforthe Token associated with the provided session the session
state must be either CKS RW USER FUNCTIONSor CKS RO USER_ FUNCTIONS,otherwise the error result
CKR_USER NOT LOGGED_IN isreturned.

If the object referenced by the hKey parameter has the CKA USAGE COUNT attribute its value is incremented
by this function.

C_Decrypt

Synopsis

C Decrypt (
CK SESSION HANDLE hSession,
CK BYTE PTR pEncryptedData,
CK ULONG ulEncryptedDatalen,
CK_BYTE PTR pData,
CK ULONG PTR pulDatalen

)

Description
This function operates as specified in PKCS#11 except for the following:

Symmetric cipher operations are terminated by this function. Although this function terminates the current
decryption operation the session’s decryption state is not cleared.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 449

Chapter 10: PKCS#11 Command Reference

NOTE If the mechanism in use is a multi-part mechanism and the data supplied exceeds a
single block, that portion of the data is processed regardless of the result returned by the call.
For example if 12 bytes are passed to a DES ECB operation, 8 bytes are processed even
though an error result (due to the padding requirements not being met) is returned.

Cryptoki specifies that a successful return from one of these functions (when not used for length prediction)
should resultin the cipher state of that session being reset (to the uninitialized state). SafeNet ProtectToolkit-C,
however, leaves the state initialized so that another operation (using the same key) may be performed without
calling the appropriate C_xxxInit function.

C_DecryptUpdate

Synopsis
C DecryptUpdate (CK_SESSION HANDLE hSession,
CK BYTE PTR pEncryptedPart,
CK _ULONG ulEncryptedPartLen,
CK BYTE PTR pPart,
CK ULONG PTR pulPartLen
)7

Description
This function operates as specified in PKCS#11.

C_DecryptFinal

Synopsis

C DecryptFinal (
CK _SESSION HANDLE hSession,
CK BYTE PTR pLastPart,
CK ULONG PTR pulLastPartLen

Description
This function operates as specified in PKCS#11.

Although this function will terminate the current encryption operation the session’s decryption state will not be
cleared.

Cryptoki specifies that a successful return from one of these functions (when not used for length prediction)
should result in the cipher state of that session being reset (to the uninitialized state). SafeNet ProtectToolkit-C,
however, leaves the state initialized so that another operation (using the same key) may be performed without
calling the appropriate C_xxxInit function.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 450

Chapter 10: PKCS#11 Command Reference

Message Digesting Functions

This section describes the following PKCS#11 functions:

>

vV V VvV V

C_Digestlnit

Synopsis

C DigestInit(
CK _SESSION HANDLE hSession,
CK_MECHANISM PTR pMechanism

Description
This function operates as specified in PKCS#11. Note that itis not required for the user to be logged in to
access this function.

C_Digest

Synopsis
C Digest (
CK_SESSION HANDLE hSession,
CK BYTE PTR pData,
CK_ULONG ulDatalen,
CK_BYTE PTR pDigest,
CK ULONG_ PTR pulDigestLen

Description
This function operates as specified in PKCS#11.

C_DigestUpdate

Synopsis

C DigestUpdate (
CK_SESSION HANDLE hSession,
CK BYTE PTR pPart,
CK _ULONG ulPartLen

)7

Description
This function operates as specified in PKCS#11.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 451

Chapter 10: PKCS#11 Command Reference

C_DigestKey

Synopsis

C DigestKey (
CK SESSION HANDLE hSession,
CK _OBJECT HANDLE hKey

)

Description
This function operates as specified in PKCS#11, although it may be used on any PKCS#11 object.

Ifthe CKF_LOGIN REQUIRED flag is setfor the Token associated with the provided session the session state
must be either CKS_ RW USER FUNCTIONS or CKS RO USER FUNCTIONS,otherwise the error result
CKR_USER NOT LOGGED INisreturned.

C_DigestFinal

Synopsis
C DigestFinal (
CK_SESSION HANDLE hSession,
CK_BYTE PTR pDigest,
CK ULONG PTR pulDigestLen
)i

Description
This function operates as specified in PKCS#11.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 452

Chapter 10:

PKCS#11 Command Reference

Signing and MACing Functions

This section describes the following PKCS#11 functions:

vV V VvV VvV VvV V

C_Signlnit

Synopsis

C SignInit(
CK _SESSION HANDLE hSession,
CK_MECHANISM PTR pMechanism,
CK _OBJECT HANDLE hKey

)i

Description
This function operates as specified in PKCS#11.

In addition it is required to specify the signing key and signing mechanism used to create X509 certificates with
the CKM_ENCODE X 509,CKM_ENCODE LOCAL CERT and CKM_ ENCODE PKCS10 mechanisms.

Ifthe CKF LOGIN REQUIRED flagis setfor the Token associated with the provided session, the session state
must be either CKS_RW _USER_FUNCTIONS, or CKS RO USER_FUNCTIONS otherwise the error result

CKR_USER NOT LOGGED INisreturned.

If the object referenced by the hKey parameter has the CKA_ USAGE COUNT attribute its value is incremented

by this function.
C_Sign

Synopsis
C Sign(
CK_SESSION HANDLE hSession,
CK BYTE PTR pData,
CK _ULONG ulDatalen,
CK_BYTE PTR pSignature,
CK ULONG PTR pulSignaturelen
)

Description
This function operates as specified in PKCS#11.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

453

Chapter 10:

PKCS#11 Command Reference

C_SignUpdate

Synopsis

C_SignUpdate (
CK SESSION HANDLE hSession,
CK_BYTE PTR pPart,
CK _ULONG ulPartLen

)7

Description
This function operates as specified in PKCS#11.

C_SignFinal

Synopsis

C SignFinal (CK_SESSION HANDLE hSession,
CK BYTE PTR pSignature,
CK ULONG_ PTR pulSignaturelen

)i

Description
This function operates as specified in PKCS#11.

C_SignRecoverlnit

Synopsis

C_SignRecoverInit (
CK SESSION HANDLE hSession,
CK _MECHANISM PTR pMechanism,
CK OBJECT HANDLE hKey

)

Description
This function operates as specified in PKCS#11.

Ifthe CKF_LOGIN REQUIRED flagis set for the Token associated with the provided session the session state
must be either CKS_RW _USER_FUNCTIONS, or CKS RO USER_FUNCTIONS otherwise the error result

CKR_USER NOT LOGGED INisreturned.

If the object referenced by the hKey parameter has the CKA USAGE COUNT attribute its value is incremented

by this function.

C_SignRecover

Synopsis

C_SignRecover (
CK _SESSION HANDLE hSession,
CK_BYTE PTR pData,
CK ULONG ulDatalLen,

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

454

Chapter 10: PKCS#11 Command Reference

CK BYTE PTR pSignature,
CK_ULONG PTR pulSignatureLen
)i

Description
This function operates as specified in PKCS#11.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 455

Chapter 10: PKCS#11 Command Reference

Functions for Verifying Signatures and MACs

This section describes the following PKCS#11 functions:

vV V VvV VvV VvV V

C_Verifylnit

Synopsis

C VerifyInit(
CK _SESSION HANDLE hSession,
CK_MECHANISM PTR pMechanism,
CK _OBJECT HANDLE hKey

Description
This function operates as specified in PKCS#11.

Ifthe CKF_LOGIN REQUIRED flagis setfor the Token associated with the provided session the session state
must be either CKS_ RW USER FUNCTIONSor CKS RO USER FUNCTIONS,otherwise the error CKR
USER_NOT LOGGED_ INisreturned.

If the object referenced by the hKey parameter has the CKA USAGE COUNTattribute its value is incremented
by this function.

SafeNet ProtectToolkit-C also allows that hKey may specify a certificate object in place of a public key. In this
case the certificate object is verified with the algorithm below. If this verification succeeds the session is
initialized using the public key stored in the certificate. If the verification fails CKR_INVALID KEY is returned
and the session is not initialized. Further the certificate object’'s CKA_ TRUST LEVEL is updated to indicate
that the verification has failed.

To perform the certificate verification the object's CKA_TRUSTED is checked. If it has the value TRUE the
verification succeeds. If the attribute has the value FALSE the certificate is validated.

For self-signed certificates (that is, where the subject and the issuer are the same) the certificate is validated if
the CKA_ TRUSTED is TRUE and the certificate’s signature is correct. If CKA_ TRUSTED is FALSE for a self-
signed certificate then the validation fails with CKR_CERT NOT VALIDATED. If the certificate is not self-
signed, a search is made for the issuer’s certificate which is the certificate whose CKA SUBJECT matches the
CKA_ISSUER of the current certificate. If the issuer’s certificate is not found, the verification fails. Ifa
matching issuer’s certificate is found the verification algorithm is performed on that certificate, and if that
succeeds the original certificate’s signature is verified. Issuer certificate validation will continue recursively up
the certificate chain until a trusted certificate (self signed or not) is reached or a certificate in the chain fails
validation for any reason including not being present.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 456

Chapter 10: PKCS#11 Command Reference

NOTE This function does not enforce certificate expiry or key usage flags store in the
certificate. Rather it relies on the standard Cryptoki attributes. This function will not always fail
when an inappropriate key type is supplied. For example, if a private key is supplied to the
function, it may succeed. In this case, however, the C_Verify will never return CKA_OK.

C_Verify

Synopsis

C Verify(
CK _SESSION HANDLE hSession,
CK_BYTE PTR pData,
CK ULONG ulDatalLen,
CK BYTE PTR pSignature,
CK_ULONG ulSignatureLen

)i

Description

This function operates as specified in PKCS#11.

C_VerifyUpdate

Synopsis

C VerifyUpdate (
CK _SESSION HANDLE hSession,
CK_BYTE PTR pPart,
CK ULONG ulPartLen

) i

Description

This function operates as specified in PKCS#11.

C_VerifyFinal

Synopsis

C VerifyFinal (
CK _SESSION HANDLE hSession,
CK_BYTE PTR pSignature,
CK ULONG ulSignaturelLen

Description

This function operates as specified in PKCS#11.

C_VerifyRecoverlnit

Synopsis

C VerifyRecoverInit (

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

457

Chapter 10: PKCS#11 Command Reference

CK_SESSION HANDLE hSession,
CK_MECHANISM PTR pMechanism,
CK _OBJECT HANDLE hKey

)i

Description
This function operates as specified in PKCS#11.

> Ifthe CKF_LOGIN REQUIRED flag is setfor the Token associated with the provided session the session
state must be either CKS RW USER_FUNCTIONS or CKS RO USER_ FUNCTIONS,otherwise the error
CKR_USER NOT LOGGED INisreturned.

> Ifthe object referenced by the hKey parameter has the CKA USAGE COUNT attribute its value is
incremented by this function.

> If the hKey parameter refers to a certificate object this function will perform the same certificate verification
as specified in the C_Verifylnit function.

C_VerifyRecover

Synopsis
C VerifyRecover (CK_SESSION HANDLE hSession,
CK BYTE PTR pSignature,
CK ULONG ulSignaturelen,
CK_BYTE PTR pData,CK ULONG PTR pulDatalen

)

Description
This function operates as specified in PKCS#11.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 458

Chapter 10: PKCS#11 Command Reference

Dual-function Cryptographic Functions

NOTE SafeNet ProtectToolkit-C provides the following functions to perform two
cryptographic operations “simultaneously” within a session. These functions are provided so
as to avoid unnecessarily passing data back and forth to and from a token.

This section describes the following dual-function cryptographic functions:
>

>
>
>

C_DigestEncryptUpdate

Synopsis
C DigestEncryptUpdate (
CK _SESSION HANDLE hSession,
CK_BYTE PTR pPart,
CK ULONG ulPartLen,
CK BYTE PTR pEncryptedPart,
CK ULONG PTR pulEncryptedPartLen
)7

Description
This function operates as specified in PKCS#11.

C_DecryptDigestUpdate

Synopsis
C DecryptDigestUpdate (CK_SESSION HANDLE hSession,
CK BYTE PTR pEncryptedPart,
CK _ULONG ulEncryptedPartLen,
CK BYTE PTR pPart,CK ULONG PTR pulPartLen
)

Description
This function operates as specified in PKCS#11.

C_SignEncryptUpdate

Synopsis

C SignEncryptUpdate (CK _SESSION HANDLE hSession,
CK_BYTE PTR pPart,
CK_ULONG ulPartLen,CK BYTE PTR pEncryptedPart,
CK ULONG PTR pulEncryptedPartLen

)i

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 459

Chapter 10: PKCS#11 Command Reference

Description
This function operates as specified in PKCS#11.

C_DecryptVerifyUpdate

Synopsis
C DecryptVerifyUpdate (CK _SESSION HANDLE hSession,
CK BYTE PTR pEncryptedPart,
CK ULONG ulEncryptedPartLen,
CK BYTE PTR pPart,CK ULONG PTR pulPartLen
)

Description
This function operates as specified in PKCS#11.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

460

Chapter 10: PKCS#11 Command Reference

Key Management Functions

This section describes the following PKCS#11 functions:

>

vV V VvV V

C_GenerateKey

Synopsis
C GenerateKey (
CK_SESSION HANDLE hSession
CK_MECHANISM PTR pMechanism,
CK ATTRIBUTE PTR pTemplate,
CK_ULONG ulCount,
CK_OBJECT HANDLE PTR phKey
)i

Description
This function operates as specified in PKCS#11.

Ifthe CKF_LOGIN REQUIRED flagis set for the Token associated with the provided session the session state
must be either CKS_RW _USER_FUNCTIONS or CKS RO USER_FUNCTIONS,otherwise the error CKR
USER NOT LOGGED INisreturned.

C_GenerateKeyPair

Synopsis

C GenerateKeyPair (
CK_SESSION HANDLE hSession,
CK_MECHANISM PTR pMechanism,
CK_ATTRIBUTE PTR pPublicKeyTemplate,
CK ULONG ulPublicKeyAttributeCount,
CK ATTRIBUTE PTR pPrivateKeyTemplate,
CK _ULONG ulPrivateKeyAttributeCount,
CK _OBJECT HANDLE PTR phPublicKey,
CK_OBJECT HANDLE PTR phPrivateKey

)i

Description
This function operates as specified in PKCS#11.

Ifthe CKF_LOGIN REQUIRED flagis setfor the Token associated with the provided session the session state
must be either CKS_ RW USER FUNCTIONS or CKS RO USER FUNCTIONS,otherwise the error CKR
USER _NOT LOGGED_ INisreturned.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 461

Chapter 10: PKCS#11 Command Reference

If CKA IDis notspecified in either template then the library sets default values for these that are the same for
both public and private object with a high likelihood of being unique. The value is a SHA1 hash of the modulus.

C_WrapKey

Synopsis
C WrapKey (
CK_SESSION HANDLE hSession,
CK_MECHANISM PTR pMechanism,
CK_OBJECT HANDLE hWrappingKey,
CK_OBJECT HANDLE hKey,
CK BYTE PTR pWrappedKey,
CK _ULONG_ PTR pulWrappedKeyLen
)i

Description
This function operates as specified in PKCS#11.

Ifthe CKF_LOGIN REQUIRED flagis setfor the Token associated with the provided session the session state
must be either CKS_ RW USER FUNCTIONS or CKS RO USER FUNCTIONS,otherwise the error CKR
USER _NOT LOGGED_ INisreturned.

C_UnwrapKey

Synopsis
C UnwrapKey (
CK _SESSION HANDLE hSession,
CK_MECHANISM PTR pMechanism,
CK_OBJECT HANDLE hUnwrappingKey,
CK BYTE PTR pWrappedKey,
CK _ULONG ulWrappedKeyLen,
CK ATTRIBUTE PTR pTemplate,
CK _ULONG ulAttributeCount,
CK OBJECT HANDLE PTR phKey
)i

Description
This function operates as specified in PKCS#11.

Ifthe CKF_LOGIN REQUIRED flag is setfor the Token associated with the provided session the session state
must be either CKS_ RW _USER FUNCTIONS or CKS RO USER FUNCTIONS,otherwise the error CKR
USER_NOT LOGGED_ INisreturned.

C_DeriveKey

Synopsis

C DeriveKey (
CK _SESSION HANDLE hSession,
CK_MECHANISM PTR pMechanism,
CK OBJECT HANDLE hBaseKey,
CK ATTRIBUTE PTR pTemplate,

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 462

Chapter 10: PKCS#11 Command Reference

CK _ULONG ulAttributeCount,
CK OBJECT HANDLE PTR phKey

)

Description
This function operates as specified in PKCS#11.

Ifthe CKF_LOGIN REQUIRED flag is setfor the Token associated with the provided session the session state
must be either CKS_ RW _USER FUNCTIONS or CKS RO USER FUNCTIONS,otherwise the error CKR

USER_NOT LOGGED_ INisreturned.
Simple derivation mechanisms are restricted to working on secret keys of type CKK_GENERIC SECRET.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 463

Chapter 10: PKCS#11 Command Reference

Random Number Generation Functions

This section describes the following PKCS#11 functions:
>

>

C_SeedRandom

Synopsis

C_SeedRandom (
CK SESSION HANDLE hSession,
CK BYTE PTR pSeed,
CK_ULONG ulSeedLen

)

Description
This function operates as specified in PKCS#11, however, it is not required to be called as the ProtectServer
adapter has a hardware random generation source.

Also note this function will only operate for those tokens with the CKF_RNG flag set in their CK_ TOKEN INFO
flags.

C_GenerateRandom

Synopsis

C GenerateRandom (
CK SESSION HANDLE hSession,
CK BYTE PTR pRandomData,
CK ULONG ulRandomLen

);

Description
This function operates as specified in PKCS#11.

Also note this function will only operate for those tokens with the CKF_RNG flag set in their CK_ TOKEN INFO
flags.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 464

Chapter 10: PKCS#11 Command Reference

Parallel Function Management Functions

NOTE SafeNet ProtectToolkit-C provides the following functions for managing parallel
execution of cryptographic functions. These functions exist only for backward compatibility.

This section describes the following PKCS#11 functions:
>

>

C_GetFunctionStatus

Synopsis
C GetFunctionStatus(

CK SESSION HANDLE hSession
)

Description
This function operates as specified in PKCS#11.

C_GetFunctionStatus is a legacy function, which will simply return the value CKR_FUNCTION_NOT _
PARALLEL.

C_CancelFunction

Synopsis
C CancelFunction (

CK_SESSION HANDLE hSession
)

Description
This function operates as specified in PKCS#11.

