

 © SafeNet, Inc. ii

ProtectToolkit C

SDK Programming
Guide

 © SafeNet, Inc. ii

© 2000-2015 SafeNet, Inc. All rights reserved.

Part Number 007-008395-006

Version 5.1

Trademarks

All intellectual property is protected by copyright. All trademarks and product names used or referred

to are the copyright of their respective owners. No part of this document may be reproduced, stored in a

retrieval system or transmitted in any form or by any means, electronic, mechanical, chemical,

photocopy, recording or otherwise without the prior written permission of SafeNet.

Disclaimer

SafeNet makes no representations or warranties with respect to the contents of this document and

specifically disclaims any implied warranties of merchantability or fitness for any particular purpose.

Furthermore, SafeNet reserves the right to revise this publication and to make changes from time to

time in the content hereof without the obligation upon SafeNet to notify any person or organization of

any such revisions or changes.

We have attempted to make these documents complete, accurate, and useful, but we cannot guarantee

them to be perfect. When we discover errors or omissions, or they are brought to our attention, we

endeavor to correct them in succeeding releases of the product.

SafeNet invites constructive comments on the contents of this document. Send your comments,

together with your personal and/or company details to the address below:

SafeNet, Inc.

4690 Millennium Drive

Belcamp, Maryland USA 21017

Technical Support
If you encounter a problem while installing, registering or operating this product, please make sure that

you have read the documentation. If you cannot resolve the issue, please contact your supplier or

SafeNet support. SafeNet support operates 24 hours a day, 7 days a week. Your level of access to this

service is governed by the support plan arrangements made between SafeNet and your organization.

Please consult this support plan for further information about your entitlements, including the hours

when telephone support is available to you.

Contact method Contact

Address SafeNet, Inc.
4690 Millennium Drive
Belcamp, Maryland 21017

USA

Phone Global +1 410-931-7520

 Australia 1800.020.183

China (86) 10 8851 9191

France 0825 341000

Germany 01803 7246269

India 000.800.100.4290

Netherlands 0800.022.2996

New Zealand 0800.440.359

Portugal 800.1302.029

Singapore 800.863.499

ProtectToolkit C SDK Programming Guide Table of Contents

Spain 900.938.717

Sweden 020.791.028

Switzerland 0800.564.849

United Kingdom 0800.056.3158

United States (800) 545-6608

Web www.safenet-inc.com

Support and
Downloads

www.safenet-inc.com/support

Provides access to the SafeNet Knowledge Base and quick downloads
for various products.

Technical
Support
Customer Portal

https://serviceportal.safenet-inc.com

Existing customers with a Technical Support Customer Portal account
can log in to manage incidents, get the latest software upgrades, and
access the SafeNet Knowledge Base.

Revision History

Revision Date Reason

A 27 October 2014 Release 5.0

B 12 August 2015 Release 5.1

http://www.safenet-inc.com/
http://www.safenet-inc.com/support
https://serviceportal.safenet-inc.com/

 © SafeNet, Inc. ii

Table of Contents

Technical Support ... ii

Glossary ...iv

Overview .. 1
Runtime Licensing .. 1
System Requirements ... 1

An Introduction to PKCS#11 ... 2
Overview .. 2
The Cryptoki Model ... 2

Installation ... 4
Installation for Windows Server 2008 .. 4
Installation for Solaris .. 5
Installation for AIX 5.3/6.1 .. 6
Installation for Linux .. 7

Setting Up Your Environment .. 7
Operation .. 9
Configuration / setup .. 9

Sample Programs ...10
CTDEMO ... 10
FCRYPT ... 10

Additional APIs ...11
CTUTIL .. 11

CheckCryptokiVersion ... 11
NUMITEMS ... 11
FindTokenFromName, FindKeyFromName .. 11
CT_OpenObject CT_CreateObject CT_RenameObject CT_ReadObject CT_WriteObject 12
GetAttr, SetAttr .. 13
calcKvc ... 13
C_ErrorString ... 13
String display functions .. 14
Key Generation / Creation functions .. 14
TransferObject .. 15

CTEXTRA .. 16
NUMITEMS ... 16
Mechanism associations ... 16
Attribute list management .. 17
Attribute lookups .. 17
Attribute list management .. 17
Miscellaneous attribute functions ... 18
Password to validation code / Key functions. ... 18
Miscellaneous ... 18

ProtectToolkit C Development Tips and Techniques ...19

Extensions ...20
Attribute Enumeration .. 20
Token Creation ... 20
Additional Object Types ... 20

CKO_CERTIFICATE_REQUEST .. 20
CKO_KG_PARAMETERS .. 21

Additional Attribute Types ... 21
CKA_TIME_STAMP ... 21

ProtectToolkit C SDK Programming Guide Table of Contents

CKA_TRUST_LEVEL .. 21
CKA_USAGE_COUNT ... 22
CKA_ISSUER_STR ... 22
CKA_SUBJECT_STR.. 22
CKA_SERIAL_NUMBER_INT .. 22

Additional Mechanisms .. 22
CKM_ENCODE_PKCS_10 ... 23
CKM_ENCODE_X_509 .. 23
CKM_DSA_PARAMETER_GEN ... 24
CKM_DH_PKCS_PARAMETER_GEN ... 24
CKM_WRAPKEY_DES3_EBC .. 25

Key Generation Variations ... 25
PKCS#11 Interpretations .. 25

Software-Only Version Specific ... 25

System Information ..26
ProtectToolkit C - Software only .. 26
ProtectToolkit C - Remote Client ... 27

 © SafeNet, Inc. iv

Glossary

PKCS#11 Public Key Cryptography Standard # 11. Cryptographic Token Interface

Standard (Cryptoki). An RSA Laboratories Technical Note.

Cryptoki Cryptographic Token Interface Standard. (aka PKCS#11).

ProtectToolkit C SafeNet’s implementation of PKCS#11. ProtectToolkit C represents a suite

of products including various PKCS#11 runtimes including software only,

hardware adapter, and host security module based variants. A Remote client

and server are also available.

JCA Java Cryptographic Architecture.

JCE Java Cryptographic Extensions.

ProtectToolkit J SafeNet’s implementation of JCE. Runs on top of ProtectToolkit C

ProtectServer SafeNet HSM

Slot PKCS#11 slot which is capable of holding a token.

Token PKCS#11 token that provides cryptographic services and access controlled

secure key storage.

SO Security Officer for a PKCS#11 token.

ProtectToolkit C SDK Programming Guide Table of Contents

THIS PAGE INTENTIONALLY LEFT BLANK

ProtectToolkit C SDK Programming Guide Overview

© SafeNet, Inc. 1

Overview
ProtectToolkit C is the name given to the SafeNet PKCS#11 (CRYPTOKI) software product.

ProtectToolkit C is available in three different variants, a software-only version, a hardware

version for the ProtectServer hardware adapter (and future hardware platforms), and a remote

client version for TCP/IP connection to a remote ProtectToolkit C server. The software-only

typically used as a development and testing environment for applications that will eventually

use the hardware variant of ProtectToolkit C.

This product conforms to the API definition, produced by RSA Labs, named PKCS #11, and

otherwise known as CRYPTOKI. ProtectToolkit C is compliant with PKCS#11 V 2.10.

The API provides a suite of cryptographic services for general-purpose usage and permanent

key storage, which may be hosted by a physical token.

Unless specifically noted, the comments below refer to all SafeNet PKCS#11 products

including the software only version, and the hardware-based ProtectServer implementation.

