

SafeNet ProtectToolkit J
JCA/JCE API
Tutorial

© 2000-2016 Gemalto NV. All rights reserved.

Part Number 007-008399-007

Version 5.2

Trademarks
All intellectual property is protected by copyright. All trademarks and product names used or referred to are the

copyright of their respective owners. No part of this document may be reproduced, stored in a retrieval system or

transmitted in any form or by any means, electronic, mechanical, chemical, photocopy, recording or otherwise without

the prior written permission of Gemalto.

Gemalto Rebranding
In early 2015, Gemalto NV completed its acquisition of SafeNet, Inc. As part of the process of rationalizing the product

portfolios between the two organizations, the HSM product portfolio has been streamlined under the SafeNet brand. As

a result, the ProtectServer/ProtectToolkit product line has been rebranded as follows:

Old product name New product name

Protect Server External 2 (PSE2) SafeNet ProtectServer Network HSM

Protect Server Internal Express 2 (PSI-E2) SafeNet ProtectServer PCIe HSM

ProtectToolkit SafeNet ProtectToolkit

Disclaimer

All information herein is either public information or is the property of and owned solely by Gemalto NV. and/or its

subsidiaries who shall have and keep the sole right to file patent applications or any other kind of intellectual property

protection in connection with such information.

Nothing herein shall be construed as implying or granting to you any rights, by license, grant or otherwise, under any

intellectual and/or industrial property rights of or concerning any of Gemalto’s information.

This document can be used for informational, non-commercial, internal and personal use only provided that:

 The copyright notice below, the confidentiality and proprietary legend and this full warning notice appear in

all copies.

 This document shall not be posted on any network computer or broadcast in any media and no modification of

any part of this document shall be made.

Use for any other purpose is expressly prohibited and may result in severe civil and criminal liabilities.

The information contained in this document is provided “AS IS” without any warranty of any kind. Unless otherwise

expressly agreed in writing, Gemalto makes no warranty as to the value or accuracy of information contained herein.

The document could include technical inaccuracies or typographical errors. Changes are periodically added to the

information herein. Furthermore, Gemalto reserves the right to make any change or improvement in the specifications

data, information, and the like described herein, at any time.

Gemalto hereby disclaims all warranties and conditions with regard to the information contained herein, including all

implied warranties of merchantability, fitness for a particular purpose, title and non-infringement. In no event shall

Gemalto be liable, whether in contract, tort or otherwise, for any indirect, special or consequential damages or any

damages whatsoever including but not limited to damages resulting from loss of use, data, profits, revenues, or

customers, arising out of or in connection with the use or performance of information contained in this document.

Gemalto does not and shall not warrant that this product will be resistant to all possible attacks and shall not incur, and

disclaims, any liability in this respect. Even if each product is compliant with current security standards in force on the

date of their design, security mechanisms' resistance necessarily evolves according to the state of the art in security and

notably under the emergence of new attacks. Under no circumstances, shall Gemalto be held liable for any third party

actions and in particular in case of any successful attack against systems or equipment incorporating Gemalto products.

Gemalto disclaims any liability with respect to security for direct, indirect, incidental or consequential damages that

result from any use of its products. It is further stressed that independent testing and verification by the person using the

product is particularly encouraged, especially in any application in which defective, incorrect or insecure functioning

could result in damage to persons or property, denial of service or loss of privacy.

© 2016 Gemalto. All rights reserved. Gemalto and the Gemalto logo are trademarks and service marks of Gemalto

N.V. and/or its subsidiaries and are registered in certain countries. All other trademarks and service marks, whether

registered or not in specific countries, are the property of their respective owners.

Technical Support
If you encounter a problem while installing, registering or operating this product, please make sure that you have read

the documentation. If you cannot resolve the issue, please contact your supplier or Gemalto support. Gemalto support

operates 24 hours a day, 7 days a week. Your level of access to this service is governed by the support plan

arrangements made between Gemalto and your organization. Please consult this support plan for further information

about your entitlements, including the hours when telephone support is available to you.