C_GetFunctionStatus is a legacy function, which will simply return the value CKR_FUNCTION_NOT _
PARALLEL.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 465

Chapter 10: PKCS#11 Command Reference

Extra Functions

This section describes the following PKCS#11 extra functions:

>

vV V VvV V

CT _PresentTicket

CK_DEFINE FUNCTION(CK RV, CT PresentTicket) (
CK _SESSION HANDLE hSession,
CK_OBJECT_ HANDLE hObj,
CK_MECHANISM PTR pMechanism,

CK_BYTE PTR pTicket,
CK _ULONG ulTicketLen
)i

This function is a SafeNet extension to PKCS#11.

This function allows a process to present a security related cryptogram to the HSM. The cryptogram is
specified by pTicket and ulTicketLen.

When Secure Messaging System is in ‘No Clear Pins’ mode then this function will expect all request data to be
encrypted.

This function introduces a new category of mechanism of type CKF_TICKET which has value (CKF_
EXTENSION | 0x40000000).

The table below lists the Ticket Mechanisms:

CKM_SET_ A mechanism to specify attribute changes for an object. It is used to extend the usage
ATTRIBUTES limit on a key.

CT_SetHsmDead

CK_DEFINE FUNCTION(CK RV, CT SetHsmDead) (
CK _ULONG hsmIDx,
CK _BBOOL bDisable

)

This function can be used by an application to simulate the behavior of the WLD or HA system when an HSM
fails. See also

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 466

http://dixie/cgi-bin/twiki/view/TSCGroup/PTKCFuncSpec#sorted_table?sortcol=0&table=1&up=0
http://dixie/cgi-bin/twiki/view/TSCGroup/PTKCFuncSpec#sorted_table?sortcol=1&table=1&up=0

Chapter 10: PKCS#11 Command Reference

Return Codes:

CKR_OK Successful.
CKR_ARGUMENTS_BAD The supplied hsmID is invalid.
CKR_FUNCTION_NOT_SUPPORTED The library is not in WLD mode

This function is a SafeNet extension to PKCS #11.

CT_GetHSMId

CK_DEFINE FUNCTION(CK RV, CT_ GetHSMId) (
CK SESSION HANDLE hSession,
CK_ULONG_PTR pHsmid

)

This function can be used to identify the HSM that a particular WLD or HA session has been assigned to.

Return Values:

CKR_OK Successful
CKR_ARGUMENTS_BAD The supplied pHsmID is NULL
CKR_FUNCTION_NOT_SUPPORTED The library is not in WLD mode

This function is a SafeNet extension to PKCS #11.

CT_ToHsmSession

CK _DEFINE FUNCTION(CK RV, CT ToHsmSession) (
CK SESSION HANDLE hSessionApp,
CK _SESSION HANDLE PTR phHsmSession
)i

This function can be used to convert the Cryptoki session handle seen by the application into the session
handle used by the HSM.

Return Values:
CKR_OK Successful
CKR_ARGUMENTS_BAD The supplied hSessionApp is INVALID or phHsmSession is NULL.

This function is a SafeNet extension to PKCS #11.

FMSC_SendReceive

CK_RV FMSC SendReceive (
CK_SESSION HANDLE hSession,
CK USHORT fmNumber,

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 467

Chapter 10: PKCS#11 Command Reference

CK BYTE PTR pRequest,
CK ULONG requestLen,
CK BYTE PTR pResponse,
CK_ULONG responselen,
CK _ULONG_PTR pReceivedLen,
uint32 *pfmStatus

)i

This is an extended function supporting custom Functionality Module (FM) calls through cryptoki. Previously,
PKCS-patched FMs were invoked through the cryptoki interface while Custom FMs were invoked through the
Message Dispatcher interface (ETHSM). With this new API, Custom FMs can be called directly through the
cryptoki interface. Also, custom FM calls can now use features such as:

> Secure Messaging - requests are sent/received in encrypted form
> High Availability/Work Load Distribution - WLD can now be used with FMs

I NOTE The FMSC_SendReceive() function is not available in Software Emulation mode.

Header File
ctfext.h
Parameters:
Parameter Description
hSession Session handle to be associated with the request.
fmNumber Identifies the FM number this message is intended for. Make sure it matches the FM number
defined in the FM application.
pRequest Pointer to request buffer.
prequestLen Number of bytes in the request.
pResponse When the function returns, the response from the FM is contained in these buffers.

responselLen Length of the initialized response buffer in bytes
pReceivedLen Actual length of response received from the FM.
pfmStatus Status code returned by the FM.
Return Codes:
In addition to the standard PKCS#11 and extended function codes, the function can return:
CKR_FM_NOT_REGISTERED '‘fmNumber' presented in this call is not registered/loaded.

CKR_FM_DISPATCH_BLOCKED Message dispatching on FM is blocked.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 468

Chapter 10: PKCS#11 Command Reference

Please refer to the SafeNet ProtectToolkit FM SDK Programming Guide for a full description of FM
development. A sample is provided along with the FM SDK to demonstrate the function of this API.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 469

CHAPTER 11:

CTUTIL.H Functionality Reference

The SafeNet ProtectToolkit-C Software Development Kit offers a number of extended APl libraries with
functionality that is extended to that of the standard PKCS#11 function set.

The following additional features do not form part of the standard PKCS#11 functionality, but are provided by

SafeNet as part of the SafeNet ProtectToolkit-C API within the CTLUTIL.H library.

This reference contains descriptions of the following features:

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

"BuildDhKeyPair" on page 473
"BuildDsaKeyPair" on page 475
"BuildRsaCrtKeyPair" on page 477
"BuildRsaKeyPair" on page 479
"C_ErrorString" on page 481

"calcKvc" on page 482

"calcKvcMech" on page 483

"cDump" on page 484

"CheckCryptokiVersion" on page 485
"CreateDesKey" on page 486
"CreateSecretKey" on page 487
"CT_AttrToString" on page 488
"CT_CreateObject" on page 489
"CT_CreatePublicObject" on page 490
"CT_Create_Set_Attributes_Ticket Info" on page 491
"CT_Create_Set_Attributes_Ticket" on page 492
"CT_DerEncodeNamedCurve" on page 493
"CT_GetAuthChallenge" on page 495
"CT_GetObjectDigest" on page 496
"CT_GetECCDomainParameters" on page 497
"CT_GetObjectDigestFromParts" on page 498
"CT_GetTmpPin" on page 499
"CT_ErrorString" on page 500
"CT_GetECKeySize" on page 501
"CT_MakeObjectNonModifiable" on page 502

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

470

Chapter 11: CTUTIL.H Functionality Reference

"CT_OpenObject" on page 503
"CT_ReadObject" on page 504
"CT_RenameObject" on page 505
"CT_SetCKDateStrFromTime" on page 506
"CT_Structure_To_Armor" on page 507
"CT_Structure_From_Armor" on page 508
"CT_SetLimitsAttributes" on page 509
"CT_WriteObject" on page 510
"DateConvertGmtTolLocal" on page 511
"DateConvert" on page 512
"DumpAttributes" on page 513
"DumpDHKeyPair" on page 514
"DumpDSAKeyPair" on page 515
"DumpRSAKeyPair" on page 516
"FindAttribute" on page 517
"FindKeyFromName" on page 518
"FindTokenFromName" on page 519
"GenerateDhKeyPair" on page 520
"GenerateDsaKeyPair" on page 522
"GenerateRsaKeyPair" on page 524
"GetAttr" on page 526
"getDerEncodedNamedCurve" on page 527
"GetDeviceError" on page 528
"GetObjectCount" on page 529
"GetSecurityMode" on page 530
"GetSessionCount" on page 531
"GetTotalSessionCount" on page 532
"NUMITEMS" on page 533
"rmTrailSpace" on page 534

"SetAttr" on page 535

"ShowSlot" on page 536

"ShowToken" on page 537
"strAttribute" on page 538

"strError" on page 539

V V VvV VvV VvV VvV VvV VvV VYV

"strkeyType" on page 540

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 471

Chapter 11: CTUTIL.H Functionality Reference

"strMechanism" on page 541
"strObjClass" on page 542
"strSesState" on page 543
"TransferObject" on page 544
"valAttribute" on page 545
"valError" on page 546
"valKeyType" on page 547
"valMechanism" on page 548

"valObjClass" on page 549

V V V VvV vV VvV VvV VvV VvV V

"valSesState" on page 550

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 472

Chapter 11: CTUTIL.H Functionality Reference

BuildDhKeyPair

Synopsis

CK RV BuildDhKeyPair (

CK SESSION HANDLE hSession,
char * txt,

int tok,

int priv,

CK OBJECT HANDLE * phPub,
CK _OBJECT HANDLE * phPri,

char
char
char
char

*

*
*
*

prime,
base,
pub,
pri);

Description
Create a DH key pair given the required components.

Parameters
hSession Open session handle
txt Optional label
tok 1 for a Token object, 0 for Session object
priv 1 for Private object, O for Public object
phPub Reference to object handle to hold created public key
phPri Reference to object handle to hold created private key
prime Prime
base Base
pub Public key value
pri Private key value

On successful return
*phPub — handle to newly-created public key

*phPri — handle to newly-created private key

In addition to the Public key attributes set via the parameters, the following are set:

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 473

Chapter 11: CTUTIL.H Functionality Reference

CKA CLASS CKO PUBLIC KEY
CKA KEY TYPE CKK DH
CKA EXTRACTABLE TRUE

In addition to the Private key attributes set via the parameters, the following are set:

CKA CLASS CKO PRIVATE KEY
CKA KEY TYPE CKK DH
CKA EXTRACTABLE TRUE

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 474

Chapter 11: CTUTIL.H Functionality Reference

BuildDsaKeyPair

Synopsis

CK RV BuildDsaKeyPair (

CK SESSION HANDLE hSession,
char * txt,

int tok,

int priv,

CK OBJECT HANDLE * phPub,
CK _OBJECT HANDLE * phPri,
char * prime,

char subprime,
base,
pub,
pri);

char

*
*
char *
*

char

Description
Create DSA key pair given required components.

Parameters
hSession Open session handle
txt Optional label
tok 1 for a Token object, 0 for Session object
priv 1 for Private object, O for Public object
phPub Reference to object handle to hold created public key
phPri Reference to object handle to hold created private key
prime Prime
subprime SubPrime
base Base
pub Public key value
pri Private key value

On successful return
*phPub — handle to newly created public key

*phPri— handle to newly created private key

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 475

Chapter 11: CTUTIL.H Functionality Reference

In addition to the Public key attributes set via the parameters, the following are set:

CKA CLASS CKO PUBLIC KEY
CKA KEY TYPE CKK DSA
CKA EXTRACTABLE TRUE

In addition to the Private key attributes set via the parameters, the following are set:

CKA CLASS CKO PRIVATE KEY
CKA KEY TYPE CKK_DSA
CKA EXTRACTABLE TRUE

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 476

Chapter 11: CTUTIL.H Functionality Reference

BuildRsaCrtKeyPair

Synopsis

CK RV BuildRsaCrtKeyPair (
CK SESSION HANDLE hSession,
char * txt,

int tok,

int priv,

CK OBJECT HANDLE * phPub,
CK _OBJECT HANDLE * phPri,

char * modulusStr,
char * pubExpStr,
char * priExpStr,
char * priPStr,
char * priQStr,
char * priElStr,
char * priE2Str,
char * priUStr);
Description

Create an RSA key pair given the modulus and exponents, as well as the additional arguments used in Chinese
Remainder Theorem processing. If the values for P, Q, E1, E2 and U are not specified, a normal RSA key pair

is created.
Parameters
hSession Open session handle
txt Optional label
tok 1 for a Token object, 0 for Session object
priv 1 for Private object, O for Public object
phPub Reference to object handle to hold created public key
phPri Reference to object handle to hold created private key
modulusStr Key modulus
pubExpStr Public key exponent
priExpStr Private key exponent
priPStr Optional Private key Prime1
priQStr Optional (optionality set by priPStr) Private key Prime2

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

477

Chapter 11: CTUTIL.H Functionality Reference

priE1Str Optional (optionality set by priPStr) Private key Exponent1
priE2Str Optional (optionality set by priPStr) Private key Exponent2
priuStr Optional (optionality set by priPStr) Private key Coefficient

On successful return

*phPub — handle to newly created public key

*phPri — handle to newly created private key

In addition to the Public key attributes set via the parameters, the following are set:

CKA CLASS CKO PUBLIC KEY CKA KEY TYPE CKK RSA CKA VERIFY TRUE CKA SIGN FALSE CKA DECRYPT FALSE

CKA ENCRYPT TRUE CKA EXTRACTABLE TRUE CKA WRAP FALSE

In addition to the Private key attributes set via the parameters, the following are set:

CKA CLASS CKO_PRIVATE KEY CKA KEY TYPE CKK RSA CKA VERIFY FALSE CKA SIGN TRUE CKA DECRYPT TRUE
CKA ENCRYPT FALSE CKA EXTRACTABLE TRUE CKA WRAP FALSE

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 478

Chapter 11: CTUTIL.H Functionality Reference

BuildRsaKeyPair

Synopsis

CK RV BuildRsaKeyPair (
CK SESSION HANDLE hSession,
char * txt,

int tok,

int priv,

CK OBJECT HANDLE * phPub,
CK _OBJECT HANDLE * phPri,
char * modulusStr,

char * pubExponentStr,
char * priExponentStr);

Description

Create an RSA key pair given the modulus and exponents.

Parameters
hSession Open session handle
txt Optional label
tok 1 for a Token object, 0 for Session object
priv 1 for Private object, 0 for Public object
phPub Reference to object handle to hold created public key
phPri Reference to object handle to hold created private key
modulusStr Key modulus
pubExponentStr Public key exponent
priExponentStr Private key exponent

On successful return

*phPub — handle to newly created public key

*phPri — handle to newly created private key

In addition to the Public key attributes set via the parameters, the following are set:

CKA CLASS CKO_PUBLIC KEY CKA KEY TYPE CKK RSA CKA VERIFY TRUE CKA SIGN FALSE CKA DECRYPT FALSE

CKA ENCRYPT TRUE CKA EXTRACTABLE TRUE CKA WRAP FALSE

In addition to the Private key attributes set via the parameters, the following are set:

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

479

Chapter 11: CTUTIL.H Functionality Reference

CKA CLASS CKO_PRIVATE KEY CKA KEY TYPE CKK RSA CKA VERIFY FALSE CKA SIGN TRUE CKA DECRYPT TRUE
CKA ENCRYPT FALSE CKA EXTRACTABLE TRUE CKA WRAP FALSE

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 480

Chapter 11: CTUTIL.H Functionality Reference

C_ErrorString

Synopsis
CK RV C ErrorString(CK RV ret, char * errstr, unsigned int len);

Description
Convert a Cryptoki error code into a printable string. Note that this function is not a part of the PKCS#11
definition.

The sample programs use this extensively to map Cryptoki error numbers to meaningful text to display to the
user.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 481

Chapter 11: CTUTIL.H Functionality Reference

calcKvc

Synopsis

CK RV calcKvc (

CK SESSION HANDLE hSession,
CK_OBJECT HANDLE hKey,
unsigned char * kvc,

int kvclen,

int * pkvclen);

Description

Calculate and return an AS2805 KVC for a key. The key must be capable of doing an encryption operation
using the mechanism determined from the key type (see mechFromK?t) for this to succeed. Note that
mechanism parameters are set to NULL.

NOTE The CKA_CHECK_ VALUE attribute can be used to get the KVC of a key that does not
support the encryption operation.

Parameters
hSession Open session handle
hKey Handle to the key to use for the encryption
kvc Buffer to hold the encryption result
kvclen Total number of bytes referenced by kvc
pkvclen Reference to int to hold number of bytes copied into kvc

On successful return
kvc — holds the encryption result
*pkvclen — number of bytes copied into kvc

If kvclen is smaller than the encryption result, then only kvclen bytes are copied into kvc.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 482

Chapter 11: CTUTIL.H Functionality Reference

calcKvcMech

Synopsis

CK RV calcKvcMech (

CK SESSION HANDLE hSession,
CK_OBJECT HANDLE hKey,
CK_MECHANISM TYPE mt,
unsigned char * kvc,

int kvclen,

int * pkvclen);

Description

Calculate and return an AS2805 KVC for a key. The key must be capable of doing an encryption operation
using the supplied mechanism for this to succeed. Note that mechanism parameters are set to NULL.

NOTE The CKA_CHECK_VALUE attribute can be used to get the KVC of a key that does not
support the encryption operation.

Parameters
hSession Open session handle
hKey Handle to the key to use for the encryption
mt Encryption mechanism to use
kvc Buffer to hold the encryption result
kvclen Total number of bytes referenced by kvc
pkvclen Reference to int to hold number of bytes copied into kvc

On successful return
kvc — holds the encryption result
*pkvclen — number of bytes copied into kvc

If kvclen is smaller than the encryption result, then only kvclen bytes are copied into kvc.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 483

Chapter 11: CTUTIL.H Functionality Reference

cDump

Synopsis

int cDump (char * title,unsigned char * buf,unsigned int len);

Description
Dump buf contents in hex via printf.

Parameters
title Heading
buf Bytes to dump
len Number of bytes to dump

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 484

Chapter 11: CTUTIL.H Functionality Reference

CheckCryptokiVersion

Synopsis

CK RV CheckCryptokiVersion (void) ;

Note that this APl is implemented as a macro.

Description

SafeNet supports multiple versions of PKCS#11, but VV 1.x and v 2.x are incompatible. An application compiled
for V 1.x compliance is likely to crash if it links against a VV 2.x compliant DLL, and vice versa.

This function is used to check that the version of CRYPTOKI is correct for the application and will report if an
incompatible Cryptoki DLL is loaded. The application should report this fact and terminate.

All the sample applications make this call to check the Cryptoki version they are running.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 485

Chapter 11: CTUTIL.H Functionality Reference

CreateDesKey

Synopsis

CK RV CreateDesKey (

CK SESSION HANDLE hSession,
char * txt,

int tok,

int priv,

CK BYTE * keyValue,

int len,

CK OBJECT HANDLE * phKey) ;

Description

Create a secret key object, and set the key type to CKK_DES, CKK_DES2or CKK_DES3 (based on len).

Parameters
hSession Open session handle
txt Optional label
tok 1 for a Token object, 0 for Session object
priv 1 for private object, 0 for public object
keyValue Key value
len Length of key value
phKey Reference to object handle to hold created key

On successful return

*phKey— handle to newly created key

In addition to the key attributes set via the parameters, the following are set:

CKA CLASS CKO_SECRET KEY

CKA KEY TYE CKK DES, CKK DES2 OR CKK DES3

CKA ID “ID”

CKA DERIVE TRUE

CKA EXTRACTABLE TRUE
CKA UNWRAP TRUE

CKA WRAP FALSE

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

486

Chapter 11: CTUTIL.H Functionality Reference

CreateSecretKey

Synopsis

CK RV CreateSecretKey (

CK SESSION HANDLE hSession,
char * txt,

int tok,

int priv,

CK_KEY TYPE kt,

CK BYTE * keyValue,

int len,

CK_OBJECT HANDLE * phKey);

Description
Create a secret key object.