Runtime Licensing

Note: All of the run-time software, including all applications, and the software-only

ProtectToolkit C run-time supplied with this SDK, is licensed to be used for development and

testing purposes only. NO RUNTIME LICENSES ARE INCLUDED. This software or any

component of it, therefore, must not be used for production systems. Separate run-time

licenses must be purchased for production systems deployed using any ProtectToolkit C

support.

System Requirements

No special hardware requirements are necessary for this product.

The supported platforms are listed in the following table.

C=PTK-C component, PKCS #11 v2.10/2.20

M=PTK-M component, MS CSP 2.0 with CNG

J=PTK-J, Java runtime 1.6.x/1.7.x

Operating system 32-bit binary
32-bit O/S

32-bit binary
64-bit O/S

64-bit binary
64-bit O/S

 PSE2 PSI-E2 PSE2 PSI-E2 PSE2 PSI-E2

Windows Server 2012
R2 x86

 - - C/M/J C/M/J

Windows Server 2008
R2 x86

– – – – C/M/J C/M/J

Windows 7 C/J C/J C/M/J C/M/J

RedHat Enterprise
Linux 6 x86

C/J C/J C/J C/J

ProtectToolkit C SDK Programming Guide Overview

© SafeNet, Inc. 2

An Introduction to PKCS#11

Overview

The PKCS#11 Cryptographic Token Interface Standard is one of the Public Key Cryptography

Standards developed by RSA Security. Also referred to as Cryptoki, this standard deals with

defining the interface between an application and a cryptographic device. This chapter gives a

rudimentary outline of Cryptoki and some of its basic concepts. If unfamiliar with PKCS#11,

the reader is strongly advised to obtain a copy of the standard from the RSA website at

http://www.rsasecurity.com/rsalabs/pkcs/ to gain further knowledge.

Cryptoki is used as a low level interface to perform cryptographic operations without the

requirement for the application to directly interface a device through its driver. Cryptoki

represents cryptographic devices using a common model referred to simply as a token. An

application can therefore perform cryptographic operations on any device or token, using the

same independent command set.

ProtectToolkit C is an Application Programming Interface (API) which is built on the

Cryptoki standard.

The Cryptoki Model

The model for Cryptoki can be seen illustrated in Figure 1 and demonstrates how an

application communicates its requests to a token via the Cryptoki interface. The term slot

represents a physical device interface. For example a smartcard reader would represent a slot

and the smartcard would represent the token. It is also possible that multiple slots may share

the same token.

Application 1

Other Security Layers

Cryptoki

Slot 1

Device Contention/Synchronisation

Token 1

(Device 1)

Application k

Other Security Layers

Cryptoki

Slot n

Token n

(Device n)

Figure 1 – General Cryptoki Model

Within Cryptoki, a token is viewed as a device that stores objects and can perform

cryptographic functions. Objects are defined in one of three classes:

- Data objects, which are defined by an application

- Certificate objects, which are digital certificates such as X.509 for example

- Key objects, which can be either public, private or secret cryptographic keys.

Objects within Cryptoki are further defined as either a token object or a session object. Token

objects are visible by any application which has sufficient access permission and is connected

ProtectToolkit C SDK Programming Guide Overview

© SafeNet, Inc. 3

to that token. An important attribute of a token object is that it remains on the token until a

specific action is performed to remove it.

A connection between a token and an application is referred to as a session. Session objects

are temporary and only remain in existence whilst the session is open. In addition, session

objects are only ever visible to the application which created them.

Access to objects within Cryptoki is defined by the object type. Public objects are visible to

any user or application, whereby private objects require that the user must be logged into that

token in order to view them. Cryptoki recognises two types of users, which is either a security

officer (SO) or normal user. The security officers only role is to initialize a token and set the

normal users access PIN. An important point to note is that the normal user, which

manipulates objects and performs most operations, cannot log in until the security officer has

set the users PIN.

ProtectToolkit C SDK Programming Guide Installation

© SafeNet, Inc. 4

Installation
The following two sections contain the installation instructions for the ProtectToolkit C SDK

package on all supported platforms.

If you intend on using this SDK with the ProtectServer HSM please consult the Installation

Guide for the particular hardware (and associated driver software).

Installation for Windows Server 2008

Note: To order to be able to add or remove software the current user must have

“Administrator” privileges.

To install the package simply execute the program PTKcpsdk.msi and follow the on-screen

instructions to install the software.

The installation program will create a new program group named “CProv SDK” and add this

to your Start menu. Your will then need to modify your environment settings to include the

ProtectToolkit C Cryptoki dynamic link libraries and runtime tools in your path.

To remove the software from your system please go to the “Add/Remove Programs” item in

the Control Panel and select the “CProv SDK” item from the list.

ProtectToolkit C SDK Programming Guide Installation

© SafeNet, Inc. 5

Installation for Solaris

The ProtectToolkit C SDK for Solaris is packaged using the standard Solaris packaging

software. Under Solaris this package cannot be installed concurrently with any of the

ProtectToolkit C runtimes. The package however includes the hardware and software

runtimes and it is possible to use either (by default the SDK package will be configured for the

software-only runtime).

Note: Before adding or removing any packages you must become the super-user on the host

system.

To install the package simply use the pkgadd program to add the PTKcpsdk package. Once

installed, the software will be ready to use under

/opt/safenet/protecttoolkit5/ptk. To make use of the software you will need

to add the /opt/safenet/protecttoolkit5/ptk/bin directory to your execution

path and /opt/safenet/protecttoolkit5/ptk/lib to your library path. The

following commands may be used to configure your paths for the sh shell (please consult

your Solaris manual for other shells):

PATH=/opt/safenet/protecttoolkit5/ptk/bin:$PATH

export PATH

LD_LIBRARY_PATH=/opt/safenet/protecttoolkit5/ptk/lib:$LD_

LIBRARY_PATH

export LD_LIBRARY_PATH

By default the software-only runtime will be selected as the default. To change this simply

remove the libcryptoki.so soft-link and recreate it to point to the desired runtime

library. For example to switch to the hardware library the following shell commands may be

used (executed as the super-user).

cd /opt/safenet/protecttoolkit5/ptk/lib

rm libcryptoki.so

ln -s libcthsm.so libcryptoki.so

To remove the software from your host system simply use the pkgrm program and select the

PTKcpsdk package for removal.

ProtectToolkit C SDK Programming Guide Installation

© SafeNet, Inc. 6

Installation for AIX 5.3/6.1

The ProtectToolkit C SDK for AIX is packaged using the standard AIX packaging software.

Under AIX this package cannot be installed concurrently with any of the ProtectToolkit C

runtimes. The package however includes the hardware and software runtimes and it is

possible to use either (by default the SDK package will be configured for the software-only

runtime).

Note: Before adding or removing any packages you must become the super-user on the host

system.

To install the package simply use the installp program to add the PTKcpsdk package.

For example:

installp -acgNQqwX -d . PTKcpsdk.rte

Once installed, the software will be ready to use under /opt/PTK. To make use of the

software you will need to add the /opt/PTK/bin directory to your execution path and

/opt/PTK/lib to your library path. The following commands may be used to configure

your paths for the sh shell (please consult your AIX manual for other shells):

PATH=/opt/safenet/protecttoolkit5/ptk/bin:$PATH

export PATH

LIBPATH=/opt/safenet/protecttoolkit5/ptk/lib:$LIBPATH

export LIBPATH

By default the software-only runtime will be selected as the default. To change this simply

remove the libcryptoki.so soft-link and recreate it to point to the desired runtime

library. For example to switch to the hardware library the following shell commands may be

used (executed as the super-user).

cd /opt/safenet/protecttoolkit5/ptk/lib

rm libcryptoki.a

ln -s libcthsm.a libcryptoki.a

To remove the software from your host system simply use the installp program and select

the PTKcpsdk package for removal:

installp –u PTKcpsdk.rte

ProtectToolkit C SDK Programming Guide Installation

© SafeNet, Inc. 7

Installation for Linux

The ProtectToolkit C SDK for Linux is packaged using the standard RPM packaging software.