Contact method Contact

Address Gemalto NV
4690 Millennium Drive
Belcamp, Maryland 21017

USA

Phone Global +1 410-931-7520

 Australia 1800.020.183

China (86) 10 8851 9191

France 0825 341000

Germany 01803 7246269

India 000.800.100.4290

Netherlands 0800.022.2996

New Zealand 0800.440.359

Portugal 800.1302.029

Singapore 800.863.499

Spain 900.938.717

Sweden 020.791.028

Switzerland 0800.564.849

United Kingdom 0800.056.3158

United States (800) 545-6608

Web www.safenet-inc.com

Support and
Downloads

www.safenet-inc.com/support

Provides access to the Gemalto Knowledge Base and quick downloads for various
products.

Technical Support
Customer Portal

https://serviceportal.safenet-inc.com

Existing customers with a Technical Support Customer Portal account can log in to
manage incidents, get the latest software upgrades, and access the Gemalto
Knowledge Base.

http://www.safenet-inc.com/
http://www.safenet-inc.com/support
https://serviceportal.safenet-inc.com/

Revision History

Revision Date Reason

A 14 March 2016 Release 5.2

ProtectToolkit J – JCA/JCE API Tutorial

TABLE OF CONTENTS

1.0 SCOPE ... 1

2.0 INTRODUCTION ... 3

3.0 PUBLIC KEY CRYPTOGRAPHY ... 5

4.0 FILECRYPT APPLICATION ... 7

4.1 File Encryption ... 7
4.2 File Decryption ... 12
4.3 Accessing Public Keys .. 16
4.4 Putting it all Together ... 17

ProtectToolkit J – JCA/JCE API Tutorial

THIS PAGE INTENTIONALLY LEFT BLANK

ProtectToolkit J - JCA/JCE API Tutorial Scope

1

1.0 Scope

The purpose of this document is to introduce the reader to the Java API known as the Java Cryptography

Extension (JCE) through the development of a simple application.

It is important to realise that this tutorial does not provide complete coverage of this API. The JCE

Application Programming Interface Overview provides a good introduction to this API and the API

specification documentation should serve as the detailed reference.

ProtectToolkit J - JCA/JCE API Tutorial Scope

2

THIS PAGE INTENTIONALLY LEFT BLANK

ProtectToolkit J - JCA/JCE API Tutorial Introduction

3

2.0 Introduction

During this tutorial we will develop a JCE based application that allows for simple file encryption. This

application will allow the user to encrypt and decrypt files.

The files are encrypted using a combination of public-key and secret-key cryptography. The encrypted

files also include a Message Authentication Code (MAC) to ensure the integrity of their contents. Where

possible, the standard API mechanisms will be used to achieve the desired functionality.

The code fragments included in this document are used to highlight the important sections of the

application. The full source code for the application may be found in the Java source file FileCrypt.java.

ProtectToolkit J - JCA/JCE API Tutorial Introduction

4

THIS PAGE INTENTIONALLY LEFT BLANK

ProtectToolkit J - JCA/JCE API Tutorial Public Key Cryptography

5

3.0 Public Key Cryptography

The sample application will encrypt a document using a secret-key cipher algorithm, for example DES or

RC4, and a randomly generated key. This algorithm is known as the bulk cipher as it is used to perform

the bulk of the encryption. The randomly generated key will be encrypted using a public-key cipher

algorithm.

By combining public-key and secret-key encryption in this manner we retain the advantages of public-

key cryptography (we don't have to share a secret key with them) while retaining the performance

advantage of a secret-key cipher.

It is assumed that two public key pairs have been generated for this application, the first for the document

sender and the second for the recipient.

ProtectToolkit J - JCA/JCE API Tutorial Public Key Cryptography

6

THIS PAGE INTENTIONALLY LEFT BLANK

ProtectToolkit J - JCA/JCE API Tutorial FileCrypt Application

7

4.0 FileCrypt Application

The FileCrypt application enables files to be encrypted for a given recipient and then decrypted by

that recipient. Since the encrypted file contains a MAC, the recipient of a document will also be able to

verify that the encrypted file was not tampered with.