Parameters
hSession Open session handle
txt Optional label
tok 1 for a Token object, 0 for Session object
priv 1 for private object, 0 for public object
kt Key type
keyValue Key value
len Length of key value
phKey Reference to object handle to hold created key

On successful return

*phKey — handle to newly created key

In addition to the key attributes set via the parameters, the following are set:

CKA_CLASS CKO SECRET KEY
CKA ID “ID”

CKA DERIVE TRUE

CKA EXTRACTABLE TRUE

CKA UNWRAP TRUE

CKA WRAP FALSE

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

487

Chapter 11: CTUTIL.H Functionality Reference

CT_AttrToString

Synopsis

CK RV CT AttrToString(CK ATTRIBUTE PTR pAttr,char* pStringvVal,CK SIZE* pStringValLen);

Description
Get the value of the given attribute as a printable string

Parameters
param pAttr pointer to the attribute whose value is to be stringified
pStringVal location to hold the value as a string (if NULL, the length required to hold the string is still copied into

pStringVallLen)

pStringValLen location to store the length of the value as a string (if pStringVal was supplied, this contains the
number of bytes copied into the buffer or, if pStringVal is NULL, this contains the required size of the
buffer to hold the value as a string).

On successful return
* pStringVal — pointer to the returned string value

* pStringValLen — length of the string

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 488

Chapter 11:

CTUTIL.H Functionality Reference

CT_CreateObject

Synopsis

CK RV CT CreateObject (

CK SESSION HANDLE hSession,
CK OBJECT CLASS cl,

char * name,

CK _OBJECT HANDLE * phObj);

Description
Create a private token object of the specified class with the defined label.

Parameters
hSession Open session on the slot to create the object in
cl Class of the object
name Label of the object
phObj Reference to object handle to hold created object

On successful return
*phObj — handle to the newly created object

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

489

Chapter 11:

CTUTIL.H Functionality Reference

CT_CreatePublicObject

Synopsis

CK RV CT CreatePublicObject (
CK SESSION HANDLE hSession,
CK OBJECT CLASS cl,

char * name,

CK _OBJECT HANDLE * phObj);

Description
Create a public token object of the specified class with the defined label.

Parameters
hSession Open session on the slot to create the object in
cl Class of the object
name Label of the object
phObj Reference to object handle to hold created object

On successful return
*phObj — handle to the newly created object

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

490

Chapter 11: CTUTIL.H Functionality Reference

CT Create_Set_Attributes Ticket_Info

Synopsis
CK RV CT Create Set Attributes Ticket Info(
/* specify the target */
CK_MECHANISM TYPE objectDigestAlg, /* digest alg */
unsigned char * objectDigest, /* digest of target object */
unsigned int objectDigestLen,
/* specify issuer */
char * issuerRDN, /* may be NULL or
* DER of DistName or
* Common Name string or
* RDN Seq string (CN=Fred+C=USA) */
unsigned int issuerRDNLen,

/* ticket details */
CK_MECHANISM TYPE signatureAlg, /* signature alg */

unsigned long sno, /* Attrib Cert serial number */
char * notBefore, /* YYYYMMDD string */
char * notAfter, /* YYYYMMDD string */

/* attributes on key to modify */
unsigned long * limit, /* NULL if no CKA USAGE LIMIT */

char * start, /* NULL if no CKA START DATE */
char * end, /* NULL if no CKA END DATE */
char * cert, /* NULL if no CKA ADMIN CERT */

unsigned int certlen,

/* output */

void * pTicketInfo, /* OUT new unsigned ticket returned here */
unsigned int* puiTicketLen; /* IN/OUT pTicketInfo buffer length */

)

Description
The function creates an unsigned CKM_SET_ATTRIBUTES ticket.

The function supports length prediction.

See

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

491

Chapter 11:

CTUTIL.H Functionality Reference

CT _Create_Set_Attributes Ticket

Synopsis
CK RV CT Create Set Attributes Ticket (
void * pTicketInfo, /* IN unsigned ticket */

unsigned int uiTicketInfolen; /* IN pTicketInfo buffer length */

CK_MECHANISM TYPE signatureAlg, /* signature alg */
unsigned char * pSignature, /* signature of pTicketData */
unsigned int uiSigLen; /* IN pSignature buffer length */

void * pTicketData, /* OUT new unsigned ticket returned here */

unsigned int * puiTicketLen; /* IN/OUT pTicketData buffer length */

)

Description

The function combines the AttributeCertificateInfo DER encoding returned from the CT_Create_Set_
Attributes_Ticket_Info function with a digital signature to form the DER encoded AttributeCertificate that may
be passed to a CT_PresentTicket function using the CKM_SET_ATTRIBUTES mechanism.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

492

Chapter 11: CTUTIL.H Functionality Reference

CT_DerEncodeNamedCurve

Synopsis

CK RV CT DerEncodeNamedCurve (
CK BYTE PTR buf,

CK SIZE PTR len,

const char *name);

Description

Helper function to provide the DER encoding of a supported named curve. This function is typically used to
populate the CKA_EC_PARAMS attribute of the template used during EC key pair generation.

Supported curve names are:
Name
c2tnb191v1
P-192 (also known as
“prime192v1” “secp192r1”)
P-224 (also known as “secp224r1”)
P-256 (also known as
(“prime256v1 ” “secp256r1”)

P-384 (also known as
“secp384r1”)

P-521 (also known as “secp521r1”)

c2tnb191v1e (Non FIPS curve)

OoID

{iiso(1) member-body(2) US(840) x9-62(10045) curves(3) characteristicTwo(0)
c2tnb191v1(5) }

{iiso(1) member-body(2) US(840) x9-62(10045) curves(3) prime(1) prime192v1
(1)}

{iiso(1) identified-organization(3) Certicom(132) certicom_ellipticCurve(0)
secp224r1(33) }

{iiso(1) member-body(2) US(840) x9-62(10045) curves(3) prime(1) prime256v 1
(7)}

{iiso(1) identified-organization(3) Certicom(132) certicom_ellipticCurve(0)
secp384r1(34)}

{iiso(1) identified-organization(3) Certicom(132) certicom_ellipticCurve(0)
secp521r1(35) }

{iiso(1) member-body(2) US(840) x9-62(10045) curves(3) characteristicTwo(0)
c2tnb191v1e (15)}

{iso(1) identified-organization(3) dod(6) internet(1) private(4) enterprise(1) 3029
algorithm(1) ecc(5) curvey25519(1)}

Parameters
buf Buffer to hold the DER encoding
len *len is total number of bytes referenced by buf
name String name of the curve to get the encoding for

SafeNet ProtectToolkit 5.6 Programming Guide

007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 493

Chapter 11: CTUTIL.H Functionality Reference

On successful return
buf — contains a string.
Example: “hh:mm:ss DD/MM/YYYY* *len Number of bytes copied to buf

To determine the encoding length, pass in NULL for buf and check the resulting value of *1en.

Curve25519

Supported Operations

Encrypt and Decrypt No
Sign and Verify No
SignRecover and VerifyRecover No
Digest No
Generate Key/Key-Pair Yes
Wrap and Unwrap No
Derive Yes
FIPS-approved No

NOTE The generated public key is the same length as the generated private key. As such,
Curve25519 should only be used for ECDH operations. It cannot be used for signing or
verifying crypto objects.

Parameters

Curve25519 uses the CKM_ECDH1_DERIVE mechanism. Users are required to use the CKM_ECDH1 _
DERIVE mechanism and fillin the CK_ECDH1_DERIVE PARAMS structure to access Curve25519.

For more information about the key derivation mechanism see

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 494

Chapter 11: CTUTIL.H Functionality Reference

CT_GetAuthChallenge

Synopsis

CK _DEFINE FUNCTION (CK RV, CT GetAuthChallenge) (
CK_SESSION HANDLE hSession,
CK BYTE PTR pChallenge,
CK ULONG PTR pulChallengeLen

)i

Description
This function is a SafeNet ProtectToolkit-C extension to PKCS#11 provided with the SafeNet ProtectToolkit-C
SDK as a host side library function.

The function requests the HSM to generate a random 16 byte challenge value and to return the challenge to
the calling application. The function uses the CKH_VD_USER object to fetch the Challenge.

The Application can use authentication data (PIN) to create a Response from the challenge. See description of
for more details.

The Response can be used with the C_Login function to authenticate the user to the Token. See description
of for more details.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 495

Chapter 11: CTUTIL.H Functionality Reference

CT_GetObjectDigest

Synopsis

CK RV CT GetObjectDigest (
CK_SESSION HANDLE hSession, /* IN */
CK_OBJECT HANDLE hObject, /* IN */
CK_MECHANISM PTR pDigestMech,/* IN */

CK BYTE PTR * ppDigest, /* OUT returned buffer must be freed */
CK_ULONG * pulDigest /* OUT length of returned buffer */
)

Description
Compute the object digest as used by SET Attributes Ticket to identify the target object.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 496

Chapter 11: CTUTIL.H Functionality Reference

CT_GetECCDomainParameters

#include“ctutil.h”

Windows Library: ctutil.lib
UNIX Library: Libctutil.a

CK RV CT GetECCDomainParameters (
CK SESSION HANDLE hSession,

CK ATTRIBUTE PTR attr,

const char *name)

Description
This function returns the DER encoded Domain Parameters for a curve specified by name.

Firstthe CT_DerEncodeNamedCurve function is used to see if the curve is known to the HSM. If not, then this
function looks up the appropriate Domain Parameter object in the token indicated by hSession.

Parameters

param hSession Session where Domain Parameter object can be found

param attr ptr to attribute structure to hold encoding of domain parameters (length prediction supported)
param name Label of Domain Parameter object or known named curve
return Cryptoki error returned, CKR_OK if successful

SafeNet ProtectToolkit 5.6 Programming Guide 497

007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

Chapter 11: CTUTIL.H Functionality Reference

CT_GetObjectDigestFromParts

Synopsis

CK RV CT GetObjectDigestFromParts (

CK_SESSION HANDLE hSession, /* IN */

CK_MECHANISM PTR pDigestMech, /* IN */

char * tokenSerialNumber, /* IN */

char * tokenlabel, /* IN */

char * objlLabel, /* IN */

CK_BYTE PTR objID, /* IN */

CK_ULONG objIDlen, /* IN */

CK_BYTE PTR * ppDigest, /* OUT returned buffer

(must be freed by caller) */
CK_ULONG * pulDigest /* OUT length of returned buffer */

)

Description

Compute the object digest as used by SET Attributes Ticket to identify the target object by using parts.

See also

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

498

Chapter 11: CTUTIL.H Functionality Reference

CT_GetTmpPin

Synopsis

CK_DEFINE_FUNCTION(CK RV, CT GetTmpPin) (
CK_SESSION HANDLE hSession,
CK BYTE PTR pPin,
CK _ULONG PTR pulPinLen

)i

Description

This function is a SafeNet ProtectToolkit-C extension to PKCS#1 1provided with the SafeNet ProtectToolkit-C
SDK as a host side library function.

The function requests the HSM to generate a random Temporary Pin value and to return the pin to the calling
application. The function uses the CKH_VD_USER object to fetch the Pin.

A User or SO must be already logged on or this function will fail with error CKR_USER_NOT_LOGGED_ON.

The Application can pass this Temporary Pin to another process which can then use it to authenticate to the
HSM (as the same user type only).

The Temporary Pin can be passed to the C_Login function to authenticate the user to the Token. See
description of for more details.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 499

Chapter 11:

CTUTIL.H Functionality Reference

CT_ErrorString

Synopsis

CK RV C ErrorString(
CK RV ret,

char * errstr,
unsigned int len);

Description
Get a printable string representation of a Cryptoki error code.

Parameters
ret Cryptoki error code
errstr buffer to hold the printable string
len number of characters referenced by errstr

On successful return
errstr — contains the printable string, or as much as will fit

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

500

Chapter 11: CTUTIL.H Functionality Reference

CT_GetECKeySize

Synopsis

CK RV CT GetECKeySize (const CK ATTRIBUTE PTR ecParam,CK SIZE PTR size);

Description
Helper function to return key size (in bits) for a given EC parameter

Parameters
ecParam handle that points to EC parameter
size returned key size

On successful return
size — pointer to the value of key size

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 501

Chapter 11: CTUTIL.H Functionality Reference

CT_MakeObjectNonModifiable
Synopsis
CK RV CT MakeObjectNonModifiable (

CK_SESSION HANDLE hSession, /* IN */

CK _OBJECT HANDLE hObj, /* IN */

CK_OBJECT HANDLE *phOb /* OUT (may be NULL) */

)

Description

Change an object CKA_MODIFIABLE attribute from TRUE to FALSE.
This involves copying the object - so the handle of the object will change.

The original object is deleted.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

502

Chapter 11: CTUTIL.H Functionality Reference

CT_OpenObject

Synopsis

CK RV CT OpenObject (

CK SESSION HANDLE hSession,
CK_OBJECT CLASS cl,

char * name,

CK _OBJECT HANDLE * phObj);

Description

Get a handle to an object with the specified class and label. This function returns the first object satisfying the
criteria.

Parameters
hSession open session on the slot containing the object
cl class of the object
name label of the object
phObj reference to object handle to hold opened object

On successful return
*phObj — handle to the opened object

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 503

Chapter 11: CTUTIL.H Functionality Reference

CT_ReadObject

Synopsis

CK RV CT ReadObject (

CK SESSION HANDLE hSession,
CK_OBJECT HANDLE hObj,
unsigned char * buf,
unsigned int len,

unsigned int * pbr);

Description
Get the value of an object.

Parameters
hSession open session on the slot containing the object
hObj object whose value is to be returned
buf buffer to hold the object value
len total number of bytes referenced by buf
pbr reference to int to hold number of bytes copied into buf

On successful return
buf — contains the object value

*pbr — number of bytes copied into buf

If bufis too small to hold the attribute value (thatis, len is < attribute value length), then CKR_ATTRIBUTE_

TYPE_INVALID is returned.

To determine the attribute value length, pass in 0 for len, and check the resulting value of *pbr.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

504

Chapter 11:

CTUTIL.H Functionality Reference

CT_RenameObject

Synopsis

CK_RV CT RenameObject (

CK SESSION HANDLE hSession,
CK_OBJECT CLASS cl,

char * oldName,

char * newName) ;

Description
Change the label of the object with the specified class and label.

Parameters
hSession open session on the slot containing the object
cl class of the object
oldName current label of the object
newName new label for the object

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

505

Chapter 11: CTUTIL.H Functionality Reference

CT_SetCKDateStrFromTime

Synopsis
void CT_SetCKDateStrFromTime (

char pd[9], /* OUT - pointer to a buffer at least 9 bytes*/
time t *t); /* IN - time value to convert */

Description
Convert time_t structure to the DATE format used by and

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 506

Chapter 11: CTUTIL.H Functionality Reference

CT_Structure_To_Armor

Synopsis

CK RV CT Structure To Armor (
char * pLabel,/* IN Armor label (string) */
char * pComment,/* optional comment string */

CK _VOID PTR pData, /* IN data to armor */
CK ULONG ulDataLen /* IN length of data */

CK_BYTE_PTR *pArmor, /* OUT Armored structure created
(free after use) */
CK_ULONG_PTR pulArmorLen /* IN/OUT pArmor buffer length */

)

Description

Armoring is the term used in PGP and MIME to describe the formatting of binary data such that it can be
unambiguously embedded in a printable document such as an email.

The Base 64 encoding method is used to make binary data printable and the encoding is clearly marked with
BEGIN and END statements.

The function formats an arbitary structure — such as a ticket - into an Armored (printable format).
The resultis returned as a buffer that the caller must free after use.

Example:

If Armoring the binary data 01h 23h 45h 67h 89h abh cdh efh with the label “SETATTRIBUTE TICKET” and the
comment “This is a trial certificate\n”.

You get:

This is a trial certificate

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 507

Chapter 11: CTUTIL.H Functionality Reference

CT_Structure_From_Armor

Synopsis

CK RV CT Structure From Armor (

Char * pLabel,/* IN Armor label (string) */
CK BYTE PTR pArmor,/* IN Armored structure */
CK_ULONG ulArmorLen /* IN pArmor buffer length */

CK _VOID PTR *pData, /* OUT extracted structure */
CK_ULONG_PTR pulDatalen /* OUT *pData buffer length */
)i

Description

Armoring is the term used in PGP and MIME to describe the formatting of binary data such that it can be
unambiguously embedded in a printable document such as an email.

The function extracts a data structure from an Armored (printable format) buffer.

The result is returned as a buffer that the caller must free after use.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 508

Chapter 11: CTUTIL.H Functionality Reference

CT_SetLimitsAttributes

Synopsis

CK RV CT SetLimitsAttributes(
CK_SESSION HANDLE hSession, /* IN */
CK_OBJECT HANDLE hOb7j, /* IN */
CK VOID PTR pCertData, /* IN - optional CKA ADMIN CERT value */
CK_ULONG ulCertDatalen, /* IN - length of pCertData */
CK_ULONG * usage limit, /* IN - optional CKA USAGE LIMIT */

CK_ULONG * usage count, /* IN - optional CKA USAGE COUNT */
char * start date, /* IN - optional CKA START DATE */
char * end_date /* IN - optional CKA END DATE */
)i
Description

Apply limit attributes to an object. The optional inputs may be set to NULL to indicte that that Attributes should
not be set.

I NOTE Object should have CKA_MODIFIABLE-false for this function to work.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 509

Chapter 11: CTUTIL.H Functionality Reference

CT_WriteObject

Synopsis

CK RV CT WriteObject (

CK SESSION HANDLE hSession,
CK_OBJECT HANDLE hObj,
const unsigned char * buf,
unsigned int len,

unsigned int * pbr);

Description
Set the value of an object.

Parameters
hSession Open session on the slot containing the object
hObj Object whose value is to be set
buf Value of the object to set
len :ength of buf
pbr Reference to int to hold number of bytes copied from buf

On successful return
*pbr — set to equal len

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

510

Chapter 11: CTUTIL.H Functionality Reference

DateConvertGmtTolLocal

Synopsis

DateConvertGmtToLocal (char * fmt,const char * ts);

Description

Converts a GMT date string of the format YYYYMMDDhhmmssxx into the Local Time format "DD/MM/YYYY
hh:mm:ss (TimeZone)".

