

i

ProtectToolkit C

Programming Guide

ii

© 2000-2015 SafeNet, Inc. All rights reserved.

Part Number 007-008396-007

Version 5.1

Trademarks

All intellectual property is protected by copyright. All trademarks and product names used or referred to are the

copyright of their respective owners. No part of this document may be reproduced, stored in a retrieval system

or transmitted in any form or by any means, electronic, mechanical, chemical, photocopy, recording or

otherwise without the prior written permission of SafeNet.

Disclaimer

SafeNet makes no representations or warranties with respect to the contents of this document and specifically

disclaims any implied warranties of merchantability or fitness for any particular purpose. Furthermore, SafeNet

reserves the right to revise this publication and to make changes from time to time in the content hereof without

the obligation upon SafeNet to notify any person or organization of any such revisions or changes.

We have attempted to make these documents complete, accurate, and useful, but we cannot guarantee them to

be perfect. When we discover errors or omissions, or they are brought to our attention, we endeavor to correct

them in succeeding releases of the product.

SafeNet invites constructive comments on the contents of this document. Send your comments, together with

your personal and/or company details to the address below:

SafeNet, Inc.

4690 Millennium Drive

Belcamp, Maryland USA 21017

Technical Support
If you encounter a problem while installing, registering or operating this product, please make sure that you

have read the documentation. If you cannot resolve the issue, please contact your supplier or SafeNet support.

SafeNet support operates 24 hours a day, 7 days a week. Your level of access to this service is governed by the

support plan arrangements made between SafeNet and your organization. Please consult this support plan for

further information about your entitlements, including the hours when telephone support is available to you.

Contact method Contact

Address SafeNet, Inc.
4690 Millennium Drive
Belcamp, Maryland 21017

USA

Phone Global +1 410-931-7520

 Australia 1800.020.183

China (86) 10 8851 9191

France 0825 341000

Germany 01803 7246269

India 000.800.100.4290

Netherlands 0800.022.2996

New Zealand 0800.440.359

Portugal 800.1302.029

Singapore 800.863.499

Spain 900.938.717

Sweden 020.791.028

Switzerland 0800.564.849

United Kingdom 0800.056.3158

United States (800) 545-6608

Web www.safenet-inc.com

Support and
Downloads

www.safenet-inc.com/support

Provides access to the SafeNet Knowledge Base and quick downloads for
various products.

Technical Support
Customer Portal

https://serviceportal.safenet-inc.com

Existing customers with a Technical Support Customer Portal account can log
in to manage incidents, get the latest software upgrades, and access the
SafeNet Knowledge Base.

Revision History

Revision Date Reason

A 30 October 2014 Release 5.0

B 07 November 2014 Updates to the list of supported mechanisms.

C 12 August 2015 Release 5.1

http://www.safenet-inc.com/
http://www.safenet-inc.com/support
https://serviceportal.safenet-inc.com/

iv

TABLE OF CONTENTS

C H A P T E R 1 OVERVIEW ... 1

CHAPTER CONTENTS ... 1
RUNTIME LICENSING ... 1

C H A P T E R 2 AN INTRODUCTION TO PKCS#11 .. 3

THE PKCS#11 MODEL .. 3

C H A P T E R 3 ENVIRONMENTS .. 5

APPLICATION ENVIRONMENT .. 5
Win32™ Environment .. 5
UNIX Environments .. 5
Java™ Environments .. 5

DEVELOPMENT ENVIRONMENT GUIDELINES ... 6
Compiling and Linking Applications on AIX .. 6
Compiling and Linking 64-bit Applications on AIX.. 6
Compiling and Linking 64-bit Applications for Solaris SPARC ... 7
Compiling and Linking 64-bit Applications for HP-UX ... 7
MSVC Project Settings ... 7

CONFIGURATION / SETUP... 7

C H A P T E R 4 THE SDK ENVIRONMENT .. 9

OBJECTS .. 9
Creating, Modifying, Copying, and Deleting Objects .. 10
Additional Attribute Types .. 11
Common Attributes ... 15
Hardware Feature Objects ... 16
Clock Objects .. 16
Monotonic Counter Objects .. 17
User Objects ... 17
Storage Objects... 18
Data Objects ... 18
Certificate Objects .. 19
Key Objects ... 22
Key Parameter Objects ... 32

MECHANISMS .. 34
Vendor-Defined Error Codes ... 83

C H A P T E R 5 SAMPLE PROGRAMS .. 86

C SAMPLES .. 86
Compiling the Sample Programs .. 86
CTDEMO .. 86
FCRYPT .. 87

ADDITIONAL C SAMPLE PROGRAMS .. 88
JAVA SAMPLES .. 88

Compiling and Running the Sample Programs .. 88
The Java Classes .. 89
Threading ... 91

C H A P T E R 6 BEST PRACTICE GUIDELINES ... 92

OVERVIEW .. 92
INTRODUCTION .. 92

Confidentiality .. 92
Integrity / Authentication .. 92
Access Control .. 92

GETTING TO KNOW PROTECTTOOLKIT C .. 93
APPLICATION IMPLEMENTATION GOALS ... 93

Application Security ... 93

v

Application Usability .. 94
Performance ... 95
Capacity .. 95
Setup / Configuration .. 96
Maintainability ... 97
Debugging .. 98
Interoperability ... 98

PROGRAMMING IN FIPS MODE .. 99
No Public Crypto .. 99
No Clear PINS .. 99
Authentication Protection ... 99
Security Mode Locked... 99
Tamper Before Upgrade ... 99
Only FIPS Approved Algorithms .. 99

KEY MANAGEMENT .. 100
Backup and Restore .. 100
Key Replication... 100
Operator Authentication ... 100
Operator Authentication Use Cases ... 101
Key Usage Limits .. 102

C H A P T E R 7 CTBROWSE – TOKEN BROWSER ... 104

OVERVIEW .. 104
COMPLIANCE ... 104

PKCS#11 Extensions Used ... 104
OPERATION ... 105

User Interface ... 105
Tree View .. 105
Token Management Services .. 106
Example Service - Generate Key Pair .. 107
Cryptographic Services .. 107
Operation .. 108
Drag and Drop ... 108
Using CTBROWSE With Protect Toolkit J ... 109