Under Linux this package cannot be installed concurrently with any of the ProtectToolkit C

runtimes. The package however includes the hardware and software runtimes and it is

possible to use either (by default the SDK package will be configured for the software-only

runtime).

Note: Before adding or removing any packages you must become the super-user on the host

system.

To install the package simply use the rpm command to add the PTKcpsdk package. Once

installed, the software will be ready to use under

/opt/safenet/protecttoolkit5/ptk.

For example:

rpm –i PTKcpsdk-2.21-1.i386.rpm

Setting Up Your Environment

After installing the software, you must run the PTK setvars.sh script to configure your

environment to use the PTK software. You cannot run the script directly, but instead you must

source it or add it to a startup file (for example, .bashrc). If you source the script, your

environment will be set for the current session only. If you add it to your startup file, your

environment will be set each time you log in.

To set up your environment

1. Go to the PTK software installation directory:

cd /opt/safenet/protecttoolkit5/ptk

2. Source the setvars.sh script:

. ./setvars.sh

Once installed and configured, the software is ready to use under /opt/safenet.

To make use of the software you will need to add the /opt/PTK/bin directory to your

execution path and /opt/PTK/lib to your library path. The following commands may be

used to configure your paths for the sh shell (please consult your Linux manual for other

shells):

PATH=/opt/safenet/protecttoolkit5/ptk/bin:$PATH

export PATH

LD_LIBRARY_PATH=/opt/safenet/protecttoolkit5/ptk/lib:$LD_

LIBRARY_PATH

export LD_LIBRARY_PATH

By default the software-only runtime will be selected as the default. The installer provides

options for setting the default cryptoki and/or HSM link.

To manually change this simply remove the libcryptoki.so soft-link and recreate it to

point to the desired runtime library. For example to switch to the hardware library the

following shell commands may be used (executed as the super-user).

ProtectToolkit C SDK Programming Guide Installation

© SafeNet, Inc. 8

cd /opt/safenet/protecttoolkit5/ptk/lib

rm libcryptoki.so

ln -s libcthsm.so libcryptoki.so

To remove the software from your host system simply use the rpm command and select the

PTKcpsdk package for removal.

For example:

rpm –e PTKcpsdk

ProtectToolkit C SDK Programming Guide Installation

© SafeNet, Inc. 9

Operation

 Win32™
ProtectToolkit C is supplied as a WIN32 Dynamic Link Library (CRYPTOKI.DLL) built

with Microsoft development tools (MSVC). CRYPTOKI.LIB is an import library that

should be linked against applications to resolve function calls into CRYPTOKI DLL.

 Solaris™
Supplied as shared libraries. The hardware based ProtectToolkit C library is stored as the

shared library libctcsa.so, the software-only version as libctsw.so and the remote client

shared library as libctclient.so. The symbolic link libcryptoki.so should point to the

appropriate library. Additionally these libraries must be included in your

LD_LIBRARY_PATH.

 Linux
Supplied as shared libraries. , The hardware based ProtectToolkit C library is stored as

the shared library libctcsa.so, the software-only version as libctsw.so and the remote

client shared library as libctclient.so. The symbolic link libcryptoki.so should point to the

appropriate library. Additionally these libraries must be included in your

LD_LIBRARY_PATH.

Sample programs, for which source code has been provided, may be compiled and linked

against the supplied libraries. The additional libraries "ctextra" and "ctutil" are static libraries

that contain additional PKCS#11support and helper functions that are not a part of the

PKCS#11standard.

This development kit may be used to build applications for any variant of the ProtectToolkit C

runtime including either the software-only ProtectToolkit C, the ProtectServer based

ProtectToolkit C, or the ProtectToolkit C remote client.

Configuration / setup

The cryptoki.ini file support allows the configuration of global parameters such which debug

logging information (if enabled) will be written, etc. Description of .ini items can be found in

the documentation for the ProtectToolkit C Runtime products.

A setup utility, ctconf, is supplied which allows configuration of global parameters. This

utility is provided with the various ProtectToolkit C runtime products and has different

options related to the different ProtectToolkit C runtime variants. Description of its operation

can be found in the documentation for the ProtectToolkit C runtime products.

The ctreset utility may be used to free all resources held for programs that are no longer

running. This occurs when ProtectToolkit C applications crash or for any other reason do not

call C_Finalize(). See ProtectToolkit C runtime manual for more information on ctreset.

ProtectToolkit C SDK Programming Guide Sample Programs

© SafeNet, Inc. 10

Sample Programs

Sample programs include a variety of PKCS#11applications. Unless specifically stated, any

source code provided with the ProtectToolkit C SDK product may be modified or

incorporated into other programs.

CTDEMO

This program sets up a 4 token key profile that may be used for an electronic commerce

trading application. Token profiles include a sample customer, merchant, bank and certifying

authority. It exchanges public keys between all the tokens and, where CA mechanism

extensions are supported, ProtectToolkit C generates certificates for the public keys.

ProtectToolkit C must be configured to have at least 4 slots / tokens for this demo program to

operate correctly.

The ctdemo program is a console application that takes the following arguments:

 ctdemo -s<slotID> -m<modulus size> -q -f -x

 -q Quick. Does not prompt for values but uses defaults.

 -f Force. Does not warn about overwriting token contents.

 -m Specify modulus size.

 -s First slot number to use.

 -x Extended. Creates more keys.

Defaults :

Security Officer (SO) Pin = 9999

Slot Token label Pin

0 Alice 0000

1 NAB 1111

2 Meyer 2222

3 SAFENET 3333

Note: This will overwrite the contents of all of the above tokens.

FCRYPT

The fcrypt program is a file encryption program that takes a recipient's public key and

sender's private key and uses these to encrypt and sign the file's content. Random triple DES

transport keys are generated for the bulk file content encryption. Alternately the Password

Based Encryption (PBE) variant can be used so that only the password needs to be shared and

no public keys / certificates need be exchanged. The default output file is “file.enc”.

The fcrypt program is a console application that takes the following arguments:

 fcrypt [-d] -s<sender(pin)/key> -r<recipient(pin)/key> [-o<output file>] file-name

or

fcrypt [-d] -p<password> [-o<output file>] file-name

ProtectToolkit C SDK Programming Guide Additional APIs

© SafeNet, Inc. 11

Additional APIs

CTUTIL

The following additional features do not form part of the standard CRYPTOKI functionality,

but are provided by SafeNet as part of the ProtectToolkit C API within the ctutil.h library.

CheckCryptokiVersion

Synopsis

CK_RV CheckCryptokiVersion(void);

Note that this API is implemented as a macro.

Description

Two versions of PKCS#11 are supported by SafeNet - V1.0 and V2.01 that are similar but

incompatible. An application compiled for V 1.0 compliance is likely to crash if it links

against a V 2.01 compliant DLL and vice-versa.

This function is used to check that the version of CRYPTOKI is correct for the application

and will report if an incompatible Cryptoki DLL is loaded. The application should report this

fact and terminate.

All the sample applications make this call to check the Cryptoki version they are running

with.

NUMITEMS

Synopsis

#define NUMITEMS(type) (sizeof((type))/sizeof((type)[0]))

Description

This is a macro that returns the number of elements in an array. Note that only array

definitions may be sized by this macro, not pointer definitions.