Parameters
fmt pointer to the buffer that holds the converted value
ts GMT date string

On Successful Return
*fmt — pointer to the buffer that holds the converted value

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 51 1

Chapter 11:

CTUTIL.H Functionality Reference

DateConvert

Synopsis

void DateConvert (
char * fmt,
const char * ts);

Description
Convert “YYYYMMDDhhmmss00” to “hh:mm:ss DD/MM/YYYY*.

Parameters
fmt Destination string
ts Source string

On Successful Return
fmt — contains a string like “hh:mm:ss DD/MM/YYYY*

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

512

Chapter 11:

CTUTIL.H Functionality Reference

DumpAttributes

Synopsis

void DumpAttributes (CK ATTRIBUTE * na,CK COUNT attrCount);

Description
Dumps attribute details via logtrace.

Parameters
na Array of attributes to dump
attrCount Number of attributes in na

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

513

Chapter 11: CTUTIL.H Functionality Reference

DumpDHKeyPair

Synopsis

CK RV DumpDHKeyPair (

int cStyle,

CK_SESSION HANDLE hSession,
CK_OBJECT HANDLE hPub,

CK _OBJECT HANDLE hPri);

Description
Dump DH key pair details via printf.

Parameters
cStyle 1 for a form which can be included in C code, 0 for standard dump
hSession Open session handle
hPub Handle to public key
hPri Handle to private key

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 51 4

Chapter 11: CTUTIL.H Functionality Reference

DumpDSAKeyPair

Synopsis

CK_RV DumpDSAKeyPair (

int cStyle,

CK_SESSION HANDLE hSession,
CK_OBJECT HANDLE hPub,

CK _OBJECT HANDLE hPri);

Description
Dump DSA key pair details via printf.

Parameters
cStyle 1 for a form which can be included in C code, 0 for standard dump
hSession Open session handle
hPub Handle to public key
hPri Handle to private key

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 51 5

Chapter 11: CTUTIL.H Functionality Reference

DumpRSAKeyPair

Synopsis

CK RV DumpRSAKeyPair (

int cStyle,

CK_SESSION HANDLE hSession,
CK_OBJECT HANDLE hPub,

CK _OBJECT HANDLE hPri);

Description
Dump RSA key pair details via printf.

Parameters
cStyle 1 for a form which can be included in C code, 0 for standard dump
hSession Open session handle
hPub Handle to public key
hPri Handle to private key

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 51 6

Chapter 11:

CTUTIL.H Functionality Reference

FindAttribute

Synopsis

CK_ATTRIBUTE * FindAttribute (
CK ATTRIBUTE TYPE attrType,
const CK ATTRIBUTE * attr,
CK _COUNT attrCount) ;

Description
Find the first attribute of the specified type in an attribute template.

Parameters
attrType Type of the attribute to locate
attr Attribute temple (that is, array of CK_ATTRIBUTE)
attrCount Number of attributes referenced by attr

On Successful Return
Return a pointer to the attribute of the specified type.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

517

Chapter 11: CTUTIL.H Functionality Reference

FindKeyFromName

Synopsis

CK_RV FindKeyFromName (

const char * keyName,

CK OBJECT CLASS cl,
CK_SLOT ID * phSlot,

CK SESSION HANDLE * phSession,
CK OBJECT HANDLE * phKey) ;

Description
Find the key with a given class and label within the specified token, and open a session to this token.

Parameter

keyName String identifying the key to locate format "token(pin)/key" or "token/key" token name of the Token
containing the key pin optional user pin key label of the key in the Token

cl Class of the object
phSlot Reference to slot id to hold located slot id
phSession = Reference to session handle to hold opened session

phKey Reference to object handle to hold located key handle

On Successful Return
*phSlot — slot holding the key
*phSession — open session handle

*phKey — handle to the key object

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 51 8

Chapter 11:

CTUTIL.H Functionality Reference

FindTokenFromName

Synopsis

CK RV FindTokenFromName (
char * label,
CK SLOT ID * pslotID);

Description
Find a token with the specified label and return the corresponding slot id.

Parameters
label String identifying Token to find
pslotID Reference to slot id to hold located slot id

On Successful Return
*pslotID — slot which contains the Token

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

519

Chapter 11: CTUTIL.H Functionality Reference

GenerateDhKeyPair

Synopsis

CK RV GenerateDhKeyPair (

CK SESSION HANDLE hSession,

char * txt,

int ftok,

int priv,

int param,

CK _SIZE valueBits,

CK _OBJECT HANDLE * phPublicKey,
CK_OBJECT HANDLE * phPrivateKey);

Description
Generate a DH key pair.

Parameters
hSession Open session handle
txt Optional label
ftok 1 for a Token object, 0 for Session object
priv 1 for private object, 0 for public object
param Not used
valueBits Number of prime bits
phPublicKey Reference to object handle to hold created public key
phPrivateKey Reference to object handle to hold created private key

On Successful Return

*phPublicKey — handle to newly created public key

*phPrivateKey — handle to newly created private key

In addition to the Public key attributes set via the parameters, the following are set:

CKA_CLASS CKO PUBLIC KEY
CKA KEY TYPE CKK DH

CKA VERIFY TRUE

CKA EXTRACTABLE TRUE

In addition to the Private key attributes set via the parameters, the following are set:

CKA CLASS CKO PRIVATE KEY
CKA KEY TYPE CKK DH
CKA SUBJECT STR “SUBJECT”

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 520

Chapter 11: CTUTIL.H Functionality Reference

CKA_ID 123
CKA_SENSITIVE TRUE
CKA_SIGN TRUE
CKA_EXTRACTABLE TRUE

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 521

Chapter 11: CTUTIL.H Functionality Reference

GenerateDsaKeyPair

Synopsis

CK RV GenerateDsaKeyPair (

CK SESSION HANDLE hSession,

char * txt,

int ftok,

int priv,

int param,

CK _SIZE valueBits,

CK _OBJECT HANDLE * phPublicKey,
CK_OBJECT HANDLE * phPrivateKey);

Description
Generate DSA key pair.
Parameters
hSession Open session handle
txt Optional label
ftok 1 for a Token object, 0 for Session object
priv 1 for private object, 0 for public object
param 1 to generate new DSA parameters, 0 to use defaults (see below)
valueBits Number of bits in Prime
phPublicKey Reference to object handle to hold created public key
phPrivateKey Reference to object handle to hold created private key

On Successful Return
*phPublicKey — handle to newly created public key
*phPrivateKey — handle to newly created private key

In addition to the Public key attributes set via the parameters, the following are set:

CKA_CLASS CKO PUBLIC KEY
CKA KEY TYPE CKK DSA
CKA VERIFY TRUE

CKA EXTRACTABLE TRUE

In addition to the Private key attributes set via the parameters, the following are set:

CKA CLASS CKO PRIVATE KEY
CKA KEY TYPE CKK DSA
CKA SUBJECT STR “SUBJECT”

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 522

Chapter 11: CTUTIL.H Functionality Reference

CKA_ID 123
CKA_SENSITIVE TRUE
CKA_SIGN TRUE
CKA_EXTRACTABLE TRUE

The default values for the DSA parameters are:

512 P =fcab82ce8e12caba26efccf7110e526db078b05edecbcd1eb4a208f3ae1617ae01f35b91a47e6df6
3413c5e12ed0899bcd132acd50d99151bdc43ee737592e17

512 Q = 962eddcc369cba8ebb260ee6b6a126d9346e38c5

512 G =678471b27a9cf44ee91a49c5147db1a9%9aaf244f05a434d6486931d2d14271b9e35030b7 1fd73da
179069b32e2935630e1¢c2062354d0da20a6c416e50be794ca4

1024 P = e2662c8df32db56309ccb7f8f419e73263c55¢c1a89954fa68d85d8b09¢720618532bd05dc0994b
€245526367b08888f4ef07bb0977ac6aa3c4653f6d70151027fb73a9d7f99e63a63ea5¢c89de1b1
5b35eccObeae18a89ee4aac0f75b2¢c364026¢c3b6ef8ad13cdd6886d93f9b86¢71cb2537b449643
4412033ab3002de749d963

1024 Q =fd5274d166045c96e5f180ab181ccde55804a9c7

1024 G =0c8392bedb9c222526fc2160864b117b7c8d9e3bec9faa1f7e4d8cfcechfbf521alaca11620aaafl
f847068e8f6c936438bd482cd2d6ee2bbac519b63f5809¢c412dbd39664fa4e05567fcObf01f83e3
f816aa945304f31e832a243e138b7b776bb519411d5669b4c6e38c840c2b9ae195f84f04b8b508
7271613¢12d938720cc

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 523

Chapter 11: CTUTIL.H Functionality Reference

GenerateRsaKeyPair

Synopsis

CK RV GenerateRsaKeyPair (

CK SESSION HANDLE hSession,

char * txt,

int ftok,

int priv,

CK_SIZE modulusBits,

int expType,

CK _OBJECT HANDLE * phPublicKey,
CK_OBJECT HANDLE * phPrivateKey);

Description
Generate an RSA key pair.

Parameters
hSession Open session handle
txt Optional label
ftok 1 for a Token object, O for Session object
priv 1 for private object, 0 for public object
modulusBits Size of modulus to generate
expType 0 for random exponent, 1 for Fermat 4 exponent (\x00010001), 2 for smallest valid exponent (3)

phPublicKey Reference to object handle to hold created public key

phPrivateKey Reference to object handle to hold created private key

On Successful Return
*phPublicKey — handle to newly created public key
*phPrivateKey — handle to newly created private key

In addition to the Public key attributes set via the parameters, the following are set:

CKA CLASS CKO PUBLIC KEY
CKA KEY TYPE CKK RSA

CKA SUBJECT STR “SUBJECT”
CKA ENCRYPT TRUE

CKA VERIFY TRUE

CKA WRAP FALSE

CKA EXTRACTABLE TRUE

In addition to the Private key attributes set via the parameters, the following are set:

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 524

Chapter 11: CTUTIL.H Functionality Reference

CKA_CLASS

CKO PRIVATE KEY

CKA KEY TYPE
CKK_RSA

CKA SUBJECT STR “SUBJECT”
CKA ID 123

CKA SENSITIVE TRUE
CKA DECRYPT TRUE
CKA_SIGN TRUE

CKA UNWRAP FALSE

CKA EXTRACTABLE TRUE

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

525

Chapter 11: CTUTIL.H Functionality Reference

GetAttr

Synopsis

CK RV GetAttr(

CK SESSION HANDLE hSession,
CK_OBJECT HANDLE obj,

CK _ATTRIBUTE TYPE type,
CK_VOID PTR buf,

CK SIZE len,

CK_SIZE PTR size);

Description
Get a single attribute of an object.

Parameters
hSession Open session on the slot containing the object
obj Object whose attribute is to be retrieved
type Attribute to retrieve
buf Buffer to hold the attribute value
len Total number of bytes referenced by buf
size Reference to CK_SIZE to hold the number of bytes copied into buf

On Successful Return
buf — contains the attribute value
*size — number of bytes copied to buf

If buf is too small to hold the attribute value (that is, len is < attribute value length), then CKR_ATTRIBUTE
TYPE INVALID is returned.

To determine the attribute value length, pass in O for len, and check the resulting value of *size.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 526

Chapter 11: CTUTIL.H Functionality Reference

getDerEncodedNamedCurve

Synopsis

getDerEncodedNamedCurve <pszCurveName>

Description

Access curve OIDs from the Cryptoki library. Previous JCPROV versions require explicitly coded elliptic curve
OIDs in java code. The JCPROV enhancement allows Java to get curve OIDs from the Cryptoki library.

To get curve OIDs from the Cryptoki library

To use JCPROV to get curve OIDs from the Cryptoki Library include the following syntax in the Java code:

{

}

LongRef oidBuflen = new LongRef ();

CTUti1i1lEx.CTU DerEncodeNamedCurve (pszCurveName.getBytes (),
null, oidBufLen);

//System.out.println ("oidBufLen=" + (int)oidBuflen.value);

byte[] oidBuf = new byte[(int)oidBuflen.value];

CTUti1lEx.CTU DerEncodeNamedCurve (pszCurveName.getBytes (),
oidBuf, oidBufLen);

//System.out.println ("oidBufLen=" + (int)oidBuflen.value);

return oidBuf;

...where the pszCurveName variable may be assigned to P-192, ..., brainpoolP512t1 values.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 527

Chapter 11:

CTUTIL.H Functionality Reference

GetDeviceError

Synopsis

CK RV GetDeviceError (CK SLOT ID slotID,CK NUMERIC *pDeviceError);

Description
Returns the device-error value for a given slot ID

Parameters
slotID Slot to be queried
pDeviceError Error code

On Successful Return
*pDeviceError — returned error code

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

528

Chapter 11: CTUTIL.H Functionality Reference

GetObjectCount

Synopsis

CK RV GetObjectCount (
CK_SLOT_ID slotID,
unsigned int * pCount);

Description
Determine the number of objects on a token.

Parameters
slotID Slot ID containing objects to count
pCount Reference to int to hold number of objects

On Successful Return
*pCount — number of objects

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

529

Chapter 11: CTUTIL.H Functionality Reference

GetSecurityMode

Synopsis
CK RV GetSecurityMode (CK _SLOT ID inputSlotId,

CK SLOT ID* pAdminSlotId,
CK FLAGS* pSecMode) ;

Description
Get the security mode for the slot id given by inputSlotID.

Parameters
inputSlotld Slot ID to retrieve the security flags from
pAdminSlotld Location to store the ID of the Admin Slot; Optional - ignored if NULL
pSecMode Location to store the security mode

On Successful Return
* pStringVal — pointer to the returned string value

* pStringValLen — length of the string

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 530

Chapter 11: CTUTIL.H Functionality Reference

GetSessionCount

Synopsis

CK RV GetSessionCount (

CK SLOT ID slotID,

unsigned int * pSessionCount,
unsigned int *prwSessionCount) ;

Description
Determine the number of sessions on a token

Parameters
slotID Slot ID containing objects to coun
pSessionCount Reference to int to hold the number of open session
prwSessionCount Reference to int to hold the number of open RW session

On Successful Return
*pSessionCount — number of open session

*prwSessionCount — number of open RW session

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 531

Chapter 11: CTUTIL.H Functionality Reference

GetTotalSessionCount

Synopsis
CK RV GetTotalSessionCount (
unsigned int *pSessionCount) ;

Description

Determine the total number of sessions open on all tokens on all adapters.

Parameters

pSessionCount Reference to int to hold the number of open session

On Successful Return
*pSessionCount — total number of open sessions

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 532

Chapter 11: CTUTIL.H Functionality Reference

NUMITEMS

Synopsis

#define NUMITEMS (type) (sizeof ((type)) /sizeof ((type) [0]))

Description

This is a macro that returns the number of elements in an array. Note that only array definitions may be sized
by this macro, not pointer definitions.

Itis used wherever object templates are defined since the number of items in the template is always passed

along with the template address into Cryptoki functions. Use of this macro is preferred to hard coding the
number of items in the template that may change with code maintenance.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 533

Chapter 11:

CTUTIL.H Functionality Reference

rmTrailSpace

Synopsis

void rmTrailSpace (
char * txt,
int len);

Description
Remove trailing spaces from a string.

Parameters
txt String to process
len Length of the string

On Successful Return

txt — string no longer has trailing spaces

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

534

Chapter 11: CTUTIL.H Functionality Reference

SetAttr

Synopsis

CK RV SetAttr(

CK SESSION HANDLE hSession,
CK_OBJECT HANDLE obj,

CK _ATTRIBUTE TYPE type,
const CK VOID PTR buf,
CK_SIZE len);

Description
Set a single attribute of an object.

Parameters
hSession Open session on the slot containing the object
obj Object whose attribute is to be retrieved
type Attribute to retrieve
buf Contains the attribute value to set
len Number of bytes referenced by buf

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 535

Chapter 11: CTUTIL.H Functionality Reference

ShowSlot

Synopsis

CK RV ShowSlot (
CK_SLOT_ID slotID,
int verbose);

Description
Dump slot details via printf.

Parameters
slotID Slot to dump
verbose 0 for description and manufacturer, 1 for more details

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 536

Chapter 11: CTUTIL.H Functionality Reference

ShowToken

Synopsis

CK_RV ShowToken (
CK_SLOT_ID slotID,
int verbose);

Description
Dump token details via printf.

Parameters
slotID Slot containing Token to dump
verbose 0 for brief details, 1 for more details

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 537

Chapter 11: CTUTIL.H Functionality Reference

strAttribute

Synopsis

char * strAttribute (
CK NUMERIC val) ;

Description

Given the numeric value of an attribute, return the string name.

Parameters

val Numeric value of an attribute

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 538

Chapter 11: CTUTIL.H Functionality Reference

strError

Synopsis

char * strError (
CK NUMERIC val) ;

Description

Given the numeric value of an error, return the string name.

Parameters

val Numeric value of an error

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 539

Chapter 11: CTUTIL.H Functionality Reference

strkeyType

Synopsis

char * strKeyType (
CK NUMERIC val) ;

Description

Given the numeric value of a key type, return the string name.

Parameters

val Numeric value of a key type

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 540

Chapter 11: CTUTIL.H Functionality Reference

strMechanism

Synopsis

char * strMechanism/(
CK NUMERIC val) ;

Description

Given the numeric value of a mechanism, return the string name.

Parameters

val Numeric value of a mechanism

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 541

Chapter 11: CTUTIL.H Functionality Reference

strObjClass

Synopsis

char * strObjClass(
CK NUMERIC val) ;

Description

Given the numeric value of an object class, return the string name.

Parameters

val Numeric value of an object class

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 542

Chapter 11: CTUTIL.H Functionality Reference

strSesState

Synopsis

char * strSesState(
CK NUMERIC val) ;

Description

Given the numeric value of a session state, return the string name.

Parameters

val Numeric value of a session state

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 543

Chapter 11: CTUTIL.H Functionality Reference

TransferObject

Synopsis

CK RV TransferObject (
CK_SESSION HANDLE sTo,

CK SESSION HANDLE sFrom,
CK_OBJECT HANDLE hObj,

CK _OBJECT_ HANDLE * phObj,
CK _ATTRIBUTE PTR pTemplate,
CK _COUNT ulCount) ;

Description
Copies an object from one Token to another.