C H A P T E R 8 API TUTORIAL: DEVELOPMENT OF A SAMPLE APPLICATION 110

REQUIRED HEADER FILES ... 110
RUNTIME SWITCHES .. 110
ENCRYPT FUNCTIONS .. 110
DECRYPT FUNCTION .. 117
FCRYPT USAGE ... 122
WRAPPED ENCRYPTION KEY TEMPLATE ... 122
ASSEMBLING THE APPLICATION .. 122

C H A P T E R 9 PKCS#11 LOGGER LIBRARY ... 126

OVERVIEW .. 126
LOGGER ARCHITECTURE AND FUNCTIONALITY ... 126
LOGGER SETUP .. 127
ACTIVATING LOGGING .. 127

Windows Systems .. 127
UNIX Systems ... 128
Storing ProtectToolkit C Host Library File Details ... 128
Storing Log File Details ... 128
Changing Detail Recorded by the Logger .. 128

DEACTIVATING LOGGER OPERATION .. 129
Windows Systems .. 129
UNIX Systems ... 129

C H A P T E R 1 0 PKCS#11 COMMAND REFERENCE .. 131

GENERAL PURPOSE FUNCTIONS .. 131

vi

C_Initialize ... 131
C_Finalize .. 131
C_GetInfo ... 132
C_GetFunctionList ... 132

SLOT AND TOKEN MANAGEMENT FUNCTIONS .. 132
C_GetSlotList.. 132
C_GetSlotInfo ... 133
C_GetTokenInfo.. 134
C_WaitForSlotEvent ... 135
C_GetMechanismList ... 136
C_GetMechanismInfo ... 136
C_InitToken .. 136
CT_InitToken .. 137
CT_ResetToken ... 138
C_InitPIN ... 138
C_SetPIN .. 139

SESSION MANAGEMENT FUNCTIONS ... 139
C_OpenSession ... 139
C_CloseSession .. 140
C_CloseAllSessions .. 140
C_GetSessionInfo ... 141
C_GetOperationState ... 141
C_SetOperationState .. 142
C_Login .. 142
C_Logout .. 144

OBJECT MANAGEMENT FUNCTIONS .. 144
C_CreateObject .. 144
C_CopyObject .. 145
CT_CopyObject .. 145
C_DestroyObject .. 146
C_GetObjectSize ... 146
C_GetAttributeValue .. 147
C_SetAttributeValue ... 147
C_FindObjectsInit .. 148
C_FindObjects .. 148
C_FindObjectsFinal ... 148

ENCRYPTION FUNCTIONS .. 149
C_EncryptInit ... 149
C_Encrypt ... 149
C_EncryptUpdate ... 150
C_EncryptFinal .. 150

DECRYPTION FUNCTIONS .. 151
C_DecryptInit ... 151
C_Decrypt ... 151
C_DecryptUpdate ... 152
C_DecryptFinal .. 152

MESSAGE DIGESTING FUNCTIONS ... 153
C_DigestInit ... 153
C_Digest ... 153
C_DigestUpdate ... 153
C_DigestKey ... 153
C_DigestFinal .. 154

SIGNING AND MACING FUNCTIONS .. 154
C_SignInit ... 154
C_Sign .. 154
C_SignUpdate ... 155
C_SignFinal .. 155
C_SignRecoverInit .. 155
C_SignRecover ... 156

FUNCTIONS FOR VERIFYING SIGNATURES AND MACS .. 156

vii

C_VerifyInit .. 156
C_Verify .. 157
C_VerifyUpdate .. 157
C_VerifyFinal ... 157
C_VerifyRecoverInit ... 157
C_VerifyRecover ... 158

DUAL-FUNCTION CRYPTOGRAPHIC FUNCTIONS .. 158
C_DigestEncryptUpdate ... 158
C_DecryptDigestUpdate... 159
C_SignEncryptUpdate .. 159
C_DecryptVerifyUpdate ... 159

KEY MANAGEMENT FUNCTIONS ... 160
C_GenerateKey .. 160
C_GenerateKeyPair ... 160
C_WrapKey .. 161
C_UnwrapKey .. 161
C_DeriveKey .. 161

RANDOM NUMBER GENERATION FUNCTIONS .. 162
C_SeedRandom ... 162
C_GenerateRandom ... 162

PARALLEL FUNCTION MANAGEMENT FUNCTIONS ... 163
C_GetFunctionStatus .. 163
C_CancelFunction .. 163

EXTRA FUNCTIONS .. 164
CT_PresentTicket ... 164
CT_SetHsmDead .. 165
CT_GetHSMId .. 165

C H A P T E R 1 1 CTUTIL.H FUNCTIONALITY REFERENCE ... 167

OVERVIEW .. 167
BuildDhKeyPair ... 167
BuildDsaKeyPair .. 168
BuildRsaCrtKeyPair ... 169
BuildRsaKeyPair .. 170
calcKvc ... 171
calcKvcMech .. 172
cDump... 172
CreateDesKey ... 173
CreateSecretKey ... 173
CT_AttrToString ... 174
CT_CreateObject .. 175
CT_CreatePublicObject ... 175
CT_Create_Set_Attributes_Ticket_Info() ... 176
CT_Create_Set_Attributes_Ticket() .. 176
CT_DerEncodeNamedCurve .. 177
CT_GetAuthChallenge .. 178
CT_GetObjectDigest .. 178
CT_GetECCDomainParameters .. 178
CT_GetObjectDigestFromParts ... 179
CT_GetTmpPin ... 179
CT_ErrorString .. 180
CT_GetECKeySize .. 180
CT_MakeObjectNonModifiable .. 181
CT_OpenObject .. 181
CT_ReadObject .. 181
CT_RenameObject .. 182
CT_SetCKDateStrFromTime .. 182
CT_Structure_To_Armor .. 183
CT_Structure_From_Armor ... 183
CT_SetLimitsAttributes ... 184

viii

CT_WriteObject .. 184
DateConvertGmtToLocal ... 185
DateConvert.. 185
DumpAttributes ... 185
DumpDHKeyPair ... 186
DumpDSAKeyPair .. 186
DumpRSAKeyPair .. 186
FindAttribute .. 187
FindKeyFromName .. 187
FindTokenFromName ... 188
GenerateDhKeyPair ... 188
GenerateDsaKeyPair .. 189
GenerateRsaKeyPair .. 191
GetAttr .. 192
GetDeviceError .. 192
GetObjectCount .. 193
GetSecurityMode .. 193
GetSessionCount ... 194
GetTotalSessionCount .. 194
rmTrailSpace .. 195
SetAttr ... 195
ShowSlot ... 196
ShowToken .. 196
strAttribute .. 196
strError ... 197
strKeyType .. 197
strMechanism.. 197
strObjClass ... 198
strSesState ... 198
TransferObject .. 198
valAttribute ... 199
valError .. 199
valKeyType ... 199
valMechanism ... 200
valObjClass .. 200
valSesState .. 200