These encrypted files will be stored in a custom format which is as follows:

Field Length (bytes)

KeyLength 4

KeyBytes As specified by KeyLength

AlgParamsLength 4

AlgParams As specified by AlgParamsLength

MacLength 4

Mac As specified by MacLength

Encrypted Data Remainder of file

4.1 File Encryption

In order to encrypt a file, we need to know the public key of its recipient - that is the party who

can decrypt the file. These arguments are passed to the encryptFile() method.

The encryptFile() method will:

1. generate a random session key

2. encrypt the session key with the recipients public key

3. initialise the bulk cipher with the session key

4. encode the bulk cipher's algorithm parameters

5. initialise the MAC algorithm

6. process the input file

7. create the output from the various components

4.1.1 Generating a Random Session Key

To achieve acceptable performance during file encryption and decryption we need to

use a symmetric-key cipher. This symmetric key, which we will call the session key,

will then be encrypted (using the recipient's public key) and then stored with the

encrypted file. Rather than simply using the same key for each file, we need to generate

a random key for each encryption.

The KeyGenerator mechanism is used to create random SecretKey key objects.

A provider based instance is created using the KeyGenerator.getInstance()

method.

This instance can then be initialised using one of the KeyGenerator.init()

methods. In the simplest case, no initialisation is required, in which case the provider's

default initialisation is used. Alternatively, initialisation can request a key of the given

key size, or other key parameters by using a

java.security.AlgorithmParameterSpec class.

ProtectToolkit J - JCA/JCE API Tutorial FileCrypt Application

8

The following method will create a new random SecretKey for the given algorithm

and provider using the default initialisation;

SecretKey generateSecretKey(String algorithm, String

 provider)

{

 KeyGenerator keyGen = KeyGenerator.getInstance(

 algorithm, provider);

 return keyGen.generateKey();

}

4.1.2 Encrypting the Session Key

Once we have generated the session key, we need to encrypt it using the recipient's

public key. In this way we can safely transmit the session key such that only the

recipient can recover the actual key. The SafeNet “SAFENET” provider includes a

special interface to its KeyStore to provide session key encryption.

The au.com.safenet.crypto.WrappingKeyStore class extends the

standard KeyStore mechanism to provide "key wrapping" which enables a session

key to be generated in the hardware, then encrypted on the hardware and exported in an

encrypted form. This means that the session key is never visible outside the hardware.

(For more information on the WrappingKeyStore interface please consult the

SAFENET Provider Reference manual.)

The WrappingKeyStore.wrapKey() method accepts three arguments; two keys

and a transformation string. The first Key is the RSA PublicKey used to perform the

encryption, the second Key is the DES key we wish to encrypt. The final parameter,

the transformation string, describes the encryption method that should be used to

encrypt the key. Currently, this string may be RSA/ECB/PKCS1Padding or

RSA/ECB/NoPadding.

static final String PROVIDER = "SAFENET";

static final String WRAP_KEYSTORE = "CRYPTOKI";

static final String WRAP_TRANSFORM =

 "RSA/ECB/PKCS1Padding";

byte[] encryptKey(PublicKey wrapKey, SecretKey key)

{

 WrappingKeyStore keyStore;

 keyStore = WrappingKeyStore.getInstance(WRAP_KEYSTORE,

 PROVIDER);

 keyStore.load(null, null);

 return keyStore.wrapKey(wrapKey, WRAP_TRANSFORM, key);

}

4.1.3 Create and initialise the Bulk Cipher

This application will simply use the default AlgorithmParameters for the bulk

encryption algorithm. Therefore, the initialisation of our Cipher is quite simple:

static final String PROVIDER = "SAFENET";

static final String BULK_ALGORITHM = "DES";

 Cipher bulkCipher = Cipher.getInstance(BULK_ALGORITHM,

 PROVIDER);

 bulkCipher.init(Cipher.ENCRYPT_MODE, secretKey);

ProtectToolkit J - JCA/JCE API Tutorial FileCrypt Application

9

4.1.4 Encoded Algorithm Parameters

The only algorithm parameter supported by the SafeNet “SAFENET” provider is an

initialisation vector. An initialisation vector is used in a block cipher when it is

operating in a feedback mode: DES in CBC mode for example. During encryption the

initialisation vector is used to prime the cipher, however unlike the key its value is not

secret.