Parameters
sTo Open session handle on destination Token
sFrom Open session handle on source Token
hObj Handle to object to transfer
phObj Reference to handle to hold new object
pTemplate Specifies new values for some attributes of the new object
ulCount Number of attributes in pTemplate

On Successful Return

*phObj — handle to newly copied object

pTemplate — can only overwrite attributes which are ordinarily writeable.

This function tries the following methods to copy the object, in order:

1. Usingthe CKM_ENCODE ATTRIBUTES vendor defined key wrapping mechanism to transfer keys.

2. Reading all the attributes of the existing object and creating a new object with them.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 544

Chapter 11: CTUTIL.H Functionality Reference

valAttribute

Synopsis

CK NUMERIC valAttribute (
const char * txt);

Description

Given the string name of an attribute, return the numeric value.

Parameters

txt String name of an attribute

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 545

Chapter 11: CTUTIL.H Functionality Reference

valError

Synopsis

CK _NUMERIC valError (
const char * txt);

Description

Given the string name of an error, return the numeric value.

Parameters

txt String name of an error

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 546

Chapter 11: CTUTIL.H Functionality Reference

valKeyType

Synopsis

CK_NUMERIC valKeyType (
const char * txt);

Description

Given the string name of a key type, return the numeric value.

Parameters

txt String name of a key type

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 547

Chapter 11: CTUTIL.H Functionality Reference

valMechanism

Synopsis

CK _NUMERIC valMechanism(
const char * txt);

Description

Given the string name of a mechanism, return the numeric value.

Parameters

txt String name of a mechanism

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 548

Chapter 11: CTUTIL.H Functionality Reference

valObjClass

Synopsis

CK NUMERIC valObjClass (
const char * txt);

Description

Given the string name of an object class, return the numeric value.

Parameters

txt String name of the object class

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 549

Chapter 11: CTUTIL.H Functionality Reference

valSesState

Synopsis

CK NUMERIC valSesState (
const char * txt);

Description

Given the string name of a session state, return the numeric value.

Parameters

txt String name of a session state

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 550

CHAPTER 12:

CTEXTRA.H Library Reference

The SafeNet ProtectToolkit-C Software Development Kit offers a number of extended APl libraries with
functionality that is extended to that of the standard PKCS#11 function set.

The following additional features do not form part of the standard PKCS#11 functionality, but are provided by

SafeNet as part of the SafeNet ProtectToolkit-C API within the CTEXTRA.H library.

This chapter provides descriptions of the following features:

V V VvV VvV VvV V

"AddAttributeSets" on page 553

"at_assign" on page 554

"ConcatAttributeSets" on page 555

"CopyAttribute" on page 556

"DupAttributes" on page 557

"DupAttributeSet" on page 558

"ExtractAllAttributes” on page 559

"FindAttr" on page 560

"FreeAttributes" on page 561

"FreeAttributeSet" on page 562
"FreeAttributesNoClear" on page 563
"FreeMechData" on page 564
"genkMechanismTabFromMechanismTab" on page 565
"genkpMechanismTabFromMechanismTab" on page 566
"genMechanismTabFromMechanismTab" on page 567
"GetCryptokiVersion" on page 568

"GetObjAttrInfo" on page 569
"GetObjectClassAndKeyType" on page 570
"hashMech" on page 571

"intAttr" on page 572

"intAttrLookup" on page 573

"isBooleanAttr" on page 574

"isEnumeratedAttr" on page 575

"isGenMech" on page 576

"isNumericAttr" on page 577

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

551

Chapter 12: CTEXTRA.H Library Reference

V V VvV VvV VvV VvV V V V V V V V V V V V V V V V V V

"isSensitiveAttr" on page 578
"KeyFromPin" on page 579
"kgMech" on page 580
"kpgMech" on page 581
"ktFromMech" on page 582
"LookupMech" on page 583
"MatchAttributeSet" on page 584
"mechDeriveFromKt" on page 585
"mechFromKt" on page 586
"mechFromTokKt" on page 587
"mechSignFromKt" on page 588
"mechSignRecFromKt" on page 589
"NewAttributeSet" on page 590
"numAttr" on page 591
"numAttrLookup" on page 592
"NUMITEMS" on page 593
"PvcFromPin" on page 594
"ReadAttr" on page 595
"slotIDfromSes" on page 596
"TransferAttr" on page 597
"UnwrapDec" on page 598
"WrapEnc" on page 599
"WriteAttr" on page 600

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

552

Chapter 12: CTEXTRA.H Library Reference

AddAttributeSets

Synopsis

CK RV AddAttributeSets (TOK ATTR DATA ** pSum,const TOK ATTR DATA * base,const TOK ATTR DATA *
user) ;

Description

Add two attribute sets being careful to drop duplicates. The 'base' attributes will override 'user' attributes where
duplicates are concerned. Resulting setis located in *pSum.

Parameters
pSum Reference to addition of base and user sets
base Attribute set to add to user set
user Attribute set to add to base set

On Successful Return

*pSum—reference to a newly allocated attribute set resulting from the addition. This memory needs to be
released via a call to FreeAttributeSet.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 553

Chapter 12: CTEXTRA.H Library Reference

at_assign

Synopsis

CK RV at assign(
CK ATTRIBUTE * tgtNa,
const CK ATTRIBUTE * srcNa) ;

Description
Assign one attribute value to another. Attribute types and lengths have to match up.

Parameters
tgtNa Target attribute
srcNa Source attribute

To determine the length of tgtNa->pValue required, set tgtNa->pValue to NULL and check tgtNa->valueLen
after invocation.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 554

Chapter 12: CTEXTRA.H Library Reference

ConcatAttributeSets

Synopsis

CK RV ConcatAttributeSets (
TOK ATTR DATA * base,
const TOK ATTR DATA * user);

Description

Append attributes from the user set to the base set. The 'base' attributes will override 'user' attributes where
duplicates are concerned.

Parameters
base Reference to attribute set to append to
user Reference to attribute set to append

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 555

Chapter 12: CTEXTRA.H Library Reference

CopyAttribute

Synopsis

CK_ATTRIBUTE * CopyAttribute (
CK ATTRIBUTE TYPE at,

TOK ATTR DATA * tgt,

const TOK ATTR DATA * src);

Description

Returns reference to the copied attribute in tgt attribute set.

Parameters
at Attribute to copy
tgt Target attribute set
src Source attribute set

On Successful Return
tgt — contains value of the specified attribute from src

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 556

Chapter 12: CTEXTRA.H Library Reference

DupAttributes

Synopsis

TOK ATTR DATA * DupAttributes(
const CK_ATTRIBUTE * attr,
CK COUNT attrCount) ;

Description

Make a copy of an array of attributes. The returned attribute setis newly allocated. This memory needs to be
released via a call to FreeAttributeSet.

Parameters
attr Attribute array to duplicate
attrCount Number of attributes in attr

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 557

Chapter 12: CTEXTRA.H Library Reference

DupAttributeSet

Synopsis
TOK _ATTR DATA * DupAttributeSet (
const TOK ATTR DATA * attrData);

Description

Make a copy of an attribute set. The returned attribute set is newly allocated. This memory needs to be
released via a call to FreeAttributeSet.

Parameters

attrData Attribute set to duplicate

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 558

Chapter 12: CTEXTRA.H Library Reference

ExtractAllAttributes

Synopsis

CK RV ExtractAllAttributes(
CK SESSION HANDLE hSession,
CK_OBJECT HANDLE hobj,

TOK ATTR DATA ** pna);

Description
Extract all non-sensitive valid attributes of an object.

Parameters
hSession Open session handle
hObj Object to extract from
pna Reference to a reference to extracted attribute set

On Successful Return
*pna — newly allocated attribute set of extracted attributes; this memory needs to be freed (see

)

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 559

Chapter 12: CTEXTRA.H Library Reference

FindAttr

Synopsis

CK _ATTRIBUTE * FindAttr (CK ATTRIBUTE TYPE attrType,const TOK ATTR DATA * attrData);

Description
Find the first attribute of the specified type in an attribute set.

Parameters
attrType Type of attribute to locate
attrData Attribute set

On Successful Return
Return a pointer to the attribute of the specified type.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 560

Chapter 12: CTEXTRA.H Library Reference

FreeAttributes

Synopsis
void FreeAttributes (

CK_ATTRIBUTE_PTR attr,
CK COUNT attrCount) ;

Description

Free all attributes contained in the attribute array, then free the array itself. This function also explicitly writes
Oxaa to the memory to be freed before freeing.

Parameters
attr Attribute array to free
attrCount Number of attributes in the array

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 561

Chapter 12: CTEXTRA.H Library Reference

FreeAttributeSet

Synopsis

void FreeAttributeSet (
TOK ATTR DATA * attr);

Description

Free all of the attributes contained in the attribute set, and then free the setitself. This function also explicitly
writes Oxaa to the memory to be freed before freeing.

Parameters

attr Reference to the attribute set to free

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 562

Chapter 12: CTEXTRA.H Library Reference

FreeAttributesNoClear

Synopsis

void FreeAttributesNoClear (
CK_ATTRIBUTE_PTR attr,
CK COUNT attrCount) ;

Description

Free all attributes contained in the attribute array, then free the array itself. This function does not explicitly
write 0xaa to the memory to be freed before freeing.

Parameters
attr Attribute array to free
attrCount Number of attributes in the array

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 563

Chapter 12: CTEXTRA.H Library Reference

FreeMechData

Synopsis

void FreeMechData (
TOK MECH DATA * pMech) ;

Description

Free dynamic memory of pMech, including pMech itself.

Parameters

pMech Mechanism list to free

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

564

Chapter 12: CTEXTRA.H Library Reference

genkMechanismTabFromMechanismTab

Synopsis

CK_MECHANISM TYPE * genkMechanismTabFromMechanismTab (
TOK MECH DATA * mTab,
unsigned int * len);

Description
Creates a key generation mechanism table for the list of mechanisms supplied in mTab

Parameters
mTab Number of mechanisms to look up
len Number of returned mechanisms

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 565

Chapter 12: CTEXTRA.H Library Reference

genkpMechanismTabFromMechanismTab

Synopsis

CK_MECHANISM TYPE * genkpMechanismTabFromMechanismTab (TOK MECH DATA * mTab,unsigned int * len);

Description
Creates a key pair generation mechanism table for the list of mechanisms supplied in mTab.

Parameters
mTab List of mechanisms to look up
len Number of returned mechanisms

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 566

Chapter 12: CTEXTRA.H Library Reference

genMechanismTabFromMechanismTab

Synopsis

CK_MECHANISM TYPE * genMechanismTabFromMechanismTab (
TOK MECH DATA * mTab,
unsigned int * len);

Description
Creates a mechanism table for the list of mechanisms supplied in mTab.

Parameters
mTab List of mechanisms to look up
len Number of returned mechanisms

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 567

Chapter 12: CTEXTRA.H Library Reference

GetCryptokiVersion

Synopsis

CK VOID GetCryptokiVersion (CK VERSION PTR pVer) ;

Description
Returns the Cryptoki version information.

Parameters

pVer Returned Cryptoki version

On Successful Return
pVer — pointer to a value which holds Cryptoki version

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 568

Chapter 12: CTEXTRA.H Library Reference

GetObjAttrinfo

Synopsis

CK RV GetObjAttrInfo (CK SESSION HANDLE hSession,
CK_OBJECT HANDLE hObj,

CK_ATTRIBUTE PTR* ppAttributes,

CK _ULONG PTR pAttrCount) ;

Description
Get the list of attributes (type and size) of the specified object.

This function relies on the SafeNet extension CKA_ENUM_ATTRIBUTES to retrieve the list of attributes. Only
the attribute type and size are returned. Attribute values must be retrieved by the caller as required.

Parameters
hSession Handle to a valid session
hObj Handle to the object to operate on

ppAttributes = Location to receive the attribute array (on return, *ppAttributes references an array of CK_
ATTRIBUTE - the caller must free the memory allocated at *ppAttributes).

pAttrCount Location to hold the number of CK_ATTRIBUTE entries (on return, *pAttrCount is the number of CK_
ATTRIBUTE entries referenced by *ppAttributes).

On Successful Return
*ppAttributes — handle that points to the returned attributes

pAttrCount — number of returned attributes

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 569

Chapter 12:

CTEXTRA.H Library Reference

GetObjectClassAndKeyType

Synopsis

CK RV GetObjectClassAndKeyType (
const TOK ATTR DATA * attr,

CK OBJECT CLASS * at class,
CK_KEY TYPE * kt);

Description
Extract the object class and key type from an attribute set.

Parameters
attr Attribute set to extract from
at_class Reference to object class to hold resulting value
kt Reference to key type to hold resulting value

On Successful Return
at_class — references located object class

kt — references located key type

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

570

Chapter 12: CTEXTRA.H Library Reference

hashMech

Synopsis

CK MECHANISM TYPE * hashMech (
unsigned int * len);

Description
Return an array of all related mechanisms.

Parameters

len Reference to int to hold the number of items returned

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 571

Chapter 12: CTEXTRA.H Library Reference

intAttr

Synopsis

unsigned int intAttr(
const CK_ATTRIBUTE * at);

Description
Return the value of the attribute as an int.

Parameters

at Reference to attribute whose value is to be returned

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 572

Chapter 12: CTEXTRA.H Library Reference

intAttrLookup

Synopsis

unsigned int intAttrLookup (CK ATTRIBUTE TYPE atype,const CK ATTRIBUTE * attr,CK COUNT attrCount);

Description
Extract an int attribute from an attribute template.

Parameters

atype = Type of attribute to extract attr array of attributes to search attrCount number of attributes in attr array

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 573

Chapter 12: CTEXTRA.H Library Reference

isBooleanAttr

Synopsis

int isBooleanAttr (const CK ATTRIBUTE * na);

Description
Return TRUE if an attribute is a Boolean.

Parameters

na Reference to attribute to check

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 574

Chapter 12: CTEXTRA.H Library Reference

iISEnumeratedAttr

Synopsis

int isEnumeratedAttr (
const CK ATTRIBUTE * na) ;

Description
Return TRUE if attribute is enumerated and can have Vendor defined values.

Parameters

na Reference to attribute to check

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 575

Chapter 12: CTEXTRA.H Library Reference

isGenMech

Synopsis

int isGenMech (
CK _MECHANISM TYPE mechType) ;

Description
Return TRUE if mechType is a key or key pair generation mechanism.

Parameters

mechType Mechanism type to check

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 576

Chapter 12: CTEXTRA.H Library Reference

iISNumericAttr

Synopsis

int isNumericAttr (const CK ATTRIBUTE * na);

Description
Return TRUE if an attribute is a numeric.

Parameters

na Reference to attribute to check

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 577

Chapter 12: CTEXTRA.H Library Reference

iIsSensitiveAttr

Synopsis
int isSensitiveAttr (

const struct TOK ATTR DATA * attrData,
const CK ATTRIBUTE * na);

Descriptio

Report TRUE for potentially sensitive attributes, as per the PKCS#11 spec. Note that the object has to be
marked sensitive for this to have any effect.

SafeNet ProtectToolkit-C extension: all objects have the CKA VALUE as sensitive if the object has CKA
SENSITIVE setto TRUE. This is useful for objects that are used internally only, or just wrapped for
transmission elsewhere.

Parameters

na Reference to attribute to check

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 578

Chapter 12: CTEXTRA.H Library Reference

KeyFromPin

Synopsis

void KeyFromPin (

unsigned char key([1l6],
unsigned int klen,

CK USER TYPE user,

const unsigned char * pin,
unsigned int pinLen) ;

Description
Generate a double length key from a PIN, using PKCS#5 password based encryption.

Parameters
key Buffer to hold generated key
keylen Number of bytes in key (should be 16)
user Salt value for key generation
pin Password used for key generation
pinLen Number of bytes referenced by pin

On Successful Return
key — contains the generated key

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 579

Chapter 12: CTEXTRA.H Library Reference

kgMech

Synopsis

CK MECHANISM TYPE * kgMech (
unsigned int * len);

Description
Return an array of all key generation related mechanisms.

Parameters

mechType Reference to int to hold the number of items returned

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 580

Chapter 12: CTEXTRA.H Library Reference

kpgMech

Synopsis

CK MECHANISM TYPE * kpgMech (
unsigned int * len);

Description
Return an array of all key pair generation related mechanisms.

Parameters

len Reference to int to hold the number of items returned

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 581

Chapter 12: CTEXTRA.H Library Reference

ktFromMech

Synopsis

CK _KEY TYPE * ktFromMech (
CK_MECHANISM_TYPE mt,
unsigned int * len);

Description
Return an array of key types valid for the given mechanism. The returned array does not need to be freed.

Parameters
mt Mechanism type to get key types for
len Reference to int to hold the number of items in returned array

On Successful Return

*len number of items in returned array

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 582

Chapter 12: CTEXTRA.H Library Reference

LookupMech

Synopsis

int LookupMech (
TOK_MECH DATA * pMech,
CK MECHANISM TYPE mechType) ;

Description
Return TRUE if mechType is in the pMech list.

Parameters
pMech Reference to mechanism list
mechType Mechanism to look for in pMech list

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 583

Chapter 12: CTEXTRA.H Library Reference

MatchAttributeSet

Synopsis
int MatchAttributeSet (

const TOK ATTR DATA * match,
const TOK ATTR DATA * ad);

Description

Do a comparison of two attribute sets. Every attribute in the 'match’ set must be found in the 'ad’ set. It is OKif
'ad' is a super set of 'match’. Return TRUE if all attributes in 'match’ were found in 'ad'.

Parameters
match Attribute set to look for
ad Atritute set to compare to

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 584

Chapter 12: CTEXTRA.H Library Reference

mechDeriveFromKt

Synopsis

CK_MECHANISM TYPE * mechDeriveFromKt (CK KEY TYPE kt,unsigned int * len);

Description

Return an array of derive mechanisms valid for the given key type. The returned array is newly allocated and
needs to be freed.

Parameters
kt Key type to look up
len Pointer to integer that receives length of returned array

On Successful Return

Array of CK_MECHANISM_TYPE values or NULL if key type is invalid. Caller should free the array when
finished.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 585

Chapter 12: CTEXTRA.H Library Reference

mechFromKt

Synopsis

CK_MECHANISM TYPE * mechFromKt (
CK KEY TYPE kt,

unsigned int * len);

Description

Return an array of mechanisms valid for the given key type. The returned array is newly allocated and needs
to be freed.