C H A P T E R 1 2 CTEXTRA.H LIBRARY REFERENCE... 201

OVERVIEW .. 201
AddAttributeSets ... 201
at_assign ... 201
ConcatAttributeSets .. 202
CopyAttribute.. 202
DupAttributes.. 202
DupAttributeSet .. 203
ExtractAllAttributes .. 203
FindAttr .. 203
FreeAttributes ... 204
FreeAttributesNoClear ... 204
FreeAttributeSet .. 204
FreeMechData .. 205
genkMechanismTabFromMechanismTab ... 205
genkpMechanismTabFromMechanismTab ... 205
GetCryptokiVersion .. 206
GetObjAttrInfo .. 206
GetObjectClassAndKeyType ... 207
hashMech .. 207
intAttr .. 207
intAttrLookup .. 208
isBooleanAttr .. 208

ix

isEnumeratedAttr .. 208
isGenMech .. 208
kgMech ... 209
isNumericAttr.. 209
isSensitiveAttr ... 209
KeyFromPin.. 210
kpgMech ... 210
ktFromMech.. 210
LookupMech ... 211
MatchAttributeSet ... 211
mechDeriveFromKt .. 211
mechFromKt ... 212
mechSignFromKt .. 212
mechSignRecFromKt .. 213
NewAttributeSet .. 213
numAttr ... 213
numAttrLookup ... 214
PvcFromPin .. 214
ReadAttr .. 214
TransferAttr .. 215
UnwrapDec ... 215
WrapEnc ... 216
WriteAttr ... 216

C H A P T E R 1 3 HEX2BIN.H LIBRARY REFERENCE .. 219

OVERVIEW .. 219
hex2bin ... 219
bin2hex ... 219
bin2hexM .. 220
memdump .. 220
SetOddParity .. 221
isOddParity ... 221

C H A P T E R 1 4 HSMADMIN.H LIBRARY REFERENCE ... 223

OVERVIEW .. 223
RETURN CODES ... 223

HSMADM_GetTimeOfDay ... 223
HSMADM_AdjustTime ... 224
HSMADM_SetRtcStatus ... 225
HSMADM_GetRtcStatus... 225
HSMADM_GetRtcAdjustAmount .. 226
HSMADM_GetRtcAdjustCount .. 227
HSMADM_GetHsmUsageLevel.. 227

C H A P T E R 1 5 KMLIB.H LIBRARY REFERENCE .. 229

OVERVIEW .. 229
KM_EncodeECParamsP .. 229
KM_EncodeECParams2M ... 230

C H A P T E R 1 6 CTAUTH.H LIBRARY REFERENCE ... 233

OVERVIEW .. 233
CT_Gen_AUTH_Response ... 233

A P P E N D I X ATTRIBUTE CERTIFICATE .. 235

OID USED TO INDICATE KEY DIGEST ALGORITHM ... 237

GLOSSARY COMMON TERMS AND PHRASEOLOGY ... 239

SOFTWARE DEVELOPMENT KITS (SDKS) .. 239

ProtectToolkit C Programming Guide

1

C H A P T E R 1

OVERVIEW

This product conforms to the API definition, produced by RSA Labs, named PKCS #11, and otherwise

known as CRYPTOKI. ProtectToolkit C currently is compliant with PKCS#11 V 2.10.

The API provides a suite of cryptographic services for general-purpose usage and permanent key storage,

which may be hosted by a physical token.

ProtectToolkit C is designed to operate in one of three separate modes:

 as a hardware implementation in conjunction with a compatible SafeNet cryptographic services

adapter;

 in a client/server arrangement over a TCP/IP network, or

 in a Software Only mode of operation.

Within the client/server runtime environment, the server performs cryptographic processing at the request of

the client. The server itself will only operate in the hardware runtime mode.

The software-only version is available for a variety of platforms including Windows NT and Solaris and is

typically used as a development and testing environment for applications that will eventually use the

hardware variant of ProtectToolkit C.

Chapter Contents
Chapter 2 — Introduction to PKCS#11 programming

Chapter 3 — Application, development, and configuration, environments

Chapter 4 — Supported object and mechanism types

Chapter 5 — Sample programs included with the SDK

Chapter 6 — Development tips and techniques and best practice guidelines

Chapter 7 — CTBROWSE application

Chapter 8 — Full tutorial with complete details on the FCRYPT sample

Chapter 9 — Reference on how to use the PKCS#11 logger library

Chapter 10 — Full reference on the ProtectToolkit C implementation of the PKCS#11 API

Chapter 11 — Reference for the CTUTIL library

Chapter 12 — Reference for the CTEXTRA library

Chapter 13 — Reference for the HEX2BIN library

Chapter 14 — Reference for the HSMAdmin library

Chapter 15 — Partial reference for the KMLib library

Chapter 16 — Partial reference for the ctauth.h library

Appendix A — Attribute Certificate

Glossary

Runtime Licensing
All of the run-time software, including all applications and the software-only ProtectToolkit C run-time,

supplied with this SDK, are licensed for development and testing purposes only. NO RUNTIME LICENSES

ARE INCLUDED. Therefore this software, or any component of it, must not be used for production

systems. Separate run-time licenses must be purchased for production systems deployed using any

ProtectToolkit C support.

Please refer to the “readme.txt” file found in the install directory of the ProtectToolkit C SDK for further

details regarding licensing requirements.