The cipher used to decrypt the data stream must be initialised with the same

initialisation vector for the decryption to succeed.

The following method will return the algorithm parameters encoded into a byte array.

For now, we just return the IV directly as this is the only supported algorithm

parameter.

byte[] encodeParameters(Cipher cipher)

{

 byte[] iv = cipher.getIV();

 return iv;

}

4.1.5 Initialise the MAC Algorithm

In this example we will use a MAC algorithm instead of a signature algorithm. The

significant difference here is that the MAC will only tell us if the encrypted document

has been tampered with, it will not authenticate the sender.

static final String PROVIDER = "SAFENET";

static final String MAC_ALGORITHM = "DESMac";

Mac mac = Mac.getInstance(MAC_ALGORITHM, PROVIDER);

mac.init(secretKey);

4.1.6 Process the Input File

We are now ready to process the input file to generate the encrypted output and the

MAC. The following method will accept the initialised Cipher, Mac and input/output

streams. The data on the InputStream will be read in blocks (of some arbitrary

size), then processed by the Mac instance and then encrypted with the Cipher

instance.

The encrypted data will then be written to the OutputStream. This method will

return the MAC as a byte array.

static final int READ_BUFFER = 50;

byte[] encrypt(Cipher cipher, Mac mac, InputStream in,

 OutputStream out)

{

 byte[] block = new byte[READ_BUFFER];

 int len;

 while ((len = in.read(block)) != -1)

 {

 /*

 * update our MAC value

 */

 mac.update(block, 0, len);

ProtectToolkit J - JCA/JCE API Tutorial FileCrypt Application

10

 /*

 * encrypt the data

 */

 byte[] enc = cipher.update(block, 0, len);

 if (enc != null)

 {

 /*

 * output the encrypted data

 */

 out.write(enc);

 }

 }

 /*

 * output the final block if required

 */

 byte[] finalBlock = cipher.doFinal();

 if (finalBlock != null)

 {

 out.write(finalBlock);

 }

 return mac.doFinal();

}

4.1.7 Create the encrypted Output

Now that we have written the various building blocks, we can construct the final

encryptFile() method:

static final String PROVIDER = "SAFENET";

static final String BULK_ALGORITHM = "DES";

static final String BULK_TRANSFORM =

 "DES/CBC/PKCS5Padding";

static final String MAC_ALGORITHM = "DESMac";

void encryptFile(InputStream in, OutputStream out,

 PublicKey publicKey)

{

 /*

 * Create a random SecretKey and encrypt it using

 * the recipient's PublicKey

 */

 SecretKey secretKey = generateSecretKey(BULK_ALGORITHM,

 PROVIDER);

 byte[] wrappedKey = encryptKey(publicKey, secretKey);

 /*

 * Create and initialise the Cipher used to encrypt the

 document

 */

 Cipher bulkCipher =

 Cipher.getInstance(BULK_TRANSFORM,PROVIDER);

 bulkCipher.init(Cipher.ENCRYPT_MODE, secretKey);

 /*

 * Encode the algorithm parameters for the Cipher

 */

 byte[] algParams = encodeParameters(bulkCipher);

ProtectToolkit J - JCA/JCE API Tutorial FileCrypt Application

11

 /*

 * Create the Mac instance and initialise it with our

 * session key

 */

 Mac mac = Mac.getInstance(MAC_ALGORITHM, PROVIDER);

 mac.init(secretKey);

 /*

 * Encrypt the document to an internal buffer and

 * calculate the MAC value of the plain text

 */

 ByteArrayOutputStream bOut =

 new ByteArrayOutputStream();

 byte[] macValue = encrypt(bulkCipher, mac, in, bOut);

 /*

 * Encode the output file

 */

 DataOutputStream dOut = new DataOutputStream(out);

 /*

 * Write out the key

 */

 dOut.writeInt(wrappedKey.length);

 dOut.write(wrappedKey);

 /*

 * Write out the parameters, note these may be null

 */

 if (algParams != null)

 {

 dOut.writeInt(algParams.length);

 dOut.write(algParams);

 }

 else

 {

 dOut.writeInt(0);

 }

 /*

 * Write out the MAC

 */

 dOut.writeInt(macValue.length);

 dOut.write(macValue);

 /*

 * And finally the encrypted document

 */

 bOut.writeTo(dOut);

}

ProtectToolkit J - JCA/JCE API Tutorial FileCrypt Application

12

4.2 File Decryption

To decrypt an encrypted file we simply need to reverse the encryption process. However,

rather than using the recipient's public key, we need to use the private key in order to recover

the session key.