Parameters
kt Key type to get mechanisms for
len Reference to int to hold number of items in returned array

On Successful Return

Array of CK_MECHANISM_TYPE values or NULL if key type is invalid. Caller should free the array when
finished.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 586

Chapter 12: CTEXTRA.H Library Reference

mechFromTokKt

Synopsis

CK_MECHANISM TYPE * mechFromTokKt (
TOK MECH DATA * mTab,

CK_KEY TYPE kt,

unsigned int * len);

Description

Return an array of mechanisms valid for the given key type. The returned array is newly allocated and needs
to be freed.

Parameters
mTab List of mechanisms to look up
kt Key type to get mechanisms for
len Reference to int to hold number of items in returned array

On Successful Return

Array of CK_MECHANISM_TYPE values or NULL if key type is invalid. Caller should free the array when
finished.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 587

Chapter 12: CTEXTRA.H Library Reference

mechSignFromKt

Synopsis

CK _MECHANISM TYPE * mechSignFromKt (CK KEY TYPE kt,unsigned int * len);

Description

Return an array of signing mechanisms valid for the given key type. The returned array is newly allocated and
needs to be freed.

Parameters
kt Key type to get mechanisms for
len Reference to int to hold number of items in returned array

On Successful Return

Array of CK_MECHANISM_TYPE values or NULL if key type is invalid. Caller should free the array when
finished.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 588

Chapter 12: CTEXTRA.H Library Reference

mechSignRecFromKt

Synopsis

CK_MECHANISM TYPE * mechSignRecFromKt (CK KEY TYPE kt,unsigned int * len);

Description

Return an array of signing mechanisms valid for the given key type. The returned array is newly allocated and
needs to be freed.

Parameters
kt Key type to get mechanisms for
len Reference to int to hold number of items in returned array

On Successful Return

Array of CK_MECHANISM_TYPE values or NULL if key type is invalid. Caller should free the array when
finished.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 589

Chapter 12: CTEXTRA.H Library Reference

NewAttributeSet

Synopsis
TOK ATTR DATA * NewAttributeSet (
unsigned int count);

Description

Allocate memory for an attribute set to hold the specified number of attributes. The returned memory needs to
be freed (see FreeAfttributeSet)

Parameters

count Number of attribute place holders to allocate in the set

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 590

Chapter 12: CTEXTRA.H Library Reference

numALttr

Synopsis
CK_NUMERIC numAttr (
const CK ATTRIBUTE * at);

Description
Return the value of the attribute as a numeric.

Parameters

at Reference to attribute whose value is to be returned

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 591

Chapter 12: CTEXTRA.H Library Reference

numAttrLookup

Synopsis

CK _NUMERIC numAttrLookup (CK ATTRIBUTE TYPE atype,const CK ATTRIBUTE * attr,CK COUNT attrCount);

Description
Extract a numeric attribute from an attribute template.

Parameters
atype Type of attribute to extract attr array of attributes to search
attrCount Number of attributes in attr array

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 592

Chapter 12: CTEXTRA.H Library Reference

NUMITEMS

Synopsis

#define NUMITEMS (type) (sizeof ((type)) /sizeof ((type) [0]))

Description

This is a macro that returns the number of elements in an array. Note that only array definitions may be sized
by this macro, not pointer definitions.

Itis used wherever object templates are defined since the number of items in the template is always passed

along with the template address into Cryptoki functions. Use of this macro is preferred to hard coding the
number of items in the template that may change with code maintenance.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 593

Chapter 12: CTEXTRA.H Library Reference

PvcFromPin

Synopsis
void PvcFromPin (unsigned char * key,unsigned int klen,CK USER TYPE user,const unsigned char *
pin,unsigned int pinLen);

Description
Create a PVC from a PIN using PKCS#5 password based encryption.

Parameters
key Resulting pvc
klen Number of bytes referenced by key
user Salt value
pin Password
pinLen Number of bytes referenced by pin

On Successful Return
key — contains the pvc

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 594

Chapter 12: CTEXTRA.H Library Reference

ReadAttr

Synopsis

int ReadAttr (

void * buf,

unsigned int len,

unsigned int * plen,

CK ATTRIBUTE TYPE attrType,
const TOK ATTR DATA * attr);

Description
Read an attribute value from an attribute set. Return TRUE if the attribute was present.

Parameters
buf Buffer to receive attribute value
len Number of bytes referenced by buf
plen Reference to int to hold number of bytes copied to buf
attrType Type of attribute to extract from attr
attr Attribute set to search

On Successful Return
buf — contains attribute value

plen — references number of bytes copied into buf

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 595

Chapter 12: CTEXTRA.H Library Reference

slotIDfromSes

Synopsis

CK SLOT ID slotIDfromSes (CK_SESSION HANDLE h);

Description

Extracta CK_SLOT_ID from a CK_SESSION_HANDLE. This function only works with SafeNet’s Cryptoki
product because it includes an encoding of the SLOT id in the session handle. For other PKCS#11
implementations the slot ID can be obtained from the session info C_GetSessioninfo() call.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 596

Chapter 12: CTEXTRA.H Library Reference

TransferAttr

Synopsis

CK RV TransferAttr (

CK_ATTRIBUTE * pTgtTemplate,
const CK ATTRIBUTE * pSrcTemplate,
CK _COUNT attrCount) ;

Description

Using at_assign, copy attribute values from one array to another. The order of the attributes must be the same
in both arrays.

Parameters
pTgtTemplate Target attribute array
pSrcTemplate Source attribute array
attrCount Number of attributes to copy from source to target

On Successful Return
pTgtTemplate — contains copy of attribute values from pSrcTemplate

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 597

Chapter 12: CTEXTRA.H Library Reference

UnwrapDec

Synopsis

int UnwrapDec (

CK SESSION HANDLE hSession,

CK OBJECT HANDLE hUnwrapper,

CK _OBJECT HANDLE * hUnwrappedKey,
unsigned char * buf,

unsigned int buflen);

Description
Unwrap a key and decode its attributes.

hSession Open session handle

hUnwrapper Handle to unwrapping key

hUnwrappedKey Reference to handle to the key unwrapped

buf Reference to bytes containing the key and attributes
bufLen Number of bytes referenced by buf

On Successful Return
*hUnwrappedKey — handle to unwrapped key with attributes

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

598

Chapter 12:

CTEXTRA.H Library Reference

WrapEnc

Synopsis

int WrapEnc (

CK SESSION HANDLE hSession,
CK OBJECT HANDLE hWrapper,
CK _OBJECT HANDLE hWrappee,
unsigned char * buf,
unsigned int buflen,

CK SIZE * bytesWritten);

Description
Wrap a key, encode its attributes and write it to a buffer.

Parameters
hSession Open session handle
hWrapper Handle to wrapping key
hWrappee Wrappee handle to the key to wrap
buf Reference to bytes to hold the result
bufLen Number of bytes referenced by buf
bytesWritten Reference to value to hold the number of bytes written to buf

On Successful Return

buf — contains the wrapped key and encoded attributes *bytesWritten number of bytes written to buf

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

599

Chapter 12: CTEXTRA.H Library Reference

WriteAttr

Synopsis

CK RV WriteAttr (

const void * buf,

unsigned int len,
CKﬁATTRIBUTEiTYPE attrType,
TOK_ATTR DATA * attr);

Description
Add/Replace an attribute to an attribute set. Delete attribute iflen is 0.

Parameters
buf Value to add to attribute set
len Number of bytes to add from buf
attrType Type of attribute to add
attr Attribute set to modify

On Successful Return
attr — modified attribute set

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 600

CHAPTER 13:
HEX2BIN.H Library Reference

The SafeNet ProtectToolkit-C Software Development Kit offers a number of extended APl libraries with
functionality that is extended to that of the standard PKCS#11 function set.

The following additional features do not form part of the standard PKCS#11 functionality, but are provided by
SafeNet as part of the SafeNet ProtectToolkit-C API within the HEX2BIN.H library.

This chapter describes the following features:

vV V VvV VvV Vv V

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 601

Chapter 13: HEX2BIN.H Library Reference

hex2bin

Synopsis

int hex2bin(

void * bin,

const char * hex,
unsigned maxLen);

Description
Used to convert ASCII HEX strings to binary data.

The function ignores white space in 'hex' and converts pairs of HEX characters into their equivalent binary
representation.

Example:

Input -

hex = "41424300"
maxLen = 4

Output -
bin[4] = "ABC"
Parameters
bin Output A buffer to receive the binary data
hex Input A string of ASCII HEX characters to be converted
maxLen Input The maximum number of characters that 'bin' can hold

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 602

Chapter 13: HEX2BIN.H Library Reference

bin2hex

Synopsis

int bin2hex(

char * hex,

const void * bin,
unsigned maxLen);

Description
Converts binary data into an ASCII HEX. This function is the inverse of hex2bin.

Example:
Input -
bin = "abc"
maxLen = 3
Output -
hex[7] = "616263"

Parameters
bin Input A buffer of binary data
hex Output A buffer to receive the string of ASCII HEX characters

maxLen The number of characters that 'bin' contains that should be converted (this is not the length of the
Input output buffer 'hex")

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 603

Chapter 13: HEX2BIN.H Library Reference

bin2hexM

Synopsis

int bin2hexM

char * hex,

const void * bin,
unsigned maxLen,
unsigned int linelen);

Description
As for bin2hex, converts binary data into an ASCII HEX and then inserts a "\n' after every 'lineLen' characters
for display formatting.

Parameters
bin Input A buffer of binary data

hex Output A buffer to receive the string of ASCII HEX characters

maxLen The number of characters that 'bin' contains that should be converted (this is not the length of the
Input output buffer 'hex")
lineLen Number of characters before a new line (\n) is added
SafeNet ProtectToolkit 5.6 P ing Guid
areNet FProtect! oolKi rogramming Guide 604

007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

Chapter 13: HEX2BIN.H Library Reference

memdump

Synopsis

void memdump (

const char * txt,

const unsigned char * buf,
unsigned int len);

Description
This function prints the contents of the memory as binary data to stdout for debugging purposes.

Parameters
txt Input Title string (may be NULL)
buf Input Binary data that is to be hex dumped
len Input Length of 'buf’
SafeNet ProtectToolkit 5.6 Programming Guide 605

007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

Chapter 13: HEX2BIN.H Library Reference

SetOddParity

Synopsis

void SetOddParity (
unsigned char * string,
unsigned int count);

Description
Converts a buffer of binary data to 'odd' parity.

For each byte in 'string' this function will flip the least significant bit, if necessary, to make the number of one bits
in the entire byte an odd number (odd parity).

Parameters
string Input/output, binary data to convert
count Length of 'string'

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 606

Chapter 13: HEX2BIN.H Library Reference

isOddParity

Synopsis

int isOddParity(
const unsigned char * string,
unsigned int count);

Description
This function checks the parity of the supplied data and returns 1 if buffer contains bytes that are all of odd
parity.

Parameters
string Input, binary data to check
count Input, length of 'string’

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 607

CHAPTER 14:
HSMAdmin.H Library Reference

The SafeNet ProtectToolkit-C Software Development Kit offers a number of extended APl libraries with
functionality that is extended to that of the standard PKCS#11 function set.

The following additional features do not form part of the standard PKCS#11 functionality, but are provided by
SafeNet as part of the SafeNet ProtectToolkit-C API within the HSMAdmin.h library.

This reference contains descriptions of the following features:

V V. V vV VvV Vv vV

The following functions provide an interface to the HSM’s Real Time Clock (RTC). This Library is used in
conjunction with the CTCONF utility. The CTCONF utility provides the capability to set the access control
configuration parameters for the RTC.

This Library cannot be used in software emulation mode.

Return Codes

The return code of all of the functions in the HSMAdmin Library is the enumerated type HSMADM_RYV which
can have the following values.

Return Code Meaning

HSMADM_OK The operation was successful.

HSMADM_BAD_ One or more of the parameters have an invalid value.

PARAMETER

HSMADM_ADJ_ The delta value passed to the HSMADM_AdjustTime() is too large, and will not be used.
TIME_LIMIT

HSMADM_ADJ_ The number of calls made to the HSMADM_ AdjustTime() that change the time is too large.
COUNT_LIMIT The adjustment will not be made.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 608

Chapter 14: HSMAdmin.H Library Reference

Return Code Meaning
HSMADM_NO _ There is not enough memory to complete operation.
MEMORY

HSMADM_SYSERR There was a system error. The operation was not performed.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 609

Chapter 14: HSMAdmin.H Library Reference

HSMADM_GetTimeOfDay

Synopsis

#include hsmadmin.h
HSMADM RV HSMADM GetTimeOfDay (unsigned int hsmIndex,HSMADM TimeVal t * tv);

Description
Obtains the current time of day from the HSM RTC.

Parameters
hsmindex Zero-based index of the HSM number to be used
tv Address of the variable which is to be initialized with the current time of day. It indicates the time passed
since midnight, 1 Jan 1970. This struct contains a field tv_usec, which is the number of microseconds.

The HSM real-time clock only has millisecond resolution; therefore, tv_usec is always rounded up to the
nearest millisecond HSMADM_TimeVal_t is defined in hsmadmin.h.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 610

Chapter 14: HSMAdmin.H Library Reference

HSMADM_AdjustTime

Synopsis
#include hsmadmin.h

HSMADM RV HSMADM AdjustTime (unsigned int hsmIndex,const HSMADM TimeVal t * delta,HSMADM TimeVal t
* oldDelta);

Description
Either adjust the time, or obtain the current adjustment value.

The parameter, delta, indicates the adjustment to be applied to the HSM RTC. The HSM is only capable of
performing Slew Adjustment when updating the Real Time Clock (RTC). This prevents large (multiple second)
negative or positive steps of the current RTC. The RTC has a Slew Adjustment of 1 second for every 10
seconds of elapsed time, hence if the RTC was out by 1000 seconds, it will take approx 10000 seconds (2.7
hours) to match the external time source.

Because Slew Adjustment is the means by which the RTC is updated, the HSM may not have completed
making an adjustment requested by a previous HSMADM_AdjustTime call. If there is an adjustment being
performed when this function is called, then this adjustment is discarded, and the new adjustment value is used
instead.

This function can alternatively be used to obtain the value of the time adjustment that remains to be completed.
If the parameter delta is NULL, and oldDelta is a valid pointer, it will return the pending adjustment.

Parameters
hsmindex Zero-based index of the HSM number to be used

delta Amount of adjustment to be made to the RTC. This parameter must be NULL if oldDelta is not NULL.
HSMADM _TimeVal_t is defined in hsmadmin.h

oldDelta Address of the variable that will receive the value of the adjustment that remains to be completed.
HSMADM_TimeVal_t is defined in hsmadmin.h. If this parameteris not NULL, delta must be NULL

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 611

Chapter 14: HSMAdmin.H Library Reference

HSMADM SetRtcStatus

Synopsis
#include hsmadmin.h
HSMADM RV HSMADM SetRtcStatus(unsigned int hsmIndex, HSMADM RtcStatus t status);

Description
Changes the RTC status.

Parameters
hsmindex Zero-based index of the HSM number to be used

status New status of the RTC. Possible values of the RTC status are defined in HSMAdmin.h and are
described below.

Value Meaning
HSMADM_RTC _ The RTC is not initialized yet.
UNINITIALIZED

HSMADM_RTC_STAND_ The RTC is in the stand alone mode. This means that it is completely controlled by the
ALONE crypto subsystem. In this mode, all cryptographic operations are allowed to use the
value of the clock.

HSMADM_RTC_ The RTC is being controlled by an external program; but the value is not trusted yet.
This means certain cryptographic operations are refused access to the RTC because
the value is (possibly) incorrect. When the RTC Status is set to this value, the
CTCONF —t command, which normally is used to set the RTC, cannot be used.

MANAGED_UNTRUSTED

HSMADM_RTC _ The RTC is being controlled by an external program, and its value may be trusted.

MANAGED_ TRUSTED This means that all cryptographic operations are allowed to use the value of the clock.
When the RTC Status is set to this value, the CTCONF -t command, which normally
is used to set the RTC, cannot be used.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 612

Chapter 14: HSMAdmin.H Library Reference

HSMADM _GetRtcStatus

Synopsis

#include hsmadmin.h
HSMADM RV HSMADM GetRtcStatus (unsigned int hsmIndex, HSMADM RtcStatus t* status);

Description
Obtain the HSM RTC status.

Parameters

hsmindex Zero-based index of the HSM number to be used. This parameter is only valid if RTC Access Control is
enabled. RTC Access Control can be modified via the CTCONF utility.

status Address of the variable that will obtain the current status of the RTC. This parameter must not be NULL.
Possible values of the RTC status are defined in hsmadmin.hand are described below.

Value Meaning

HSMADM_ The RTC is not initialized yet.

RTC_

UNINITIALIZED

HSMADM _ The RTC is in the stand alone mode. This means that it is completely controlled by the crypto
RTC_STAND _ subsystem. In this mode, all cryptographic operations are allowed to use the value of the clock.
ALONE

HSMADM_ The RTC is being controlled by an external program; but the value is not trusted yet. This means
RTC_ certain cryptographic operations are refused access to the RTC because the value is (possibly)
MANAGED _ incorrect. When the RTC Status is set to this value, the CTCONF —t command, which normally

UNTRUSTED is used to set the RTC, cannot be used.

HSMADM_ The RTC is being controlled by an external program, and its value may be trusted. This means
RTC _ that all cryptographic operations are allowed to use the value of the clock. When the RTC Status
MANAGED _ is set to this value, the CTCONF -t command, which normally is used to set the RTC, cannot be
TRUSTED used.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 613

Chapter 14: HSMAdmin.H Library Reference

HSMADM GetRtcAdjustAmount

Synopsis

#include hsmadmin.h
HSMADM RV HSMADM GetRtcAdjustAmount (unsigned intlong*);
hsmIndex, totalMs

Description

Get the effective total amount, in milliseconds, of adjustment made to the RTC using the HSMADM _
AdjustTime() function.

Parameters
hsmindex Zero-based index of the HSM number to be used.

totalMs Address of the variable that will contain the total amount adjusted. The total amount adjusted is
calculated by summing the adjust amounts specified via a valid HSMADM_AdjustTime() call. For
instance if two adjustments are made of 20ms and -3ms this parameter should return 17ms. This
parameter must not be NULL. This parameter is only valid if RTC Access Control is enabled. RTC
Access Control can be modified via the CTCONF utility.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

614

Chapter 14: HSMAdmin.H Library Reference

HSMADM _GetRtcAdjustCount

Synopsis

#include hsmadmin.h
HSMADM RV HSMADM GetRtcAdjustCount (unsigned intunsigned long*);
hsmIndex, totalCount

Description
Get the effective count of adjustments made to the RTC using the HSMADM_AdjustTime() function.