It is used wherever object templates are defined since the number of items in the template is

always passed along with the template address into Cryptoki functions. Use of this macro is

preferred to hard coding the number of items in the template that may change with code

maintenance.

FindTokenFromName, FindKeyFromName

Synopsis

CK_RV FindTokenFromName(char * label, CK_SLOT_ID * pslotID);

CK_RV FindKeyFromName(const char * keyPath, CK_OBJECT_CLASS cl,

 CK_SLOT_ID * phSlot, CK_SESSION_HANDLE * phSession,

 CK_OBJECT_HANDLE * phKey);

'keyPath' syntax - "token(pin)/key"

ProtectToolkit C SDK Programming Guide Additional APIs

© SafeNet, Inc. 12

Description

Applications should locate tokens by name rather than by assuming that a particular token

will always be found in a particular slot. These functions allow tokens and particular keys to

be located easily.

The sample program FCRYPT uses these functions to locate keys.

CT_OpenObject CT_CreateObject CT_RenameObject CT_ReadObject
CT_WriteObject

Synopsis

CK_RV CT_OpenObject(

 CK_SESSION_HANDLE hSession,

 CK_OBJECT_CLASS cl,

 char * name,

 CK_OBJECT_HANDLE * phObj);

CK_RV CT_CreateObject(

 CK_SESSION_HANDLE hSession,

 CK_OBJECT_CLASS cl,

 char * name,

 CK_OBJECT_HANDLE * phObj);

CK_RV CT_RenameObject(

 CK_SESSION_HANDLE hSession,

 CK_OBJECT_CLASS cl,

 char * oldName,

 char * newName);

 CK_RV CT_ReadObject(

 CK_SESSION_HANDLE hSession,

 CK_OBJECT_HANDLE hObj,

 unsigned char * buf,

 unsigned int len,

 unsigned int * pbr);

CK_RV CT_WriteObject(

 CK_SESSION_HANDLE hSession,

 CK_OBJECT_HANDLE hObj,

 const unsigned char * buf,

 unsigned int len,

 unsigned int * pbr);

Description

These functions treat PKCS#11 objects like named files using the CKA_LABEL as the file

name. They make standard PKCS#11 calls and return standard errors if any lower level

PKCS#11 function fails.

The reader is advised to refer to the sample programs included with ProtectToolkit C for

examples of their usage.

ProtectToolkit C SDK Programming Guide Additional APIs

© SafeNet, Inc. 13

GetAttr, SetAttr

Synopsis

CK_RV GetAttr(

 CK_SESSION_HANDLE hSession,

 CK_OBJECT_HANDLE obj,

 CK_ATTRIBUTE_TYPE type,

 CK_VOID_PTR buf, CK_SIZE len, CK_SIZE_PTR size);

CK_RV SetAttr(

 CK_SESSION_HANDLE hSession,

 CK_OBJECT_HANDLE obj,

 CK_ATTRIBUTE_TYPE type,

 CK_VOID_PTR buf, CK_SIZE len);

CK_ATTRIBUTE * FindAttribute(

 CK_ATTRIBUTE_TYPE attrType,

 CK_ATTRIBUTE_PTR attr,

 CK_COUNT attrCount);

Description

These functions allow the caller to easily obtain, or set, a single attribute from a PKCS#11

object. Findattribute() locates a particular attribute from within an attribute template.

calcKvc

Synopsis

CK_RV calcKvcMech(CK_SESSION_HANDLE hSession, CK_OBJECT_HANDLE hKey,

 CK_MECHANISM_TYPE mt,

 unsigned char * kvc, int kvclen, int * pkvclen);

CK_RV calcKvc(CK_SESSION_HANDLE hSession, CK_OBJECT_HANDLE hKey,

 unsigned char * kvc, int kvclen, int * pkvclen);

Description

Calculate and return an AS2805 KVC for a key. The key must be capable of doing an

encryption operation using the supplied mechanism for this to succeed. It must also have the

CKA_ENCRYPT attribute set to 1. Note that mechanism parameters will be set to NULL for

the actual encrypt operation to generate the KVC.

C_ErrorString

Synopsis

CK_RV C_ErrorString(CK_RV ret, char * errstr, unsigned int len);

Description

Convert a Cryptoki error code into a printable string. Note that this function is not a part of

the PKCS#11 definition.

The sample programs use this extensively to map Cryptoki error numbers to meaningful text

to display to the user.

ProtectToolkit C SDK Programming Guide Additional APIs

© SafeNet, Inc. 14

String display functions

Synopsis

char * strObjClass(CK_NUMERIC val);

CK_NUMERIC valObjClass(const char * txt);

char * strKeyType(CK_NUMERIC val);

CK_NUMERIC valKeyType(const char * txt);

char * strAttribute(CK_NUMERIC val);

CK_NUMERIC valAttribute(const char * txt);

char * strMechanism(CK_NUMERIC val);

CK_NUMERIC valMechanism(const char * txt);

char * strSesState(CK_NUMERIC val);

CK_NUMERIC valSesState(const char * txt);

char * strError(CK_NUMERIC val);

CK_NUMERIC valError(const char * txt);

Description

Convert PKCS#11 definitions to strings and vice versa.

The token browser ctbrowse uses these services extensively in the user interface to display

selectable PKCS#11 options.

Key Generation / Creation functions

Synopsis

CK_RV CreateSecretKey(CK_SESSION_HANDLE hSession, char * txt,

 int tok, int priv,

 CK_KEY_TYPE kt,

 CK_BYTE * keyValue, int len,

 CK_OBJECT_HANDLE * phKey);

CK_RV CreateDesKey(CK_SESSION_HANDLE hSession, char * txt,

 int tok, int priv,

 CK_BYTE * keyValue, int len,

 CK_OBJECT_HANDLE * phKey);

CK_RV BuildRsaCrtKeyPair(

 CK_SESSION_HANDLE hSession, char * txt,

 int tok, int priv,

 CK_OBJECT_HANDLE * phPub, CK_OBJECT_HANDLE * phPri,

 char * modulusStr, char * pubExpStr,

 char * priExpStr, char * priPStr, char * priQStr,

 char * priE1Str, char * priE2Str, char * priUStr);

CK_RV BuildRsaKeyPair(CK_SESSION_HANDLE hSession, char * txt,

 int tok, int priv,

 CK_OBJECT_HANDLE * phPub, CK_OBJECT_HANDLE * phPri,

 char * modulusStr, char * pubExponentStr,

char * priExponentStr);

CK_RV GenerateRsaKeyPair(CK_SESSION_HANDLE hSession, char * txt,

 int ftok, int priv,

 CK_SIZE modulusBits, int expType,

 CK_OBJECT_HANDLE * phPublicKey,

 CK_OBJECT_HANDLE * phPrivateKey);

CK_RV BuildDsaKeyPair(CK_SESSION_HANDLE hSession, char * txt,

 int tok, int priv,

 CK_OBJECT_HANDLE * phPub, CK_OBJECT_HANDLE * phPri,

 char * prime, char * subprime, char * base,

char * pub, char * pri);

ProtectToolkit C SDK Programming Guide Additional APIs

© SafeNet, Inc. 15

CK_RV GenerateDsaKeyPair(CK_SESSION_HANDLE hSession, char * txt,

 int ftok, int priv, int param,

 CK_SIZE valueBits,

 CK_OBJECT_HANDLE * phPublicKey,

 CK_OBJECT_HANDLE * phPrivateKey);

CK_RV BuildDhKeyPair(CK_SESSION_HANDLE hSession, char * txt,

 int tok, int priv,

 CK_OBJECT_HANDLE * phPub, CK_OBJECT_HANDLE * phPri,

 char * prime, char * base, char * pub, char * pri);

 CK_RV GenerateDhKeyPair(CK_SESSION_HANDLE hSession, char * txt,

 int ftok, int priv, int param,

 CK_SIZE valueBits,

 CK_OBJECT_HANDLE * phPublicKey,

 CK_OBJECT_HANDLE * phPrivateKey);

Description

Generate and create keys with simple attribute sets.