The decryptFile() method will:

1. decode the input from the various components

2. decipher the session key with the recipient's private key

3. initialise the bulk cipher with the session key and algorithm parameters

4. initialise the MAC algorithm

5. process the encrypted input

6. verify the calculated MAC with the MAC from the document

7. write out the decrypted result

4.2.1 Decryption of the session key

static final String PROVIDER = "SAFENET";

static final String WRAP_KEYSTORE = "CRYPTOKI";

static final String WRAP_TRANSFORM =

"RSA/ECB/PKCS1Padding";

static final String BULK_ALGORITHM = "DES";

Key decryptKey(PrivateKey wrapKey, byte[] wrappedKey)

{

 WrappingKeyStore keyStore;

 keyStore = WrappingKeyStore.getInstance(WRAP_KEYSTORE,

 PROVIDER);

 return keyStore.unwrapKey(wrapKey, WRAP_TRANSFORM,

 wrappedKey, BULK_ALGORITHM);

}

4.2.2 Bulk Cipher Initialisation

Next, we need to create and initialise the Cipher instance we will use to decrypt the

document. It is important here to ensure that our Cipher instance that will be used to

perform the decryption is initialised with the same parameters that were generated by

the encryption Cipher. In the case of the SafeNet “SAFENET” provider, the only

parameter type is the IvParameterSpec, so we convert our serialised parameters

directly.

static final String PROVIDER = "SAFENET";

static final String BULK_ALGORITHM = "DES";

Cipher bulkCipher = Cipher.getInstance(BULK_TRANSFORM,

 PROVIDER);

if (algParams != null)

{

 AlgorithmParameterSpec params;

 params = new IvParameterSpec(algParams);

 bulkCipher.init(Cipher.DECRYPT_MODE, secretKey,

 params);

}

else

{

 bulkCipher.init(Cipher.DECRYPT_MODE, secretKey);

}

ProtectToolkit J - JCA/JCE API Tutorial FileCrypt Application

13

4.2.3 Initialise the MAC Algorithm

Initialisation of the MAC during decryption is identical to that during encryption:
static final String PROVIDER = "SAFENET";

static final String MAC_ALGORITHM = "DESMac";

 Mac mac = Mac.getInstance(MAC_ALGORITHM, PROVIDER);

 mac.init(secretKey);

4.2.4 Process the Encrypted input

Next we need to recover the plaintext from the ciphertext and calculate a new MAC.

This process is nearly identical to the encrypt() method, however, since the MAC is

calculated on the plaintext, we update the Mac with the output from the Cipher.

static final int READ_BUFFER = 50;

byte[] decrypt(Cipher cipher, Mac mac, InputStream in,

OutputStream out)

{

 /*

 * read the input in chunks and process each chunk

 */

 byte[] block = new byte[READ_BUFFER];

 int len;

 while ((len = in.read(block)) != -1)

 {

 /*

 * decipher the data

 */

 byte[] plain = cipher.update(block, 0, len);

 if (plain != null)

 {

 /*

 * update our MAC value

 */

 mac.update(plain);

 /*

 * output the deciphered data

 */

 out.write(plain);

 }

 }

 /*

 * output the final block if required

 */

 byte[] finalBlock = cipher.doFinal();

 if (finalBlock != null)

 {

 /*

 * update our MAC value

 */

 mac.update(finalBlock);

 /*

 * output the deciphered data

 */

 out.write(finalBlock);

 }

ProtectToolkit J - JCA/JCE API Tutorial FileCrypt Application

14

 return mac.doFinal();