Parameters
hsmindex = Zero-based index of the HSM number to be used.
totalCount ~ Address of the variable that will obtain the total count of adjustments. The total count of adjustments
indicates the a count of the number of valid adjustments made via HSMADM_AdjustTime() call. This

parameter must not be NULL. This parameter is only valid if RTC Access Control is enabled. RTC
Access Control can be modified via the CTCONF utility.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 61 5

Chapter 14: HSMAdmin.H Library Reference

HSMADM _ GetHsmUsagel evel

Synopsis

#include hsmadmin.h

HSMADM RV HSMADM GetHsmUsageLevel (unsigned int hsmIndex,
unsigned long* value

)

Description
Get the usage level of the HSM as a percentage i.e. the load on the HSM.

Parameters
hsmlindex Zero-based index of the HSM number to be used.
totalCount Address of the variable that will obtain the value. This parameter must not be NULL

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 616

CHAPTER 15:
KMLib.H Library Reference

The SafeNet ProtectToolkit-C Software Development Kit offers a number of extended APl libraries with
functionality that is extended to that of the standard PKCS#11 function set.

The following functions provide an interface to the key management library used by the KMUTIL utility. Not all
functions are documented — refer to kmlib.h for more details.

This reference contains descriptions of the following functions:
>

>

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 61 7

Chapter 15: KMLib.H Library Reference

KM_EncodeECParamsP

#include“kmlib.h”

Windows library: Kmlib.lib
UNIXlibrary: Libkmlib.a

CK RV KM EncodeECParamsP (

~ CK_BYTE PTR prime, CK_SIZE primelen,
CK_BYTE PTR curveA, CK SIZE curveAlen,
CK BYTE PTR curveB, CK SIZE curveBLen,
CK BYTE PTR curveSeed,CK SIZE curveSeedLen,
CK BYTE PTR baseX, CK SIZE baseXLen,
CK BYTE PTR baseY, CK SIZE baseYLen,
CK BYTE PTR bpOrder, CK SIZE bpOrderLen,
CK BYTE PTR cofactor, CK SIZE cofactorlen,
CK BYTE PTR result, CK SIZE * resultLen
)i

Do DER enc of ECC Domain Parameters Prime

All integer values are variable length big endian numbers with optional leading zeros. Integer lengths are all in
bytes.

Parameters
prime Prime modulus
primeLen Prime modulus len
curveA Elliptic Curve coefficient a
curveALen Elliptic Curve coefficient a length
curveB Elliptic Curve coefficient b
curveBLen Elliptic Curve coefficient b length
curveSeed Seed (optional may be NULL)
curveSeedLen Seed length
baseX Elliptic Curve point X coord
baseXLen Elliptic Curve point X coord length
baseY Elliptic Curve point Y coord
baseYLen Elliptic Curve point Y coord length

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 618

Chapter 15: KMLib.H Library Reference

bpOrder Order n of the Base Point

bpOrderLen Order n of the Base Point length

cofactor The integer h = #E(Fq)/n (optional)

cofactorLen h length

result Resultant Encoding (length prediction supported if NULL)
resultLen Buffer len/Length of resultant encoding

Return Status of operation. CKR_OK if ok

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 619

Chapter 15: KMLib.H Library Reference

KM_EncodeECParams2M

#include“kmlib.h”

Windows library: Kmlib.lib
UNIXlibrary: Libkmlib.a

typedef enum {

ECBT GnBasis, /* Gaussian Normal Basis - parameters = 0, 0, 0 */
ECBT TpBasis, /* Trinomial Basis - parameters = k, 0, 0 */
ECBT PpBasis /* Pentanomial Basis - parameters = k1, k2, k3 */

} ECBasisType;

CK RV KM EncodeECParams2M (
~ CK_SIZE m,

ECBasisType basis,
CK SIZE parameters[3],
CK_BYTE PTR curvea, CK SIZE curveAlen,
CK BYTE PTR curveB, CK SIZE curveBLen,
CK BYTE PTR curveSeed,CK SIZE curveSeedLen,
CK BYTE PTR baseX, CK SIZE baseXLen,
CK BYTE PTR baseY, CK SIZE baseYLen,
CK BYTE PTR bpOrder, CK SIZE bpOrderLen,
CK BYTE PTR cofactor, CK SIZE cofactorlen,
CK BYTE PTR result, CK SIZE * resultLen

)

Do DER enc of ECC Domain Parameters 2*M

All long integer values are variable length big endian numbers with optional leading zeros, lengths are all in
bytes.

Parameters

M Degree of field

basis Should be ECBT_GnBasis or ECBT_TpBasis or ECBT_PpBasis

parameters Array of three integers - values depend on basis
ECBT_GnBasis - parameters =0. 0. 0
ECBT_TpBasis - parameters = k. 0. 0
ECBT_PpBasis - parameters = k1.k2.k3

curveA Elliptic Curve coefficient a

curveAlLen Elliptic Curve coefficient a length

curveB Elliptic Curve coefficient b

curveBLen Elliptic Curve coefficient b length

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 620

Chapter 15: KMLib.H Library Reference

curveSeed

curveSeedLen

baseX
baseXLen
baseY
baseYLen
bpOrder
bpOrderLen
cofactor
cofactorLen
result
resultLen

Return

Seed (optional may be NULL)

Seed length

Elliptic Curve point X coord

Elliptic Curve point X coord length
Elliptic Curve point Y coord

Elliptic Curve point Y coord length
Order n of the Base Point

Order n of the Base Point length

The integer h = #E(Fq)/n (optional)

h length

Resultant Encoding (length prediction supported if NULL)
Buffer len/Length of resultant encoding

Status of operation. CKR_OK if ok

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

621

CHAPTER 16:
ctauth.h Library Reference

The ctauthlib.h library provides a single function used by a remote agent attempting to authenticate to the
HSM using the challenge Response system:

>

CT _Gen AUTH_Response

Creates the response to a challenge.

CK RV CT Gen AUTH Response (CK BYTE PTR pPin,
CK ULONG ulPinLen, CK BYTE PTR pChallenge,
CK ULONG ulChallengeLen, CK USER TYPE userType,
CK BYTE PTR pResponse, CK ULONG PTR pulResponse) ;

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 622

APPENDIX A:
Attribute Certificate

The Set Attribute Ticket, which is used to authorize updates to key usage limits, has the format of an Attribute

Certificate defined by PKIX (RFC 3281).

AttributeCertificate ::= SEQUENCE {
acinfo AttributeCertificatelInfo,
signatureAlgorithm AlgorithmIdentifier,
signaturevValue BIT STRING
}
AttributeCertificateInfo ::= SEQUENCE {
version AttCertVersion -- version is v2,
holder Holder,
issuer AttCertIssuer,
signature AlgorithmIdentifier,
serialNumber CertificateSerialNumber,
attrCertvValidityPeriod AttCertValidityPeriod,
attributes SEQUENCE OF Attribute,
issuerUniquelID UniquelIdentifier OPTIONAL,
extensions Extensions OPTIONAL
}
AttCertVersion ::= INTEGER { v2(1) }
Holder ::= SEQUENCE {
baseCertificatelID [0] IssuerSerial OPTIONAL,

-- the issuer and serial number of
—-- the holder's Public Key Certificate

entityName [1] GeneralNames OPTIONAL,
objectDigestInfo [2] ObjectDigestInfo OPTIONAL
-- used to directly authenticate the target key,
-- see further description below
}
ObjectDigestInfo ::= SEQUENCE ({
digestedObjectType ENUMERATED ({
publicKey (0),
publicKeyCert (1),
otherObjectTypes (2) 1},

-- otherObjectTypes only to be used

otherObjectTypelD OBJECT IDENTIFIER OPTIONAL,

-- must be OID X509 ATTR KEY DIGEST
digestAlgorithm AlgorithmIdentifier,
objectDigest BIT STRING

}

The algorithm OID X509 ATTR KEY DIGESTis:

objectDigest = Digest (Token Serial Number | Token Label

ObjectID)

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

623

Appendix A: Attribute Certificate

Where:
ObjectIDisthe concatenation of the CKA_LABEL and CKA_ID attributes of the target Object.

AttCertIssuer ::= CHOICE {
v1Form GeneralNames, -- MUST NOT be used in this
-- profile
v2Form [0] V2Form -- v2 only

V2Form ::= SEQUENCE ({
issuerName GeneralNames OPTIONAL,
baseCertificatelID [0] IssuerSerial OPTIONAL,
objectDigestInfo [1] ObjectDigestInfo OPTIONAL
-- 1issuerName MUST be present in this profile
-- baseCertificateID and objectDigestInfo MUST NOT
-- be present in this profile

IssuerSerial ::= SEQUENCE {
issuer GeneralNames,
serial CertificateSerialNumber,
issuerUID Uniqueldentifier OPTIONAL

AttCertValidityPeriod ::= SEQUENCE ({
notBeforeTime GeneralizedTime,
notAfterTime GeneralizedTime

Attribute ::= SEQUENCE ({
type AttributeType,
values SET OF AttributeValue

-- at least one value is required

AttributeType ::= OBJECT IDENTIFIER
—-- there is a different OID for each type of Cryptoki Attribute
-- see below for a list

AttributeValue ::= ANY DEFINED BY AttributeType
-- the data type depends on the type field but it
-- represents the value part of the Cryptoki attribute.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 624

Appendix A: Attribute Certificate

OID Used to Indicate Key Digest Algorithm

OoID

{iiso(1) identified-organization(3) dod(6) internet(1) private(4) enterprises(1) safeNetinc(23629)

safenetRoot(1) safenetHSM(4) ptkc(2) objDigests(2) key(1) }

OID Value

{iso(1) identified-organization(3) dod(6) internet(1) private(4)
enterprises(1) safeNetInc(23629) safenetRoot(1) safenetHSM(4)
ptkc(2) p11Attrs(1) usage_limit(1) }

{iiso(1) identified-organization(3) dod(6) internet(1) private(4)
enterprises(1) safeNetlnc(23629) safenetRoot(1) safenetHSM(4)
ptkc(2) p11Attrs(1) end date(2) }

{iiso(1) identified-organization(3) dod(6) internet(1) private(4)
enterprises(1) safeNetlnc(23629) safenetRoot(1) safenetHSM(4)
ptkc(2) p11Attrs(1) start_date(3) }

{iiso(1) identified-organization(3) dod(6) internet(1) private(4)
enterprises(1) safeNetInc(23629) safenetRoot(1) safenetHSM(4)
ptkc(2) p11Attrs(1) admin_cert(4) }

OID-type

OID X509
ATTR
USAGE_
LIMIT

0ID X509
ATTR_END
DATE

OID X509
ATTR
START
DATE

OID X509
ATTR
ADMIN
CERT

OID-type

OID X509 ATTR

KEY DIGEST
Cryptoki DER
Attribute Encoded
Type Value

CKA_ INTEGER
USAGE_

LIMIT

CKA_ PrintableString
END_

DATE

CKA_ PrintableString
START_

DATE

CKA_

ADMIN_

CERT

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto

625

APPENDIX B:
Glossary

A

Adapter
The printed circuit board responsible for cryptographic processingina HSM

AES
Advanced Encryption Standard

API

Application Programming Interface

ASO

Administration Security Officer

Asymmetric Cipher

An encryption algorithm that uses different keys for encryption and decryption. These ciphers are usually also known
as public-key ciphers as one of the keys is generally public and the other is private. RSA and EIGamal are two asym-
metric algorithms

B

Block Cipher

A cipher that processes input in a fixed block size greater than 8 bits. A common block size is 64 bits

Bus
One of the sets of conductors (wires, PCB tracks or connections)inan IC

C

CA
Certification Authority

CAST

Encryption algorithm developed by Carlisle Adams and Stafford Tavares

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 626

Appendix B: Glossary

Certificate

A binding of an identity (individual, group, etc.) to a public key which is generally signed by another identity. A cer-
tificate chain is a list of certificates that indicates a chain of trust, i.e. the second certificate has signed the first, the
third has signed the second and so on

CMOS

Complementary Metal-Oxide Semiconductor. A common data storage component

Cprov
ProtectToolkit C - SafeNet’'s PKCS #11 Cryptoki Provider

Cryptoki
Cryptographic Token Interface Standard. (aka PKCS#11)

CSA
Cryptographic Services Adapter

CSPs

Microsoft Cryptographic Service Providers

D

Decryption
The process of recovering the plaintext from the ciphertext

DES
Cryptographic algorithm named as the Data Encryption Standard

Digital Signature

A mechanism that allows a recipient or third party to verify the originator of a document and to ensure that the doc-
ument has not be altered in transit

DLL

Dynamically Linked Library. A library which is linked to application programs when they are loaded or run rather than
as the final phase of compilation

DSA
Digital Signature Algorithm

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 627

Appendix B: Glossary

E

Encryption

The process of converting the plaintext data into the ciphertext so that the content of the data is no longer obvious.
Some algorithms perform this function in such a way that there is no known mechanism, other than decryption with
the appropriate key, to recover the plaintext. With other algorithms there are known flaws which reduce the difficulty
in recovering the plaintext

F

FIPS

Federal Information Protection Standards

FM

Functionality Module. A segment of custom program code operating inside the CSA800 HSM to provide additional or
changed functionality of the hardware

FMSW
Functionality Module Dispatch Switcher

H

HA
High Availability

HIFACE

Host Interface. It is used to communicate with the host system

HSM

Hardware Security Module

IDEA
International Data Encryption Algorithm

IS

Microsoft Internet Information Services

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 628

Appendix B: Glossary

IP

Internet Protocol

J

JCA
Java Cryptography Architecture

JCE
Java Cryptography Extension

K

Keyset

A keyset is the definition given to an allocated memory space on the HSM. It contains the key information for a spe-
cific user

KWRAP
Key Wrapping Key

M

MAC

Message authentication code. A mechanism that allows a recipient of a message to determine if a message has been
tampered with. Broadly there are two types of MAC algorithms, one is based on symmetric encryption algorithms and
the second is based on Message Digest algorithms. This second class of MAC algorithms are known as HMAC
algorithms. A DES based MAC is defined in FIPS PUB 113, see http://www.itl.nist.gov/div897/pubs/fip113.htm. For
information on HMAC algorithms see RFC-2104 at http://www.ietf.org/rfc/rfc2104.txt

Message Digest

A condensed representation of a data stream. A message digest will convert an arbitrary data stream into a fixed size
output. This output will always be the same for the same input stream however the input cannot be reconstructed
from the digest

MSCAPI
Microsoft Cryptographic API

MSDN

Microsoft Developer Network

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 629

Appendix B: Glossary

P

Padding

A mechanism for extending the input data so that it is of the required size for a block cipher. The PKCS documents
contain details on the most common padding mechanisms of PKCS#1 and PKCS#5

PCI

Peripheral Component Interconnect

PEM
Privacy Enhanced Mail

PIN
Personal Identification Number

PKCS

Public Key Cryptographic Standard. A set of standards developed by RSA Laboratories for Public Key Cryptographic
processing

PKCS #11
Cryptographic Token Interface Standard developed by RSA Laboratories

PKI

Public Key Infrastructure

ProtectServer
SafeNet HSM

ProtectToolkit C

SafeNet's implementation of PKCS#11. Protecttoolkit C represents a suite of products including various PKCS#11
runtimes including software only, hardware adapter, and host security module based variants. A Remote client and
server are also available

ProtectToolkit J
SafeNet's implementation of JCE. Runs on top of ProtectToolkit C

R

RC2/RC4
Ciphers designed by RSA Data Security, Inc.

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 630

Appendix B: Glossary

RFC

Request for Comments, proposed specifications for various protocols and algorithms archived by the Internet Engin-
eering Task Force (IETF), see http://www.ietf.org

RNG

Random Number Generator

RSA
Cryptographic algorithm by Ron Rivest, Adi Shamir and Leonard Adelman

RTC
Real Time Clock

S

SDK

Software Development Kits Other documentation may refer to the SafeNet Cprov and Protect Toolkit J SDKs. These
SDKs have been renamed ProtectToolkit C and ProtectToolkit J respectively. @ The names Cprov and Pro-
tectToolkit C refer to the same device in the context of this or previous manuals. @ The names Protect Toolkit J and
ProtectToolkit J refer to the same device in the context of this or previous manuals.