ProtectToolkit C Programming Guide

2

THIS PAGE INTENTIONALLY LEFT BLANK

ProtectToolkit C Programming Guide

3

C H A P T E R 2

AN INTRODUCTION TO PKCS#11

The PKCS#11 Cryptographic Token Interface Standard is one of the Public KeyCryptography Standards

developed by RSA Security. Also known as Cryptoki, this standard deals with defining the interface

between an application and a cryptographic device. This chapter gives a general outline of PKCS#11 and

some of its basic concepts. If unfamiliar with PKCS#11, the reader is strongly advised to refer to the

PKCS#11 standard. This document can be obtained from the RSA Web site at

http://www.rsasecurity.com/rsalabs/pkcs/.

The standard is also placed on the host system in a printable format during the SDK installation.

PKCS#11 is used as a low-level interface to perform cryptographic operations without the need for the

application to directly interface a device through its driver. PKCS#11 represents cryptographic devices

using a common model referred to simply as a token. An application can therefore perform cryptographic

operations on any device or token, using the same independent command set.

ProtectToolkit C is an Application Programming Interface (API) that conforms to the PKCS#11 standard.

The PKCS#11 Model
The model for PKCS#11 can be seen illustrated in Figure 1 and demonstrates how an application

communicates its requests to a token via the PKCS#11 interface. The term slot represents a physical device

interface. For example, a smart card reader would represent a slot and the smart card would represent the

token. It is also possible that multiple slots may share the same token.

Application k Application 1

Token 1 Token n

(Device 1 (Device n)

Figure 1 – General PKCS#11 Model

Within PKCS#11, a token is viewed as a device that stores objects and can perform cryptographic functions.

Objects are generally defined in one of four classes:

 Data objects, which are defined by an application

 Certificate objects, which are digital certificates such as X.509

 Key objects, which can be public, private or secret cryptographic keys

 Vendor-defined objects

http://www.rsasecurity.com/rsalabs/pkcs/

ProtectToolkit C Programming Guide

4

Objects within PKCS#11 are further defined as either a token object or a session object. Token objects are

visible by any application which has sufficient access permission and is connected to that token. An

important attribute of a token object is that it remains on the token until a specific action is performed to

remove it.

A connection between a token and an application is referred to as a session. Session objects are temporary

and only remain in existence while the session is open. In addition, session objects are only ever visible to

the application that created them.

Access to objects within PKCS#11 is defined by the object type. Public objects are visible to any user or

application, whereas private objects require that the user must be logged into that token in order to view

them. PKCS#11 recognizes two types of users, namely a security officer (SO) or normal user. The security

officer’s only role is to initialize a token and set the normal users access PIN.

NOTE: The normal user, which manipulates objects and performs most operations, cannot log in until the

security officer has set that user’s PIN.

ProtectToolkit C Programming Guide

5

C H A P T E R 3

ENVIRONMENTS

Application Environment

Win32™ Environment
ProtectToolkit C is supplied as a WIN32 Dynamic Link Library (CRYPTOKI.DLL) built with Microsoft

development tools (MSVC). CRYPTOKI2.LIB is an import library that should be linked against

applications to resolve function calls into “CRYPTOKI.DLL”.

UNIX Environments
This is supplied as shared libraries. The hardware based ProtectToolkit C library is stored as the shared

library libcthsm.so (libcthsm.sl for HP-UX on PA-RISC, libcthsm.a for AIX) and the

software-only version as libctsw.so (libctsw.sl for HP-UX on PA-RISC, libctsw.a for AIX). The

symbolic link libcryptoki.so (libcryptoki.sl for HP-UX on PA-RISC, libcryptoki.a for AIX) is

setup in the /opt/safenet/protecttoolkit5/ptk/lib folder and should point to the appropriate library.

Additionally these libraries must be included in the LD_LIBRARY_PATH (SHLIB_PATH for HP-UX on

PA-RISC, or LIBPATH for AIX).

The libcthsm shared object requires the library libethsm.

For systems that support 32-bit and 64-bit, the 32-bit libraries and executables are the default.

Java™ Environments
A lightweight proprietary Java wrapper for PKCS#11 API, JCPROV, is provided to allow access the

ProtectToolkit C functionality from Java, without the overhead of the JCA/JCE API. The aim of this API is

to be as similar to the PKCS#11 as the Java language allows. This provides a high-level of familiarity with

the PKCS#11 environment and allows for faster implementation of Java programs.

The java API is compatible with JDK 1.3.1 or higher. The library is implemented in jcprov.jar, under

the namespace safenet_tech.jcprov. An accompanying shared library “jcprov” (jcprov.dll in

Win32 environments, and libjcprov.so in UNIX environments (libjcprov.sl for HP-UX on

PA-RISC, libjcprov.a for AIX)) provides the native methods used to access the appropriate

PKCS#11 library.

JCPROV Java JNI Support (AIX Only)

The Java VM on AIX does not support mixed mode JNI libraries. Mixed mode libraries are shared libraries

that provide both 32-bit and 64-bit interfaces. It is therefore essential that the correct JNI library is selected

for use with Java VM being used.

If using a 32-bit Java VM:

 The /opt/safenet/protecttoolkit5/ptk/lib/libjcprov.a symbolic link must

point to a 32-bit version of the library (libjcprov_32.a).

For example: /opt/safenet/protecttoolkit5/ptk/lib/libjcprov_32.a

 The /opt/safenet/protecttoolkit5/ptk/lib/libjcryptoki.a symbolic link must

point a 32-bit version of the library (libjcryptoki_32.a).

For example: /opt/safenet/protecttoolkit5/ptk/lib/libjcryptoki_32.a

ProtectToolkit C Programming Guide

6

If using a 64-bit Java VM:

 The /opt/safenet/protecttoolkit5/ptk/lib/libjcprov.a symbolic link must

point to a 64-bit version of the library (libjcprov_64.a).

For example: /opt/safenet/protecttoolkit5/ptk/lib/libjcprov_64.a

 The /opt/safenet/protecttoolkit5/ptk/lib/libjcryptoki.a symbolic link must

point a 64-bit version of the library (libjcryptoki_64.a).

For example: /opt/safenet/protecttoolkit5/ptk/lib/libjcryptoki_64.a

NOTE: When installing the ProtectToolkit C Runtime package, the above links are automatically created to

use the 32-bit versions of the JNI libraries.

Development Environment Guidelines
This manual gives a number of application development guidelines that can be of benefit for both novice and

advanced developers using the ProtectToolkit C API.