}

4.2.5 Verify the MAC

To verify the MAC, we simply compare the MAC bytes we previously extracted with

the value just calculated.
if (!Arrays.equals(fileMac, calculatedMac))

{

 throw new GeneralSecurityException("File has been

 tampered with.");

}

4.2.6 Write out the Decrypted result

Now that we have verified that the file is not corrupted we can output the contents to

the destination.

static final String PROVIDER = "SAFENET";

static final String BULK_ALGORITHM = "DES";

static final String BULK_TRANSFORM =

"DES/CBC/PKCS5Padding";

static final String MAC_ALGORITHM = "DESMac";

void decryptFile(InputStream in, OutputStream

out,PrivateKey privateKey)

{

 /*

 * Decode the input file

 */

 DataInputStream dIn = new DataInputStream(in);

 /*

 * recover the encrypted Key data

 */

 int keyLen = dIn.readInt();

 byte[] keyBytes = new byte[keyLen];

 dIn.readFully(keyBytes);

 /*

 * recover the algorithm parameters

 */

 int algLen = dIn.readInt();

 byte[] algBytes = null;

 if (algLen > 0)

 {

 algBytes = new byte[algLen];

 dIn.readFully(algBytes);

 }

 /*

 * recover the stored MAC value

 */

 int macLen = dIn.readInt();

 byte[] fileMac = new byte[macLen];

 dIn.readFully(fileMac);

 /*

 * recreate the session key

ProtectToolkit J - JCA/JCE API Tutorial FileCrypt Application

15

 */

 Key secretKey = decryptKey(privateKey, keyBytes);

 /*

 * Create our Cipher and initialise it with our key

 * and algorithm parameters.

 */

 Cipher bulkCipher =

 Cipher.getInstance(BULK_TRANSFORM,PROVIDER);

 if (algBytes != null)

 {

 AlgorithmParameterSpec params;

 params = new IvParameterSpec(algBytes);

 bulkCipher.init(Cipher.DECRYPT_MODE, secretKey,

 params);

 }

 else

 {

 bulkCipher.init(Cipher.DECRYPT_MODE, secretKey);

 }

 /*

 * Initialise the Mac we use to verify the file

 integrity

 */

 Mac mac = Mac.getInstance(MAC_ALGORITHM, PROVIDER);

 mac.init(secretKey);

 /*

 * Decrypt the file to a temporary buffer

 */

 ByteArrayOutputStream bOut =

 new ByteArrayOutputStream();

 byte[] calculatedMac = decrypt(bulkCipher, mac, in,

 bOut);

 /*

 * verify the stored MAC value with the calculated

 value

 */

 if (!Arrays.equals(fileMac, calculatedMac))

 {

 throw new GeneralSecurityException(

 "File has been tampered with.");

 }

 else

 {

 /*

 * save the decrypted output to the outputstream

 */

 bOut.writeTo(out);

 }

}

ProtectToolkit J - JCA/JCE API Tutorial FileCrypt Application

16

4.3 Accessing Public Keys

A Java java.security.KeyStore implementation is used to store the public keys for

this application. The SafeNet “SAFENET” provider implementation of the KeyStore is

known as "CRYPTOKI" and enables access to the keys stored on the hardware. At present,

this KeyStore only supports storage of Key objects and does not provide any support for the

storage of Certificate objects. Additionally, this KeyStore will ignore the password

parameter supplied to the getKey() method.

4.3.1 Creating the KeyStore

Creating a KeyStore instance and populating it is generally a two step process.

Firstly, we create the instance and then use the KeyStore.load() method to

initialise it with the key data. The load() method accepts an InputStream

instance which allows for keys to be stored on an arbitrary data source. The

"CRYPTOKI" KeyStore, however, accesses key storage on the hardware directly

and so ignores the load() method completely.

static final String PROVIDER = "SAFENET";

static final String KS_NAME = "CRYPTOKI";

KeyStore loadKeyStore()

{

 KeyStore ks = KeyStore.getInstance(KS_NAME, PROVIDER);

 ks.load(null, null);

 return ks;

}

4.3.2 Retrieving the Public Key

Our application needs to determine the recipient's public key in order to encrypt the

file. The standard mechanism for accessing public keys is to extract the

Certificate for the recipient by using the KeyStore.getCertificate()

method and then use the Certificate.getPublicKey method to recover the

key. However with the "CRYPTOKI" KeyStore we will simply use the

KeyStore.getKey() method.