CreateSecretKey() - Generates a secret key object

CreateDesKey() - Creates a DES key object

BuildRsaCrtKeyPair() - Builds an RSA Certificate Key Pair

BuildRsaKeyPair() - Builds an RSA Key Pair

GenerateRsaKeyPair() - Generates an RSA Key Pair

BuildDsaKeyPair() - Builds a DSA Key Pair

GenerateDsaKeyPair() - Generates a DSA Key Pair

BuildDhKeyPair() - Builds a Diffie Hellman Key Pair

GenerateDhKeyPair() - Generates a Diffie Hellman Key Pair

TransferObject

Synopsis

CK_RV TransferObject(

 CK_SESSION_HANDLE sTo,

 CK_SESSION_HANDLE sFrom,

 CK_OBJECT_HANDLE hObj,

 CK_OBJECT_HANDLE * phObj);

Description

Shifts an object from one slot / token to another.

This is used by the token browser for Drag and Drop moving of objects and by ctdemo to do

certificate exchanges from one token to another.

ProtectToolkit C SDK Programming Guide Additional APIs

© SafeNet, Inc. 16

CTEXTRA

The ctextra library contains further functionality that may be useful in a PKCS#11 based

application.

NUMITEMS

Synopsis

#define NUMITEMS(type) (sizeof((type))/sizeof((type)[0]))

Description

This is a macro that returns the number of elements in an array. Note that only array

definitions may be sized by this macro, not pointer definitions.

It is used wherever object templates are defined since the number of items in the template is

always passed along with the template address into Cryptoki functions. Use of this macro is

preferred to hard coding the number of items in the template that may change with code

maintenance.

Mechanism associations

Synopsis

struct TOK_MECH_DATA {

 CK_MECHANISM_TYPE * pMechanisms;

 unsigned int count;

};

typedef struct TOK_MECH_DATA TOK_MECH_DATA;

int LookupMech(TOK_MECH_DATA * pMech, CK_MECHANISM_TYPE mechType);

void FreeMechData(TOK_MECH_DATA * pMech);

CK_MECHANISM_TYPE * genMechanismFromMechanism(

CK_MECHANISM_TYPE mt, unsigned int * len);

CK_MECHANISM_TYPE * genMechanismTabFromMechanismTab(

TOK_MECH_DATA * mTab, unsigned int * len);

CK_MECHANISM_TYPE * mechFromKt(CK_KEY_TYPE kt, unsigned int * len);

CK_KEY_TYPE * ktFromMech(CK_MECHANISM_TYPE mt, unsigned int * len);

CK_MECHANISM_TYPE * mechFromTokKt(

TOK_MECH_DATA * mTab, CK_KEY_TYPE kt, unsigned int * len);

CK_MECHANISM_TYPE * mechDeriveFromKt(

CK_KEY_TYPE kt, unsigned int * len);

CK_MECHANISM_TYPE * mechSignFromKt(

CK_KEY_TYPE kt, unsigned int * len);

CK_MECHANISM_TYPE * mechSignRecFromKt(

CK_KEY_TYPE kt, unsigned int * len);

CK_MECHANISM_TYPE * hashMech(unsigned int * len);

CK_MECHANISM_TYPE * kgMech(unsigned int * len);

CK_MECHANISM_TYPE * kpgMech(unsigned int * len);

int isGenMech(CK_MECHANISM_TYPE mechType);

Description

Obtain mechanism lists from key types etc.

This is used by the ctbrowse token browser.

ProtectToolkit C SDK Programming Guide Additional APIs

© SafeNet, Inc. 17

Attribute list management

Synopsis

struct TOK_ATTR_DATA {

 CK_ATTRIBUTE * attributes; /* an array of attribute items */

 CK_COUNT attrCount; /* number of items in 'attributes' */

};

typedef struct TOK_ATTR_DATA TOK_ATTR_DATA;

Attribute lookups

CK_NUMERIC numAttr(CK_ATTRIBUTE * at);

CK_NUMERIC numAttrLookup(CK_ATTRIBUTE_TYPE atype,

CK_ATTRIBUTE * attr, CK_COUNT attrCount);

int intAttrLookup(CK_ATTRIBUTE_TYPE atype, CK_ATTRIBUTE * attr,

 CK_COUNT attrCount);

int intAttr(CK_ATTRIBUTE_PTR at);

Extract a numeric attribute from an attribute template.

CK_RV GetObjectClassAndKeyType(

 TOK_ATTR_DATA * attr,

 CK_OBJECT_CLASS * at_class, CK_KEY_TYPE * kt);

Extract the object class and key type from an object. This is a particularly common job when

working with CRYPTOKI key objects. Return CKR_OK if both attributes were found.

CK_ATTRIBUTE * FindAttr(

 CK_ATTRIBUTE_TYPE attrType,

 TOK_ATTR_DATA * attrData);

Find an attribute in an attribute template.

Attribute list management

TOK_ATTR_DATA * DupAttributes(

CK_ATTRIBUTE_PTR attr, CK_COUNT attrCount);

TOK_ATTR_DATA * DupAttributeSet(TOK_ATTR_DATA * attrData);

Make a copy of an attribute set. Return a pointer to the set. Return NULL if list cannot be

duplicated.

Note: the new attribute list is dynamically created and should be freed using

FreeAttributeSet.

int TransferAttr(CK_ATTRIBUTE_PTR pTgtTemplate,

 CK_ATTRIBUTE_PTR pSrcTemplate, CK_COUNT attrCount);

Copy attributes from one attribute table to another. The target table must have buffers to

accommodate all values. Note: No mallocs are used.

int MatchAttributeSet(TOK_ATTR_DATA * match, TOK_ATTR_DATA * ad);

Do a comparison of two attribute sets. Every attribute in the 'match' set must be found in the

'ad' set. It is OK if 'ad' is a superset of 'match'. Return TRUE if all attributes in 'match' were

found in 'ad'.

CK_RV AddAttributeSets(TOK_ATTR_DATA ** pSum,

ProtectToolkit C SDK Programming Guide Additional APIs

© SafeNet, Inc. 18

 TOK_ATTR_DATA * base, TOK_ATTR_DATA * user);

Add two attribute sets being careful to drop duplicates. The 'base' attributes will override

'user' attributes where duplicates are concerned.

void FreeAttributeSet(TOK_ATTR_DATA * attr);

void FreeAttributes(CK_ATTRIBUTE_PTR attr, CK_COUNT attrCount);

Free an attribute list

Miscellaneous attribute functions

int isBooleanAttr(CK_ATTRIBUTE * na);

int isEnumeratedAttr(CK_ATTRIBUTE * na);

int isNumericAttr(CK_ATTRIBUTE * na);

int isSensitiveAttr(struct TOK_ATTR_DATA * attrData,

CK_ATTRIBUTE * na);

Password to validation code / Key functions.

Synopsis

void KeyFromPin(unsigned char * key, unsigned int klen,

CK_USER_TYPE user,

 const unsigned char * pin, unsigned int pinLen);

void PvcFromPin(unsigned char * key, unsigned int klen,

CK_USER_TYPE user,

 const unsigned char * pin, unsigned int pinLen);

Description

Derive double DES keys (16 bytes) from a password. Uses PKCS#5.