An API tutorial is provided in Chapter 8, which is designed to show step-by-step development of a sample

application.

Further sample programs, for which source code has been provided, may be compiled and linked against the

supplied libraries. Further details about the sample programs are covered in Chapter 5.

The additional libraries "ctextra", "ctutil", “hex2bin” and “LMlib” are static libraries that contain

additional PKCS#11 support and helper functions that are not a part of the PKCS#11 standard. For full

details on the content of these libraries please refer to Chapter 11, 12, 13, and 15.

The library HSMAdmin call services on the HSM that are not part of the PKCS#11 standard – see Chapter

14 for more details.

This development kit may be used to build applications for any variant of the ProtectToolkit C runtimes

including the software-only, the ProtectServer based or the remote client version.

NOTE: It is assumed that the Native C/C++ compiler is being used.

Compiling and Linking Applications on AIX
It is important that new applications link against libraries in the

/opt/safenet/protecttoolkit5/ptk/lib directory instead of the libraries in the

/opt/safenet/protecttoolkit5/ptk/lib/legacy directory. This can be achieved by using

the -L/opt/safenet/protecttoolkit5/ptk/lib argument to the compiler or linker. Do not specify the

/opt/safenet/protecttoolkit5/ptk/lib/legacy library path since the legacy shared

libraries are deprecated, and support is to be removed in a future release.

It may also be desirable to explicitly specify an embedded library path when linking your own applications

and libraries so that your applications automatically find the required libraries when they are run without

requiring the LIBPATH environment variable to be set. This can be achieved by using the -

blibpath:/usr/lib:/lib:/opt/safenet/protecttoolkit5/ptk/lib option to the linker

(ld), or alternatively (if using the compiler to link.):

-Wl,-blibpath:/usr/lib:/lib:/opt/safenet/protecttoolkit5/ptk/lib

Compiling and Linking 64-bit Applications on AIX
To compile 64-bit applications for AIX specify the following compiler and linker flags:

-q64

ProtectToolkit C Programming Guide

7

Compiling and Linking 64-bit Applications for Solaris SPARC
To compile 64 bit applications for Solaris SPARC specify the following compiler flags:

-Xarch = v9

-DBITS64

The 64 bit libraries are to be found in the /opt/safenet/protecttoolkit5/ptk/lib/sparcv9

directory. To link against them instead of the libraries in the directory

/opt/safenet/protecttoolkit5/ptk/lib, add the following argument to the compiler or linker:

-L /opt/safenet/protecttoolkit5/ptk/lib/sparcv9

NOTE: It is assumed that the Sun C/C++ compiler is being used.

Compiling and Linking 64-bit Applications for HP-UX
To compile 64 bit applications for HP-UX specify the following compiler flags:

+DD64

The 64 bit libraries are to be found in the /opt/safenet/protecttoolkit5/ptk/lib/64 directory. To link against

them instead of the libraries in the directory /opt/safenet/protecttoolkit5/ptk/lib, add the following argument

to the compiler or linker:

-L /opt/safenet/protecttoolkit5/ptk/lib/64

MSVC Project Settings
In order to remove link errors when linking to the additional libraries "ctextra" and "ctutil" etc, you

need to set the MSVC project settings to “Multithreaded” under the C/C++ tab of the “Code generation”

category, since this is what the libraries were compiled with.

Also add “_WINDOWS” to the “Preprocessor definitions” under the C/C++ tab of the “General” category.

Modes of Operation

To switch the operational mode of ProtectToolkit C from hardware to software, or remote client, you will

need to ensure that you are linking to the correct “CRYPTOKI.DLL”. There are three variants of this library

depending on the operational mode. Refer to your installation guide or ask your system administrator as to

where the different versions of this library were installed.

Configuration / Setup
For full details regarding setup and configuration of ProtectToolkit C and or ProtectServer hardware security

modules (HSMs), please refer to the following manuals:

 HSM Access Provider Install and Configuration Guide

 ProtectToolkit C Installation Guide

 ProtectToolkit C Administration Manual

ProtectToolkit C Programming Guide

8

THIS PAGE INTENTIONALLY LEFT BLANK

ProtectToolkit C Programming Guide

9

C H A P T E R 4

THE SDK ENVIRONMENT

Objects
Cryptoki recognizes a number of object classes, as defined in the CK_OBJECT_CLASS data type. An

object consists of a set of attributes, each of which has a given value. Each attribute that an object possesses

has precisely one value. The following figure illustrates the high-level hierarchy of the Cryptoki objects and

some of the attributes they support:

Figure 2 - Object Attribute Hierarchy

Cryptoki provides functions for creating, destroying, and copying objects and for obtaining or modifying

their attribute values. Some of the cryptographic functions (for example, C_GenerateKey) also create

key objects to hold their results.

Objects are always “well-formed” in Cryptoki—that is, an object always contains a minimum set of

attributes for its proper operation, and the attributes are always consistent with one another from the time the

object is created. However it is possible for an object to have one or more optional attributes missing.

A token can hold several identical objects. That is, it is permissible for two or more objects to have exactly

the same values for all of their attributes.

ProtectToolkit C Programming Guide

10

Some object attributes possess default values, and need not be specified when creating an object. Some of

these default values may even be the empty string (“”). Nevertheless, the object possesses these attributes.

A given object has a single value for each attribute it possesses. Optional attributes are, by default, not

created.

In addition to possessing Cryptoki attributes, objects may possess additional vendor-specific attributes. The

meanings and values of the attributes not specified by Cryptoki are described below.

Creating, Modifying, Copying, and Deleting Objects
Cryptoki functions that create, modify, or copy objects, take a template as one of their arguments, where the

template specifies attribute values. Cryptographic functions that create objects may also contribute some

additional attribute values themselves. Which attributes have values contributed by a cryptographic function

call depends on which cryptographic mechanism is being performed.

In any case, all the required attributes supported by an object class that do not have default values must be

specified when an object is created, either in the template or by the function itself.

Creating Objects

Objects may be created with the Cryptoki functions C_CreateObject, C_GenerateKey,

C_GenerateKeyPair, C_UnwrapKey, and C_DeriveKey. In addition, copying an existing object,

with the function C_CopyObject or CT_CopyObject, also creates a new object.