PublicKey publicKey = (PublicKey)ks.getKey(recipientAlias,

 null);

4.3.3 Retrieving the Private Key

To decrypt the file we need to look up the private key. To access private keys stored in

a KeyStore use the KeyStore.getKey() method.

PrivateKey privateKey = (PrivateKey)ks.getKey(myAlias,

 null);

ProtectToolkit J - JCA/JCE API Tutorial FileCrypt Application

17

4.4 Putting it all Together

Now that we have all the required building blocks, the last remaining step is to put it all

together. We need to process command line arguments and call the appropriate methods. We

also need to add exception handling.

The following main() method is responsible for determining if we are encrypting or

decrypting the file and the names of the keys to use:

public static void main(String[] args)

{

 boolean encrypt = false;

 boolean decrypt = false;

 String keyName = null;

 /*

 * examine all the command line arguments

 */

 for (int i = 0; i < args.length; i++)

 {

 if (args[i].equals("-encrypt"))

 {

 encrypt = true;

 }

 else if (args[i].equals("-decrypt"))

 {

 decrypt = true;

 }

 else if (args[i].equals("-key"))

 {

 keyName = args[++i];

 }

 }

 /*

 * validate the arguments

 */

 if (encrypt == decrypt)

 {

 if (encrypt)

 {

 System.err.println("Cannot encrypt and decrypt

 file!");

 }

 else

 {

 System.err.println("Must specify -encrypt or -

 decrypt.");

 }

 System.exit(1);

 }

 if (keyName == null)

 {

 System.err.println("Missing key name.");

 System.exit(1);

 }

ProtectToolkit J - JCA/JCE API Tutorial FileCrypt Application

18

 FileCrypt fileCrypt = new FileCrypt();

 KeyStore ks = fileCrypt.loadKeyStore();

 if (encrypt)

 {

 PublicKey publicKey = (PublicKey)ks.getKey(keyName,

 null);

 fileCrypt.encryptFile(System.in, System.out, publicKey);

 }

 else

 {

 PrivateKey privateKey = (PrivateKey)ks.getKey(keyName,

 null);

 fileCrypt.decryptFile(System.in, System.out, privateKey);

 }

}

END OF DOCUMENT

	1.0 Scope
	2.0 Introduction
	3.0 Public Key Cryptography
	4.0 FileCrypt Application
	4.1 File Encryption

	1. generate a random session key
	2. encrypt the session key with the recipients public key
	3. initialise the bulk cipher with the session key
	4. encode the bulk cipher's algorithm parameters
	5. initialise the MAC algorithm
	6. process the input file
	7. create the output from the various components
	4.1.1 Generating a Random Session Key
	4.1.2 Encrypting the Session Key
	4.1.3 Create and initialise the Bulk Cipher
	4.1.4 Encoded Algorithm Parameters
	4.1.5 Initialise the MAC Algorithm
	4.1.6 Process the Input File
	4.1.7 Create the encrypted Output
	4.2 File Decryption

	1. decode the input from the various components
	2. decipher the session key with the recipient's private key
	3. initialise the bulk cipher with the session key and algorithm parameters
	4. initialise the MAC algorithm
	5. process the encrypted input
	6. verify the calculated MAC with the MAC from the document
	7. write out the decrypted result
	4.2.1 Decryption of the session key
	4.2.2 Bulk Cipher Initialisation
	4.2.3 Initialise the MAC Algorithm
	4.2.4 Process the Encrypted input
	4.2.5 Verify the MAC
	4.2.6 Write out the Decrypted result
	4.3 Accessing Public Keys
	4.3.1 Creating the KeyStore
	4.3.2 Retrieving the Public Key
	4.3.3 Retrieving the Private Key

	4.4 Putting it all Together