Miscellaneous

Synopsis

CK_SLOT_ID slotIDfromSes(CK_SESSION_HANDLE h);

Description

Extract a CK_SLOT_ID from a CK_SESSION_HANDLE. This function only works with

SafeNet’s Cryptoki product because it includes an encoding of the SLOT id in the session

handle. For other PKCS#11 implementations the slot ID can be obtained from the session

info C_GetSessionInfo() call.

ProtectToolkit C SDK Programming Guide Cprov Development Tips and Techniques

© SafeNet, Inc. 19

ProtectToolkit C Development Tips and Techniques

The best place to start building a ProtectToolkit C application is with the sample applications

that demonstrate how the ProtectToolkit C system should be initialised and used to perform

various cryptographic operations. The samples vary quite significantly in complexity however

they are all real working ProtectToolkit C utilities and cover all ProtectToolkit C services.

The ctbrowse.exe program is particularly useful while building ProtectToolkit C applications

since it can be used to build tokens for testing purposes, and also to examine tokens after a

ProtectToolkit C application has run. It may also be used to quickly verify the result of a

cryptographic operation.

Debug builds of applications should save all keys to the token, rather than using session keys,

and make all keys non sensitive. This allows maximum visibility of key data to the browser

(ctbrowse.exe) which is always helpful when debugging ProtectToolkit C applications. Non-

debug builds should make all secret keys sensitive and should use session objects where

possible. It is particularly important to make sure the CKA_SENSITIVE attribute is set to true

on non-debug builds otherwise secret keys may be less secure.

When developing for the ProtectServer subsystem it is possible to perform all initial

development and testing using only the software-only version and delay use of the

ProtectServer hardware until the final testing phase. This significantly reduces the

development system setup time since no hardware and associated device drivers need to be

installed to allow testing and debugging on the development machine.

Note:

Multi-threaded applications must avoid making ProtectToolkit C calls simultaneously from

different threads of the same application. It is possible for multiple threads to operate on

different tokens simultaneously.

Object attribute templates are difficult to process in applications so application developers are

advised to see how this is done in the sample programs using the additional services in ctutil.

Otherwise application code can become large and messy where it deals with attributes.

Applications can add their own vendor defined attributes to object templates and these will be

incorporated into the objects and will not effect normal ProtectToolkit C processing.

The ProtectToolkit C remote server and client may be used to provide remote access to

ProtectToolkit C services. For example hardware based ProtectToolkit C services may be

installed onto a machine, then the ProtectToolkit C remote server installed to give access to a

ProtectToolkit C remote client which may be running on a machine where the hardware based

ProtectToolkit C cannot be used directly.

ProtectToolkit C SDK Programming Guide Extensions

© SafeNet, Inc. 20

Extensions
All extensions are provided in a manner that should be compatible with applications that

expect fully compliant behavior. Applications relying on the extensions may be incompatible

with a fully compliant PKCS#11 implementation that does not support the SafeNet extensions.

Note that no new entry points have been added, just modifications to the internal behavior

depending on parameters given to existing functions.

Attribute Enumeration

Attribute enumeration is supported as follows.

First call C_GetAttributeValue as follows to initialize the enumeration.

CK_ATTRIBUTE at;

rv = C_GetAttributeValue(hSession, hObject, &at, 0);

then to get all the attributes loop as follows

for (;;) {

at.type = CKA_ENUM_ATTRIBUTE;

at.pValue = 0;

rv = C_GetAttributeValue(hSession, hObject, &at, 1);

if (rv == CKR_ATTRIBUTE_TYPE_INVALID)

break; /* got all the attributes */ }

Sensitive attributes will be returned with the type information but an empty value, and will

also return a result value of CKR_ATTRIBUTE_SENSITIVE. On implementations, where

this extension is not supported, the calls to C_GetAttributeType are likely to fail with

the CKR_ATTRIBUTE_TYPE_INVALID error code.

With a result code of CKR_OK or CKR_ATTRIBUTE_SENSITIVE the CK_ATTRIBUTE

structure will have the type and valueLen fields set appropriately for the next attribute,

however the pValue field will be NULL_PTR. To retrieve the actual value of the attribute it

is necessary to allocate the necessary room for the value and then make a second call to
C_GetAttributeValue.

Token Creation

To allow token creation, C_InitToken may be called on a slot that does not contain a

token. This operation would normally fail on standard PKCS#11’s which require a physical

token to be inserted by some other means, e.g. by hand.

Additional Object Types

CKO_CERTIFICATE_REQUEST

This object type is used to hold a PKCS#10 certificate request. There are mechanisms

included to generate a Certificate Request object from an RSA public key (see

CKM_ENCODE_PKCS_10) or generate a Certificate from a Certificate Request (see

CKM_ENCODE_X_509).

Attribute Data Type Meaning

CKA_SUBJECT Byte array DER-encoding of the certificate request subject

name

CKA_VALUE Byte array DER-encoding of the certificate request

KEY_TYPE CK_KEY_TYPE Type of public key in request

ProtectToolkit C SDK Programming Guide Extensions

© SafeNet, Inc. 21

CKO_KG_PARAMETERS

This object type is used to hold DSA or DH key generation parameters.

The CKA_KEY_TYPE attribute indicates which type of parameters it is holding.

Where the key type is CKK_DSA the attributes should be as follows :

Attribute Data Type Meaning

CKA_KEY_TYPE CK_KEY_TYPE Type of key. Must be CKK_DSA

CKA_PRIME Big integer Prime

CKA_SUBPRIME Big integer Prime

CKA_BASE Big integer Prime

Where the key type is CKK_DH the attributes should be as follows :

Attribute Data Type Meaning

CKA_KEY_TYPE CK_KEY_TYPE Type of key. Must be CKK_DH

CKA_PRIME Big integer Prime

CKA_BASE Big integer Prime

Additional Attribute Types

CKA_TIME_STAMP

Every object created with ProtectToolkit C will be assigned a value for the

CKA_TIME_STAMP attribute. This value is always read-only and may not be included in a

template for a new object. However when an object is duplicated using the

C_CopyObject function or the object is a key derived using the C_DeriveKey the new

object will inherit the same creation time as the original object.

The value of this attribute will be a text string encoding of the time. The encoding format is

"YYYYMMDDHHMMSS00".

ProtectToolkit C ignores the value of this attribute. Previous versions of ProtectToolkit C

used this date when doing key wrapping services however this feature has been dropped.

CKA_TRUST_LEVEL

This attribute may be included in a template for the creation of a Certificate object. It may

be used to indicate whether or not the certificate is trusted by the application. Once set the

value of this attribute may not be modified.

The following values are defined for this attribute:

TRUST_TRUSTED

TRUST_VALIDATED

TRUST_INVALID

The value of TRUST_TRUSTED may only be set when the Security Officer is currently

logged in. That is, the session state must be CKS_RW_SO_FUNCTIONS. Once a

Certificate object has the CKA_TRUST_LEVEL attribute equal to the TRUST_TRUSTED

value the Certificate is considered a “trusted root certificate”. The certificate validation

code will stop once it reaches a trusted root certificate.

The value TRUST_VALIDATED may only be set by the adapter. When a Certificate object

is used as the key handle in a C_VerifyInit call the library will attempt to verify the

Certificate according to the certificate validation algorithm. If this algorithm indicates the

certificate should be trusted then the CKA_TRUST_LEVEL attribute of the certificate will

be modified to TRUST_VALIDATED, other wise the attribute will be set to

ProtectToolkit C SDK Programming Guide Extensions

© SafeNet, Inc. 22

TRUST_INVALID and the C_VerifyInit function will return

CKR_CERT_NOT_VALIDATED.