Attempting to create an object with any of these functions requires an appropriate template to be supplied.

 If the supplied template specifies a value for an unrecognized attribute, then the attribute is stored but

ignored.

 If the supplied template specifies an inappropriate value for a valid attribute, then the attribute is

stored, except when it is the value attribute for a key in which case the length is checked. Checks are

made on the validity of attributes when the object is used in later operations.

 When a token has the CKF_LOGIN_REQUIRED flag set in the flags field of the CK_TOKEN_INFO

structure the token is read-only until the user (or SO) has been authenticated to the token.

 If the attribute values in the supplied template, together with any default attribute values and any

attribute values contributed to the object by the object-creation function itself, are insufficient to fully

specify the object to create, then the attempt will fail with the error code

CKR_TEMPLATE_INCOMPLETE.

 If the supplied template specifies the same value for a particular attribute more than once (or the

template specifies the same value for a particular attribute that the object-creation function itself

contributes to the object), then the duplicate attribute is ignored.

Modifying Objects

If the “Increased Security” flag is set as part of the security policy, then C_CopyObject does not allow

changing the CKA_MODIFIABLE flag from FALSE to TRUE. (See PTK C Administration Manual for

details on setting HSM security policy).

Apart from the above exception, all PKCS#11 Version 2.10 rules applying to object modification are

implemented.

Copying Objects

All PKCS#11 Version 2.10 rules applying to copying objects are implemented.

Deleting Objects

In addition to standard object deletion rules there is support for the CKA_DELETABLE attribute. This is an

optional attribute that may be specified for token objects. For token objects with CKA_DELETABLE set to

FALSE the C_DestroyObject function will not delete the object and will instead return the error

CKR_OBJECT_READ_ONLY.

ProtectToolkit C Programming Guide

11

Additional Attribute Types
There are a number of additional vendor defined attribute types.

CKA_KEY_SIZE

The key size for key type CKK_EC can be any arbitrary bit length. That is, not within the byte boundary (for

example, the key size for a P-521 curve).

The CKA_KEY_SIZE attribute has the following additional properties:

 Size is in bits

 Read-only attribute

 Assigned at object creation time

 Applicable to both private and public keys

NOTE: This attribute is applicable only to CKK_EC.

CKA_TIME_STAMP

Every object created is assigned a value for the CKA_TIME_STAMP attribute. This value is always read-

only and may not be included in a template for a new object. However when an object is duplicated using

the C_CopyObject function or the object is a key derived using the C_DeriveKey the new object will

inherit the same creation time as the original object.

The value of this attribute is a text string encoding of the time. The encoding format is

"YYYYMMDDHHMMSS00".

CKA_TRUSTED

This attribute may be included in a template for the creation of a Certificate object. It is used to indicate

whether or not the certificate is trusted by the application. Once set the value of this attribute may not be

modified.

The following values are defined for this attribute:

CKA_TRUSTED Description

TRUE (1) The certificate is trusted.

FALSE (0) The certificate is not trusted and must be verified.

The value of CKA_TRUSTED may be set to TRUE only when the Security Officer is currently logged in. That

is, the state of the session must be CKS_RW_SO_FUNCTIONS. Once a Certificate object has the

CKA_TRUSTED attribute equal to TRUE the Certificate is considered a “trusted root certificate”. The

certificate validation code will stop once it reaches a trusted root certificate.

The certificate validation algorithm will locate the certificate’s issuer by searching for a Certificate object

with the CKA_SUBJECT attribute equal to the issuer’s distinguished name. If located, it will then verify the

signature on the certificate. If the signature is invalid it will return false, otherwise it will check the

CKA_TRUSTED attribute on the issuer’s certificate. If not equal to TRUE it will search for the issuer of that

certificate. The algorithm will continue until a trusted certificate is found, the signature verification fails or

the certificate chain is broken. The chain is broken when a certificate for the issuer cannot be found.

Once a certificate is marked as trusted the object’s CKA_VALUE attribute may no longer be modified.

NOTE: The other attributes of the certificate will remain modifiable unless the CKA_MODIFIABLE attribute

is set to false.

ProtectToolkit C Programming Guide

12

CKA_USAGE_COUNT

The value of this attribute maintains a count of the number of times a key object is used for a cryptographic

operation. It is possible to set the value of this attribute for a key. Afterwards it is automatically

incremented each time the key is used in a Cryptoki initialization routine (that is, C_SignInit).

Also see description for CKA_USAGE_LIMIT.

When generating Certificate objects with the CKM_ENCODE_X_509 mechanism the

CKA_SERIAL_NUMBER attribute for the new certificate object is taken from the certificate signing key’s

CKA_USAGE_COUNT attribute. The usage count from the private key is used only if the serial number is not

already included in the template for the new certificate.

CKA_USAGE_LIMIT

This attribute represents the maximum number of times the object can be used. Simply - it is the highest

possible CKA_USAGE_COUNT value allowed on this object.

This attribute may be specified when the object is created or added to an object when CKA_MODIFIABLE

is true. Once the attribute is added it cannot be changed by the C_SetAttributeValue function.

Only the CKM_SET_ATTRIBUTES ticket mechanism can change this attribute. The Ticket can modify the

attribute even if MODIFABLE=False.

CKA_START_DATE, CKA_END_DATE

These attributes control the period in which the object can be used.

These attributes may be specified when the object is created or added to an object when

CKA_MODIFIABLE is true. Once the attribute is added it cannot be changed by the C_SetAttributeValue

function.

Only the CKM_SET_ATTRIBUTES ticket mechanism can change these attributes. The Ticket can modify

the attributes even if MODIFABLE=False.

Attribute validation is performed if these attributes are supplied during a C_CreateObject or C_UnWrapkey

or C_DeriveKey operation. One or both of these attributes may be missing or be present but with an empty

value. In this case the attribute is interpreted as "No restriction applies". For example if START_DATE is

specified but END_DATE is not then the object will be usable from the start date onwards.

If the attribute is specified then it must be valid data structure - i.e. year is between 1900 and 9999, month

from 01 to 12 and day from 01 to 31.

CKA_ADMIN_CERT

The CKA_ADMIN_CERT is a new Vendor defined Attribute.