Slot
PKCS#11 slot which is capable of holding a token

SlotPKCS#11

Slot which is capable of holding a token

SO
Security Officer

Symmetric Cipher

An encryption algorithm that uses the same key for encryption and decryption. DES, RC4 and IDEA are all sym-
metric algorithms

T

TC
Trusted Channel

TCP/IP

Transmission Control Protocol / Internet Protocol

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 631

Appendix B: Glossary

Token
PKCS#11 token that provides cryptographic services and access controlled secure key storage

TokenPKCS#11

Token that provides cryptographic services and access controlled secure key storage

U

URI

Universal Resource |dentifier

Vv

VA
Validation Authority

X

X.509
Digital Certificate Standard

X.509 Certificate

Section 3.3.3 of X.509v3 defines a certificate as: "user certificate; public key certificate; certificate: The public keys
of a user, together with some other information, rendered unforgeable by encipherment with the private key of the cer-
tification authority which issued it"

SafeNet ProtectToolkit 5.6 Programming Guide
007-013682-004 Rev. A 08 January 2020 Copyright 2009-2020 Gemalto 632

	Preface: About the SafeNet ProtectToolkit-C Programming Guide
	Customer Release Notes
	Gemalto Rebranding
	Audience
	Document Conventions
	Notes
	Cautions
	Warnings
	Command Syntax and Typeface Conventions

	Support Contacts
	Customer Support Portal
	Telephone Support

	Chapter 1: An Introduction to PKCS#11
	Runtime Licensing
	The PKCS#11 Model

	Chapter 2: Environments
	Application Environment
	Win32™/Win64™ Environment
	UNIX Environments
	Java™ Environments

	Development Environment Guidelines
	Compiling and Linking Applications on AIX
	Compiling and Linking 64-bit Applications on AIX
	Compiling and Linking 64-bit Applications for Solaris SPARC
	Compiling and Linking 64-bit Applications for HP‑UX
	MSVC Project Settings

	Configuration / Setup

	Chapter 3: Object Classes
	Creating, Modifying, Copying, and Deleting Objects
	Additional Attribute Types
	Common Attributes
	Hardware Feature Objects
	Clock Objects
	Monotonic Counter Objects
	User Objects
	Storage Objects
	Data Objects
	Certificate Objects
	Key Objects
	Public Key Objects
	Private Key Objects
	Secret Key Objects
	Key Parameter Objects

	Chapter 4: SafeNet ProtectToolkit-C Mechanisms
	CKM_AES_CBC
	CKM_AES_CBC_PAD
	CKM_AES_CMAC
	CKM_AES_CMAC_GENERAL
	CKM_AES_ECB
	CKM_AES_ECB_ENCRYPT_DATA
	CKM_AES_GCM
	CKM_AES_KEY_GEN
	CKM_AES_KEY_WRAP
	CKM_AES_KEY_WRAP_PAD
	CKM_AES_MAC
	CKM_AES_MAC_GENERAL
	CKM_AES_OFB
	CKM_ARDFP
	CKM_ARIA_CBC
	CKM_ARIA_CBC_PAD
	CKM_ARIA_ECB
	CKM_ARIA_KEY_GEN
	CKM_ARIA_MAC
	CKM_ARIA_MAC_GENERAL
	CKM_BIP32_CHILD_DERIVE
	CKM_BIP32_MASTER_DERIVE
	CKM_CAST128_CBC
	CKM_CAST128_CBC_PAD
	CKM_CAST128_ECB
	CKM_CAST128_ECB_PAD
	CKM_CAST128_KEY_GEN
	CKM_CAST128_MAC
	CKM_CAST128_MAC_GENERAL
	CKM_CONCATENATE_BASE_AND_DATA
	CKM_CONCATENATE_BASE_AND_KEY
	CKM_CONCATENATE_DATA_AND_BASE
	CKM_DECODE_PKCS_7
	CKM_DECODE_X_509
	CKM_DES_BCF
	CKM_DES_CBC
	CKM_DES_CBC_ENCRYPT_DATA
	CKM_DES_CBC_PAD
	CKM_DES_DERIVE_CBC
	CKM_DES_DERIVE_ECB
	CKM_DES_ECB
	CKM_DES_ECB_ENCRYPT_DATA
	CKM_DES_ECB_PAD
	CKM_DES_KEY_GEN
	CKM_DES_MAC
	CKM_DES_MAC_GENERAL
	CKM_DES_MDC_2_PAD1
	CKM_DES_OFB64
	CKM_DES2_KEY_GEN
	CKM_DES3_BCF
	CKM_DES3_CBC
	CKM_DES3_CBC_ENCRYPT_DATA
	CKM_DES3_CBC_PAD
	CKM_DES3_CMAC
	CKM_DES3_CMAC_GENERAL
	CKM_DES3_DDD_CBC
	CKM_DES3_DERIVE_CBC_DEPRECATED
	CKM_DES3_DERIVE_ECB_DEPRECATED
	CKM_DES3_ECB
	CKM_DES3_ECB_ENCRYPT_DATA
	CKM_DES3_ECB_PAD
	CKM_DES3_KEY_GEN
	CKM_DES3_MAC
	CKM_DES3_MAC_GENERAL
	CKM_DES3_OFB64
	CKM_DES3_RETAIL_CFB_MAC
	CKM_DES3_X919_MAC
	CKM_DES3_X919_MAC_GENERAL
	CKM_DH_PKCS_DERIVE
	CKM_DH_PKCS_KEY_PAIR_GEN
	CKM_DH_PKCS_PARAMETER_GEN
	CKM_DSA
	CKM_DSA_KEY_PAIR_GEN
	CKM_DSA_PARAMETER_GEN
	CKM_DSA_SHA1
	CKM_DSA_SHA1_PKCS
	CKM_DSA_SHA224
	CKM_DSA_SHA224_PKCS
	CKM_DSA_SHA256
	CKM_DSA_SHA256_PKCS
	CKM_EC_KEY_PAIR_GEN
	CKM_ECDH1_DERIVE
	CKM_ECDSA
	CKM_ECDSA_SHA1
	CKM_ECDSA_SHA3_224
	CKM_ECDSA_SHA3_256
	CKM_ECDSA_SHA3_384
	CKM_ECDSA_SHA3_512
	CKM_ECDSA_SHA224
	CKM_ECDSA_SHA256
	CKM_ECDSA_SHA384
	CKM_ECDSA_SHA512
	CKM_ECDSA_GBCS_SHA256
	CKM_ECIES
	CKM_ENCODE_ATTRIBUTES
	CKM_ENCODE_PKCS_10
	CKM_ENCODE_PUBLIC_KEY
	CKM_ENCODE_X_509
	CKM_ENCODE_X_509_LOCAL_CERT
	CKM_EXTRACT_KEY_FROM_KEY
	CKM_GENERIC_SECRET_KEY_GEN
	CKM_IDEA_CBC
	CKM_IDEA_CBC_PAD
	CKM_IDEA_ECB
	CKM_IDEA_ECB_PAD
	CKM_IDEA_KEY_GEN
	CKM_IDEA_MAC
	CKM_IDEA_MAC_GENERAL
	CKM_KEY_TRANSLATION
	CKM_KEY_WRAP_SET_OAEP
	CKM_MD2
	CKM_MD2_HMAC
	CKM_MD2_HMAC_GENERAL
	CKM_MD2_KEY_DERIVATION
	CKM_MD2_RSA_PKCS
	CKM_MD5
	CKM_MD5_HMAC
	CKM_MD5_HMAC_GENERAL
	CKM_MD5_KEY_DERIVATION
	CKM_MD5_RSA_PKCS
	CKM_MILENAGE_DERIVE
	CKM_MILENAGE_SIGN
	CKM_NVB
	CKM_PBA_SHA1_WITH_SHA1_HMAC
	CKM_PBE_MD2_DES_CBC
	CKM_PBE_MD5_CAST128_CBC
	CKM_PBE_MD5_DES_CBC
	CKM_PBE_SHA1_CAST128_CBC
	CKM_PBE_SHA1_DES2_EDE_CBC
	CKM_PBE_SHA1_DES3_EDE_CBC
	CKM_PBE_SHA1_RC2_40_CBC
	CKM_PBE_SHA1_RC2_128_CBC
	CKM_PBE_SHA1_RC4_40
	CKM_PBE_SHA1_RC4_128
	CKM_PKCS12_PBE_EXPORT
	CKM_PKCS12_PBE_IMPORT
	CKM_PP_LOAD_SECRET
	CKM_RC2_CBC
	CKM_RC2_CBC_PAD
	CKM_RC2_ECB
	CKM_RC2_ECB_PAD
	CKM_RC2_KEY_GEN
	CKM_RC2_MAC
	CKM_RC2_MAC_GENERAL
	CKM_RC4
	CKM_RC4_KEY_GEN
	CKM_REPLICATE_TOKEN_RSA_AES
	CKM_RIPEMD128
	CKM_RIPEMD128_HMAC
	CKM_RIPEMD128_HMAC_GENERAL
	CKM_RIPEMD128_RSA_PKCS
	CKM_RIPEMD160
	CKM_RIPEMD160_HMAC
	CKM_RIPEMD160_HMAC_GENERAL
	CKM_RIPEMD160_RSA_PKCS
	CKM_RSA_9796
	CKM_RSA_FIPS_186_4_PRIME_KEY_PAIR_GEN
	CKM_RSA_PKCS
	CKM_RSA_PKCS_KEY_PAIR_GEN
	CKM_RSA_PKCS_OAEP
	CKM_RSA_PKCS_PSS
	CKM_RSA_X_509
	CKM_RSA_X9_31_KEY_PAIR_GEN
	CKM_SECRET_RECOVER_WITH_ATTRIBUTES
	CKM_SECRET_SHARE_WITH_ATTRIBUTES
	CKM_SEED_CBC
	CKM_SEED_CBC_PAD
	CKM_SEED_ECB
	CKM_SEED_ECB_PAD
	CKM_SEED_KEY_GEN
	CKM_SEED_MAC
	CKM_SEED_MAC_GENERAL
	CKM_SET_ATTRIBUTES
	CKM_SHA1
	CKM_SHA1_HMAC
	CKM_SHA1_HMAC_GENERAL
	CKM_SHA1_KEY_DERIVATION
	CKM_SHA1_RSA_PKCS
	CKM_SHA1_RSA_PKCS_PSS
	CKM_SHA1_RSA_PKCS_TIMESTAMP
	CKM_SHA3_224
	CKM_SHA3_224_HMAC
	CKM_SHA3_224_HMAC_GENERAL
	CKM_SHA3_224_KEY_DERIVE
	CKM_SHA3_224_RSA_PKCS
	CKM_SHA3_224_RSA_PKCS_PSS
	CKM_SHA3_256
	CKM_SHA3_256_HMAC
	CKM_SHA3_256_HMAC_GENERAL
	CKM_SHA3_256_KEY_DERIVE
	CKM_SHA3_256_RSA_PKCS
	CKM_SHA3_256_RSA_PKCS_PSS
	CKM_SHA3_384
	CKM_SHA3_384_HMAC
	CKM_SHA3_384_HMAC_GENERAL
	CKM_SHA3_384_KEY_DERIVE
	CKM_SHA3_384_RSA_PKCS
	CKM_SHA3_384_RSA_PKCS_PSS
	CKM_SHA3_512
	CKM_SHA3_512_HMAC
	CKM_SHA3_512_HMAC_GENERAL
	CKM_SHA3_512_KEY_DERIVE
	CKM_SHA3_512_RSA_PKCS
	CKM_SHA3_512_RSA_PKCS_PSS
	CKM_SHA224
	CKM_SHA224_HMAC
	CKM_SHA224_HMAC_GENERAL
	CKM_SHA224_KEY_DERIVATION
	CKM_SHA224_RSA_PKCS
	CKM_SHA224_RSA_PKCS_PSS
	CKM_SHA256
	CKM_SHA256_HMAC
	CKM_SHA256_HMAC_GENERAL
	CKM_SHA256_KEY_DERIVATION
	CKM_SHA256_RSA_PKCS
	CKM_SHA256_RSA_PKCS_PSS
	CKM_SHA384
	CKM_SHA384_HMAC
	CKM_SHA384_HMAC_GENERAL
	CKM_SHA384_KEY_DERIVATION
	CKM_SHA384_RSA_PKCS
	CKM_SHA384_RSA_PKCS_PSS
	CKM_SHA512
	CKM_SHA512_HMAC
	CKM_SHA512_HMAC_GENERAL
	CKM_SHA512_KEY_DERIVATION
	CKM_SHA512_RSA_PKCS
	CKM_SHA512_RSA_PKCS_PSS
	CKM_SSL3_KEY_AND_MAC_DERIVE
	CKM_SSL3_MASTER_KEY_DERIVE
	CKM_SSL3_MD5_MAC
	CKM_SSL3_PRE_MASTER_KEY_GEN
	CKM_SSL3_SHA1_MAC
	CKM_VISA_CVV
	CKM_WRAPKEY_AES_CBC
	CKM_WRAPKEY_DES3_CBC
	CKM_WRAPKEY_DES3_ECB
	CKM_WRAPKEYBLOB_AES_CBC
	CKM_WRAPKEYBLOB_DES3_CBC
	CKM_X9_42_DH_DERIVE
	CKM_X9_42_DH_KEY_PAIR_GEN
	CKM_X9_42_DH_PARAMETER_GEN
	CKM_XOR_BASE_AND_DATA
	CKM_XOR_BASE_AND_KEY
	CKM_ZKA_MDC_2_KEY_DERIVATION
	Vendor-Defined Error Codes

	Chapter 5: Sample Programs
	C Samples
	CTDEMO
	FCRYPT
	Additional C Sample Programs

	Chapter 6: Best Practice Guidelines
	Introduction
	Application Security
	Application Usability
	Performance
	Capacity
	Setup / Configuration
	Maintainability
	Debugging
	Interoperability
	Programming in FIPS Mode
	Key Management

	Chapter 7: ctbrowse – Token Browser
	Compliance
	User Interface
	Token Management Services
	Cryptographic Services
	Drag and Drop
	Calculate Parameter Value for CK_RSA_PKCS_PSS_PARAMS

	Chapter 8: API Tutorial: Development of a Sample Application
	Required Header Files
	Runtime Switches
	Encrypt Functions
	Decrypt Function
	FCrypt Usage
	Wrapped Encryption Key Template
	Assembling the Application

	Chapter 9: PKCS#11 Logger Library
	Logger Architecture and Functionality
	Logger Setup
	Activating Logging
	Deactivating Logger Operation

	Chapter 10: PKCS#11 Command Reference
	General Purpose Functions
	C_Initialize
	C_Finalize
	C_GetInfo
	C_GetFunctionList

	Slot and Token Management Functions
	C_GetSlotList
	C_GetSlotInfo
	C_GetTokenInfo
	C_WaitForSlotEvent
	C_GetMechanismList
	C_GetMechanismInfo
	C_InitToken
	CT_InitToken
	CT_ResetToken
	C_InitPIN
	C_SetPIN

	Session Management Functions
	C_OpenSession
	C_CloseSession
	C_CloseAllSessions
	C_GetSessionInfo
	C_GetOperationState
	C_SetOperationState
	C_Login
	C_Logout

	Object Management Functions
	C_CreateObject
	C_CopyObject
	CT_CopyObject
	C_DestroyObject
	C_GetObjectSize
	C_GetAttributeValue
	C_SetAttributeValue
	C_FindObjectsInit
	C_FindObjects
	C_FindObjectsFinal

	Encryption Functions
	C_EncryptInit
	C_Encrypt
	C_EncryptUpdate
	C_EncryptFinal

	Decryption Functions
	C_DecryptInit
	C_Decrypt
	C_DecryptUpdate
	C_DecryptFinal

	Message Digesting Functions
	C_DigestInit
	C_Digest
	C_DigestUpdate
	C_DigestKey
	C_DigestFinal

	Signing and MACing Functions
	C_SignInit
	C_Sign
	C_SignUpdate
	C_SignFinal
	C_SignRecoverInit
	C_SignRecover

	Functions for Verifying Signatures and MACs
	C_VerifyInit
	C_Verify
	C_VerifyUpdate
	C_VerifyFinal
	C_VerifyRecoverInit
	C_VerifyRecover

	Dual-function Cryptographic Functions
	C_DigestEncryptUpdate
	C_DecryptDigestUpdate
	C_SignEncryptUpdate
	C_DecryptVerifyUpdate

	Key Management Functions
	C_GenerateKey
	C_GenerateKeyPair
	C_WrapKey
	C_UnwrapKey
	C_DeriveKey

	Random Number Generation Functions
	C_SeedRandom
	C_GenerateRandom

	Parallel Function Management Functions
	C_GetFunctionStatus
	C_CancelFunction

	Extra Functions
	CT_PresentTicket
	CT_SetHsmDead
	CT_GetHSMId
	CT_ToHsmSession
	FMSC_SendReceive

	Chapter 11: CTUTIL.H Functionality Reference
	BuildDhKeyPair
	BuildDsaKeyPair
	BuildRsaCrtKeyPair
	BuildRsaKeyPair
	C_ErrorString
	calcKvc
	calcKvcMech
	cDump
	CheckCryptokiVersion
	CreateDesKey
	CreateSecretKey
	CT_AttrToString
	CT_CreateObject
	CT_CreatePublicObject
	CT_Create_Set_Attributes_Ticket_Info
	CT_Create_Set_Attributes_Ticket
	CT_DerEncodeNamedCurve
	Curve25519

	CT_GetAuthChallenge
	CT_GetObjectDigest
	CT_GetECCDomainParameters
	CT_GetObjectDigestFromParts
	CT_GetTmpPin
	CT_ErrorString
	CT_GetECKeySize
	CT_MakeObjectNonModifiable
	CT_OpenObject
	CT_ReadObject
	CT_RenameObject
	CT_SetCKDateStrFromTime
	CT_Structure_To_Armor
	CT_Structure_From_Armor
	CT_SetLimitsAttributes
	CT_WriteObject
	DateConvertGmtToLocal
	DateConvert
	DumpAttributes
	DumpDHKeyPair
	DumpDSAKeyPair
	DumpRSAKeyPair
	FindAttribute
	FindKeyFromName
	FindTokenFromName
	GenerateDhKeyPair
	GenerateDsaKeyPair
	GenerateRsaKeyPair
	GetAttr
	getDerEncodedNamedCurve
	GetDeviceError
	GetObjectCount
	GetSecurityMode
	GetSessionCount
	GetTotalSessionCount
	NUMITEMS
	rmTrailSpace
	SetAttr
	ShowSlot
	ShowToken
	strAttribute
	strError
	strKeyType
	strMechanism
	strObjClass
	strSesState
	TransferObject
	valAttribute
	valError
	valKeyType
	valMechanism
	valObjClass
	valSesState

	Chapter 12: CTEXTRA.H Library Reference
	AddAttributeSets
	at_assign
	ConcatAttributeSets
	CopyAttribute
	DupAttributes
	DupAttributeSet
	ExtractAllAttributes
	FindAttr
	FreeAttributes
	FreeAttributeSet
	FreeAttributesNoClear
	FreeMechData
	genkMechanismTabFromMechanismTab
	genkpMechanismTabFromMechanismTab
	genMechanismTabFromMechanismTab
	GetCryptokiVersion
	GetObjAttrInfo
	GetObjectClassAndKeyType
	hashMech
	intAttr
	intAttrLookup
	isBooleanAttr
	isEnumeratedAttr
	isGenMech
	isNumericAttr
	isSensitiveAttr
	KeyFromPin
	kgMech
	kpgMech
	ktFromMech
	LookupMech
	MatchAttributeSet
	mechDeriveFromKt
	mechFromKt
	mechFromTokKt
	mechSignFromKt
	mechSignRecFromKt
	NewAttributeSet
	numAttr
	numAttrLookup
	NUMITEMS
	PvcFromPin
	ReadAttr
	slotIDfromSes
	TransferAttr
	UnwrapDec
	WrapEnc
	WriteAttr

	Chapter 13: HEX2BIN.H Library Reference
	hex2bin
	bin2hex
	bin2hexM
	memdump
	SetOddParity
	isOddParity

	Chapter 14: HSMAdmin.H Library Reference
	Return Codes
	HSMADM_GetTimeOfDay
	HSMADM_AdjustTime
	HSMADM_SetRtcStatus
	HSMADM_GetRtcStatus
	HSMADM_GetRtcAdjustAmount
	HSMADM_GetRtcAdjustCount
	HSMADM_GetHsmUsageLevel

	Chapter 15: KMLib.H Library Reference
	KM_EncodeECParamsP
	KM_EncodeECParams2M

	Chapter 16: ctauth.h Library Reference
	CT_Gen_AUTH_Response

	Appendix A: Attribute Certificate
	OID Used to Indicate Key Digest Algorithm

	Appendix B: Glossary