The certificate validation algorithm will locate the certificate’s issuer by searching for a

Certificate object with the CKA_SUBJECT attribute equal to the issuer’s distinguished

name. If located it will then verify the signature on the certificate. If the signature is invalid

it will return false, otherwise it will check the CKA_TRUST_LEVEL attribute on the

issuer’s certificate, if it is not equal to TRUST_TRUSTED it will search for the issuer of

that certificate. The algorithm will continue until a trusted certificate is found, a signature

verification fails or the certificate chain is broken.

CKA_USAGE_COUNT

The value of this attribute maintains a count of the number of usages of the given key object.

It is possible to set the value of this attribute for a key, after which ProtectToolkit C will

automatically increment the value each time the key is used in a Cryptoki initialisation

routine (i.e. C_SignInit).

Additionally this attribute may be used in place of the CKA_SERIAL_NUMBER attribute

when generating Certificate objects with the CKM_ENCODE_X_509 mechanism. The usage

count will be used if the serial number is not included in the template for the new certificate.

CKA_ISSUER_STR

CKA_SUBJECT_STR

CKA_SERIAL_NUMBER_INT

These attributes mirror the standard attribute (without the _STR or _INT suffix) but present

that attribute as a printable value rather than a DER encoding.

For the distinguished name attributes the string will be encoded in the form:

C=Country code, O=Organisation, CN=Common Name, OU=Organisational Unit,

L=Locality name, S=State name.

Additional Mechanisms

Additional mechanisms include:

Mechanism Description

CKM_NVB Message Digest

CKM_DES_BCF Byte cipher feedback

CKM_DES3_BCF Byte cipher feedback, Triple DES

CKM_DES3_ X919_MAC X 9.19 Triple DES MAC

CKM_DES3_ X919_MAC_GENERAL X 9.19 Triple DES MAC

CKM_ENCODE_X_509 Derives X.509 certificate

CKM_DECODE_X_509 Derives a public key from a X.509 certificate

CKM_ENCODE_PKCS_10 Derives PKCS#10 certificate request

CKM_XOR_BASE_AND_KEY XOR two keys together

CKM_DH_PKCS_PARAMETER_GEN Diffie Hellman parameter generation

CKM_DSA_PARAMETER_GEN DSA parameter generation

CKM_DSA_SHA1_PKCS DSA with SHA1 signature generation

CKM_WRAPKEY_DES3_EBC Wrap a key value with attributes

CKM_ENCODE_PUBLIC_KEY Wrap a public key but with no encryption

Where possible PKCS #11 Version 2.10 (Reference B) header constants were used for the

additional mechanisms, otherwise values in the vendor-defined range have been used. Please

consult the header file cryptoki.h for the actual constant values.

ProtectToolkit C SDK Programming Guide Extensions

© SafeNet, Inc. 23

CKM_ENCODE_PKCS_10

This mechanism is used with the C_DeriveKey() function to derive a PKCS#10 certification

request from a public key. Either an RSA or DSA public key may be used with this function.

The PKCS#10 certificate request could then be sent to a Certificate authority for signing.

From PKCS#10:

A certification request consists of a distinguished name, a public key, and optionally

a set of attributes that are collectively signed by the entity requesting certification.

Certification requests are sent to a certification authority, who will transform the

request to an X.509 public-key certificate.

 Usage:

 Use CKM_RSA_PKCS_KEY_PAIR_GEN to generate a key.

 Add a CKA_SUBJECT attribute to the public key, containing the subject's

distinguished name.

 Initialize the signature mechanism to sign the request. Note that a digest / sign

mechanism must be chosen.

E.g. CKM_SHA1_RSA_PKCS

 Call C_DeriveKey with the CKM_ENCODE_PKCS_10 mechanism

to perform the generation.

 On success, an object handle for the certificate request will be returned.

 The object's CKA_VALUE attribute contains the PKCS#10 request.

For an example on how this mechanism may be used see the source code for the CTDEMO

program.

CKM_ENCODE_X_509

This mechanism is used with the C_DeriveKey() function to derive an X.509 certificate from

a public key or a PKCS#10 certification request. This mechanism creates a new X.509

certificate based on the provided public key or certification request signed with a CA key.

The new certificate validity period will be based on the CKA_START_DATE and

CKA_END_DATE attributes on the base object. If the start date is missing the current time

is used and if the end date is missing the certificate will be valid for one year. These dates

may be specified as relative values by adding the + character at the start of the date value. The

start date is relative to 'now' and the end date is relative to the start date if relative times are

specified. Negative relative times are not allowed. If the either the start or end date are invalid

then the error CKR_TEMPLATE_INCONSISTENT will be returned.

The certificate’s serial number will be taken from the template’s CKA_SERIAL_NUMBER,

CKA_SERIAL_NUMBER_INT or the signing key’s CKA_USAGE_COUNT in that order. If

none of these values is available CKR_WRAPPING_KEY_HANDLE_INVALID error will

be returned.

To determine the Subject distinguished name for the new certificate if the base object is a

public key the algorithm will use the CKA_SUBJECT_STR, CKA_SUBJECT from the

template or the base key (in that order). If none of these values is available

CKR_KEY_HANDLE_INVALID will be returned.

If the base object is a Certification request or a self signed certificate the subject will be taken

from the object's encoded subject name.

Currently this mechanism supports generation of RSA or DSA certificates.

On success, a handle to a new CKO_CERTIFICATE object will be returned. The certificate

will include the CKA_ISSUER, CKA_SERIAL_NUMBER and CKA_SUBJECT attributes as

well as a CKA_VALUE attribute which will contain the DER encoded certificate.

ProtectToolkit C SDK Programming Guide Extensions

© SafeNet, Inc. 24

 Usage:

 Create a key-pair using the CKM_RSA_PKCS mechanism (this is the key-pair for

the new certificate), or

 Create a CKO_CERTIFICATE_REQUEST object (with the object's CKA_VALUE

attribute set to the PKCS#10 data)

 This object is the "base-key" used in the C_DeriveKey function

 Initialise the signature mechanism to sign the request. Note that a digest / sign

mechanism must be chosen.

E.g. CKM_SHA1_RSA_PKCS

 Call C_DeriveKey with CKM_ENCODE_X_509 to perform the generation

The new key's template may contain:

CKA_ISSUER_STR

CKA_ISSUER The distinguished name of the issuer of the new certificate.

If this attribute is not included the issuer is taken from the

signing key's CKA_SUBJECT attribute. CKA_ISSUER is

the encoded version of this attribute.

CKA_SERIAL_NUMBER_INT

CKA_SERIAL_NUMBER The serial number for the new certificate. If this attribute is

not included the serial number is set to the value of the

CKA_USAGE_COUNT attribute of the signing key.

CKA_SERIAL_NUMBER is the encoded version of this

attribute.

CKA_SUBJECT_STR

CKA_SUBJECT If the base key (i.e. the input object) is a public key the either

template must contain this attribute or the public key must

have a CKA_SUBJECT attribute. This attribute contains the

distinguished name of the subject. When the base key is a

PKCS#10 certification request the CKA_SUBJECT

information is taken from there. CKA_SUBJECT is the

encoded version of this attribute.

CKA_START_DATE

CKA_END_DATE These attributes will be used to determine the new

certificate’s validity period. If the start date is missing the

current date is used, if the end date is missing the date will

be one year from the start date. Relative values may be

specified (see above).

For an example on how this mechanism may be used see the source code for the CTDEMO

program.