This attribute is used to hold the certificate of an entity that can perform certain Management operations on

that Object.

The value of the attribute is the DER encoding of a X509 v3 Public Key Certificate.

Rules for validation of the Certificate are: if it is self signed then it is implicitly trusted, if it signed by

another entity then that Entities PKC must be present on the Token and be part of a chain terminating in a

Cert marked CKA_TRUSTED=True.

It may be specified in the template when the Object is created, generated or imported. It may be added to an

object with the C_SetAttributeValue command only if the CKA_MODIFIABLE is True and the attribute

does not already exist i.e. once an object is created and made non-modifiable then the CKA_ADMIN_CERT

cannot be later added.

The CKA_ADMIN_CERT is used with the CKM_SET_ATTRIBUTES Ticket Mechanism.

So if an object is not Modifiable and has no CKA_ADMIN_CERT then the CKM_SET_ATTRIBUTES

Ticket Mechanism can never be applied to that object and its attributes are forever locked.

ProtectToolkit C Programming Guide

13

CKA_ISSUER_STR, CKA_SUBJECT_STR, CKA_SERIAL_NUMBER_INT

These attributes mirror the standard attributes (without the _STR or _INT suffix) but present that attribute

as a printable value rather than as a DER encoding.

For the distinguished name attributes the string is encoded in the form: C=Country code, O=Organization,

CN=Common Name, OU=Organizational Unit, L=Locality name, ST=State name.

These attributes may be supplied by an application in place of the DER encoded form and the other form of

the attribute shall be derived from the one supplied in the template.

NOTE: CKA_SERIAL_NUMBER_INT is a Cryptoki Big Integer and not an intrinsic integer type.

Therefore, its size is not constrained to 4 bytes.

CKA_PKI_ATTRIBUTE_BER_ENCODED

This attribute may be used to supply X.509 certificate extensions or PKCS#10 attribute values when creating

these objects using the CKM_ENCODE_X509 or CKM_ENCODE_PKCS10 mechanisms respectively. Please refer

to the sections #CKM_ENCODE_PKCS_10 and CKM_DECODE_X_509 for more details of these

mechanisms.

The value of the CKA_PKI_ATTRIBUTE_BER_ENCODED is the BER encoded attribute.

CKA_EXPORT, CKA_EXPORTABLE

These attributes are similar to the standard CKA_WRAP and CKA_EXTRACTABLE attributes as they

determine if a given key can wrap others keys and be extracted from the token in an encrypted form. The

important difference between these attributes and their standard counterparts is that there are special controls

on who can set the CKA_EXPORT flag. This flag may be set to true by the token’s Security Officer or by

the User if certain conditions are met. Thus the normal user can specify that a key may be exported in an

encrypted form (by specifying that the CKA_EXPORTABLE attribute is true) but only by keys as determined

by the SO (for example, a key that has the CKA_EXPORT attribute set to true).

The user may also specify the CKA_EXPORT attribute for keys that are generated internally and cannot be

extracted other than by another key marked with CKA_EXPORT. This class of key may be used for transport

keys where a master key encryption key (KEK) exists. In this case the Security Officer would create the

KEK however the user could then create transport keys that could be exported only under the master KEK.

All other key usage attributes that might allow such a key, or any key exported by it, to be known outside the

adapter must be set to FALSE. Specifically the template must specify FALSE for CKA_EXTRACTABLE,

CKA_DECRYPT, CKA_SIGN and CKA_MODIFIABLE as well as TRUE for CKA_SENSITIVE, the

template may also not specify TRUE for the CKA_DERIVE attribute.

CKA_DELETABLE

This attribute may be set on any token object (that is, where the CKA_TOKEN attribute is true) to specify

that the object is permanent and may not be deleted. Once created, an object with the CKA_DELETABLE

attribute set to false may be deleting only by re-initialization of the token (or during a hardware tamper

process).

CKA_SIGN_LOCAL_CERT

This attribute must be set to true on any private key that is used with the Proof of origin mechanism

(CKM_ENOCDE_X_509_LOCAL_CERT). Signing keys that do not have this attribute may not be used with this

mechanism. For further information regarding this mechanism please refer to the sections

CKM_WRAPKEY_DES3_ECB and CKM_WRAPKEY_DES3_CBC .

Keys with this attribute should have the CKA_SIGN and CKA_ENCRYPT attributes set to false to ensure

that the key cannot be used to sign arbitrary data. Further special precautions should be taken to ensure that

the key cannot leave the adapter – generally CKA_EXTRACTABLE and CKA_EXPORTABLE should be

false and CKA_SENSITIVE should be true.

ProtectToolkit C Programming Guide

14

CKA_CHECK_VALUE

This attribute is a key check value that is calculated as follows:

 Take a buffer of the cipher block size of binary zeros (0x00).

 Encrypt this block in ECB mode.

 Take the first three bytes of cipher text as the check value.

This attribute is calculated on all keys of class CKO_SECRET, which means all symmetric key types when

they are created or generated. The attribute is generated by default if it is not supplied in the key template. If

it is supplied in the template, then the template value is used, even if its value would conflict with the one

calculated as shown above. This is applicable when a customer wants to use an alternative method to

validate a key.

NOTE: The CKA_ENCRYPT attribute is not required to be set to TRUE on the key object, in order for the

check value attribute to be generated. This attribute cannot be changed once it has been set.

CKA_IMPORT

This attribute is similar to the standard CKA_UNWRAP attribute to determine if a given key can be used to

unwrap encrypted key material. The important difference between these attributes and their standard

counterparts is that if this attribute is set to True and CKA_UNWRAP attribute is set to False, then the only

unwrap mechanism that can be used is CKM_WRAPKEY_DES3_CBC. With this combination, the error code

CKR_MECHANISM_INVALID is returned for all other mechanisms. The default of CKA_IMPORT is set to

FALSE.

CKA_CERTIFICATE_START_TIME; CKA_CERTIFICATE_END_TIME

These attributes are used to specify a user defined validity period for X.509 certificates. Without these, the

certificate validity period is 1 year from the date and time of creation. The format is YYYYMMDDhhmmss00,

which is identical to that defined for utcTime in CK_TOKEN_INFO.

CKA_MECHANISM_LIST

These attributes hold an array of CK_MECHANISM_TYPE values.