CKM_DSA_PARAMETER_GEN

This mechanism is used with the C_GenerateKey() function to derive a set of DSA parameters

for subsequent DSA key generation. The resulting object is not a key and should only be used

to extract the parameters into a DSA public key template for key generation purposes.

CKM_DH_PKCS_PARAMETER_GEN

This mechanism is used with the C_GenerateKey() function to derive a set of DH parameters

for subsequent key generation. The resulting object is not a key and should only be used to

extract the parameters into a DH public key template for key generation purposes.

ProtectToolkit C SDK Programming Guide Extensions

© SafeNet, Inc. 25

CKM_WRAPKEY_DES3_EBC

This mechanism is used to wrap a key value plus all of its attributes so that the entire key can

be reconstructed without a template at the destination. The key value is encrypted using triple

DES and all key attributes are MACed in the encoding. The Wrapping key is supplied as

normal to the C_Wrap and C_Unwrap() cryptoki functions.

The C_Unwrap() operation will fail with CKR_SIGNATURE_INVALID if any of the key's

attributes have been tampered with while the key is in transit.

Key Generation Variations

DSA and DH key generation is a two step process, where generation parameters produced in

step one may be used repeatedly for key pair generation in step two. SafeNet PKCS#11

specifies that step one is outside the API while step two, generation of the actual key pair, is

inside. This implementation allows step one to be done inside the library. The support is

invoked by not supplying the required “parameters” values in the key templates. Under these

circumstances a fully compliant PKCS#11 implementation would return

CKR_TEMPLATE_INCOMPLETE.

Note that the DSA and DH parameters may be generated separately using the other extension

CKM_xxx_PARAMETER_GEN making this extension unnecessary. The use of the

alternative mechanism (CKM_xxx_PARAMETER_GEN) is recommended.

PKCS#11 Interpretations

a) The handle for an object may change over the lifetime of the token or object. The handle

is allocated to the object when it is read from the token.

b) C_GetObjectSize reports the sum of the sizes of all the attributes combined for the

object. This gives a good indication of the amount of memory committed to the object

although there would be some storage overhead for persistent objects.

c) Certain key wrapping restrictions are not observed. For example, wrapping a multi DES

key with a single DES key is not prevented.

d) All key sizes for secret key algorithms, as reported by C_GetMechanismInfo, are reported

in bytes not bits.

Software-Only Version Specific

a) Token serial numbers are all fixed as “0”.

b) Token removal processing has not been supported since software tokens can not really

be removed in the normal sense. The token can actually be removed by deleting, or

renaming the “token” directory found in the “slot” directory, but detection of this by

the implementation has not been implemented.

c) File system errors are typically reported as CKR_DEVICE_ERROR.

d) Debug version supports error logging to a log file named in the cryptoki.ini file

ProtectToolkit C SDK Programming Guide System Information

© SafeNet, Inc. 26

System Information

ProtectToolkit C - Software only

SW only cryptoki.dll reads cryptoki.ini on startup and processes the following items :

[SAFENET_SwOnly]

 LogFile = "c:\cryptoki.log"

 SlotDir = "c:\cryptoki"

The values shown are the current defaults.

The value of “SlotDir” will be used as the root directory for the slots and will be created if it

does not exist. The software will also write a README.TXT file to this directory to indicate

where this directory came from and what it is for.

Directories for the slots will be created as subdirectories in the Cryptoki root directory. The

slot directory names will be SlotX where X is the number of the slot starting from 0. This

number will also be returned as the SlotID value for the slot.

The software will look for a subdirectory named “token” in each slot directory. If the directory

exists then the slot will be reported as containing a token. Otherwise it will report that the slot

is empty. Any other files or directories in the slot directory will be ignored.

Note that the “token” directory will be created automatically if C_InitToken is called on an

empty slot. This is a non-standard PKCS#11 extension included with ProtectToolkit C.

The token directory should be empty for an uninitialised token. On initialisation it will contain

the following files.

 label - Contains the label specified when the token was initialised.

 so.pvc - Contains the security officer PIN verification code.

When the user PIN is initialised the following file appears:

 user.pvc - Contains the user’s PIN verification code.

Each token object is stored in a file in one of the following formats:

 PubX.obj - Public object, where X represents the object handle (hex).

 UsrX.obj - User object.

To prevent tampering of these files while on disk, the contents of private objects are always

encrypted using a key derived from the user’s PIN. The contents of all files, public and

private, are MACed using keys derived from login PIN values. This protects the

confidentiality and integrity of the token’s data while outside of the library’s control. Sensitive

attributes are triple DES encrypted for additional safety. Public objects cannot use keys

derived from PINs since their contents must be available when no user is logged in. Their

entire contents are not encrypted, but are MACed and sensitive attributes are encrypted under

static keys.

ProtectToolkit C SDK Programming Guide System Information

© SafeNet, Inc. 27

ProtectToolkit C - Remote Client

Remote client cryptoki.dll reads cryptoki.ini on startup and processes the following items :

[SAFENET_ Remote]

 LogFile = "c:\cryptoki.log"

 ServerName = 127.0.0.1

 ServerPort = 12396

The values shown are the current defaults.

ProtectToolkit C SDK Programming Guide System Information

© SafeNet, Inc. 28

End of Document

	Technical Support
	Glossary
	Overview
	Runtime Licensing
	System Requirements

	An Introduction to PKCS#11
	Overview
	The Cryptoki Model

	Installation
	Installation for Windows Server 2008
	Installation for Solaris
	Installation for AIX 5.3/6.1
	Installation for Linux
	Setting Up Your Environment

	Operation
	Configuration / setup

	Sample Programs
	CTDEMO
	FCRYPT

	Additional APIs
	CTUTIL
	CheckCryptokiVersion
	Synopsis
	Description

	NUMITEMS
	Synopsis
	Description

	FindTokenFromName, FindKeyFromName
	Synopsis
	Description

	CT_OpenObject CT_CreateObject CT_RenameObject CT_ReadObject CT_WriteObject
	Synopsis
	Description

	GetAttr, SetAttr
	Synopsis
	Description

	calcKvc
	Synopsis
	Description

	C_ErrorString
	Synopsis
	Description

	String display functions
	Synopsis
	Description

	Key Generation / Creation functions
	Synopsis
	Description

	TransferObject
	Synopsis
	Description

	CTEXTRA
	NUMITEMS
	Synopsis
	Description

	Mechanism associations
	Synopsis
	Description

	Attribute list management
	Synopsis

	Attribute lookups
	Attribute list management
	Miscellaneous attribute functions
	Password to validation code / Key functions.
	Synopsis
	Description

	Miscellaneous
	Synopsis
	Description

	ProtectToolkit C Development Tips and Techniques
	Extensions
	Attribute Enumeration
	Token Creation
	Additional Object Types
	CKO_CERTIFICATE_REQUEST
	CKO_KG_PARAMETERS

	Additional Attribute Types
	CKA_TIME_STAMP
	CKA_TRUST_LEVEL
	CKA_USAGE_COUNT
	CKA_ISSUER_STR
	CKA_SUBJECT_STR
	CKA_SERIAL_NUMBER_INT

	Additional Mechanisms
	CKM_ENCODE_PKCS_10
	CKM_ENCODE_X_509
	CKM_DSA_PARAMETER_GEN
	CKM_DH_PKCS_PARAMETER_GEN
	CKM_WRAPKEY_DES3_EBC

	Key Generation Variations
	PKCS#11 Interpretations
	Software-Only Version Specific

	System Information
	ProtectToolkit C - Software only
	ProtectToolkit C - Remote Client