The CKA_MECHANISM_LIST attribute is used to restrict the operations that can be performed with any

object containing it.

The following functions will check the object for the attribute, and if found, then the

CK_MECHANISM_TYPE being requested must be present in the attribute else

CKR_MECHANISM_INVALID error is returned:

 C_Wrapkey

 C_Unwrapkey

 C_EncryptInit

 C_DecryptInit

 C_SignInit

 C_VerifyInit

 C_SignRecoverInit

 C_VerifyRecoverInit

ProtectToolkit C Programming Guide

15

CKA_ENUM_ATTRIBUTE

This attribute is used to enumerate all the attributes of an object.

The attribute can only be passed in as part of a pTemplate parameter to the C_GetAttributeValue. It is never

stored on an object.

Each PTK C session can hold an index value that is just used to support attribute enumeration.

Each call to C_GetAttributeValue using CKA_ENUM_ATTRIBUTE will return the next object attribute.

The error CKR_ATTRIBUTE_TYPE_INVALID is returned to indicate that the object has no more

attributes.

A call to C_GetAttributeValue with the ulCount parameter set to zero will reset the index to zero.

Common Attributes
The following table defines the attributes common to all objects:

Table 1 – Common Object Attributes

Attribute Data Type Meaning

CKA_CLASS
1

CK_OBJECT_CLASS Object class (type)

1 This attribute must be specified when the object is created

ProtectToolkit C supports the following Cryptoki Version 2.1 values for CKA_CLASS (that is, the

following classes (types) of objects):

 CKO_HW_FEATURE

 CKO_DATA, CKO_CERTIFICATE

 CKO_PUBLIC_KEY

 CKO_PRIVATE_KEY

 CKO_SECRET_KEY

The following CKA_CLASS values are ProtectToolkit C extensions:

 CKO_CERTIFICATE_REQUEST

 CKO_CRL

ProtectToolkit C Programming Guide

16

Hardware Feature Objects
Hardware feature objects (CKO_HW_FEATURE) represent features of the device. They are created by the

firmware on boot-up. The following figure illustrates the hierarchy of hardware feature objects and the

attributes they support:

Figure 3 - Hardware Feature Object Attribute Hierarchy

Hardware feature objects act as an interface to a hardware feature and exist independent of the feature being

represented. For example creating two clock objects does not imply that there are two clocks, just two

interfaces to the one clock. Further, deleting the clock object does not affect the clock device in any way.

However hardware feature objects may contain information independent of the feature being represented

which may affect the behavior of the object. In addition the slot in which the object is created and the state

of the session may affect the behavior of the object.

Table 2 – Hardware Feature Common Attributes

Attribute Data Type Meaning

CKA_HW_FEATURE_TYPE CK_HW_FEATURE Hardware feature (type)

ProtectToolkit C supports the following values for CKA_HW_FEATURE_TYPE:

 CKH_CLOCK

 CKH_MONOTONIC_COUNTER

 CKH_VD_USER

Clock Objects
Clock objects represent real-time clocks that exist on the device. This represents the same clock source as

the utcTime field in the CK_TOKEN_INFO structure.

Table 3 – Clock Object Attributes

Attribute Data Type Meaning

CKA_VALUE CK_CHAR[16] Current time as a character-string of length 16,

represented in the format

YYYYMMDDhhmmssxx

(4 characters for the year; 2 characters each for

the month, day, hour, minute and second; and 2

additional reserved characters set to 0).

The CKA_VALUE attribute may be set using the C_SetAttributeValue function if the object exists in

the Admin Token and the session is in RW User Mode.

HW Feature

Feature Type

Monotonic Counter

Reset By Init

Has Been Reset

Value

Clock

Value

VD User

Auth challenge

Temp Pin

ProtectToolkit C Programming Guide

17

C_SetAttributeValue returns the error CKR_USER_NOT_LOGGED_IN to indicate that a different

user type is required to set the value.

One object of this type is automatically created in the Admin token.

Monotonic Counter Objects
Monotonic counter objects represent hardware counters that exist on the device. In addition:

 The value of the counter is guaranteed to increase by one each time it is read.

 The monotonic counter is supported only on soft (non-smart card based) tokens and the value of the

counter on each different token is the same.

 There is only one monotonic counter per token.

 The monotonic counter is automatically created whenever a token is initialized and exists by default

on the Admin Token.

 The value is interpreted as a 160-bit big-endian binary integer (MSB on left).

 The Token SO may change the count value by setting the CKA_VALUE attribute.

Table 4 – Monotonic Counter Attributes

Attribute Data Type Meaning

CKA_RESET_ON_INIT
1
 CK_BBOOL The value of the counter will reset to a previously

returned value if the token is initialized using

C_InitializeToken.

CKA_HAS_RESET
1
 CK_BBOOL The value of the counter has been reset at least once at

some point in time.

CKA_VALUE Byte Array The current version of the monotonic counter. The value

is returned in big endian order. This is 20 bytes in size.

Any attempt to set a value less than 20 bytes will fail.

1 Read Only. The CKA_VALUE attribute may not be set by the client.

User Objects
User objects provide a means to obtain Authentication values i.e. these objects can be used when logging

into a Token.

 The User object is supported only on soft (non-smart card based) tokens.

 The User Object is automatically created whenever a token is initialized.

The attributes of the User Object may be read to obtain an Authentication Challenge or to get a Temporary

Pin.

For more details on the use of the User Object, refer to the description of the C_Login function.

Table 5 – User Attributes

Attribute Data Type Meaning

CKA_AUTH_CHALLENGE CK_CHAR[16] The current challenge value. Each time this

attribute is read a new challenge value will be

returned.

CKA_TEMP_PIN CK_CHAR[32] The current Temporary pin value. Each time this

attribute is read a new pin value will be returned.

A CKU_USER or CKU_SO must be logged in or

else a read of this attribute will return

CKR_USER_NOT_LOGGED_IN error. The pin

returned can only be used to authenticate the same

user that is currently logged in.

ProtectToolkit C Programming Guide

18

Storage Objects

Table 6 – Common Storage Object Attributes

Attribute Data Type Meaning

CKA_TOKEN CK_BBOOL TRUE if object is a token object. FALSE if object is a

session object. Default is FALSE.

CKA_PRIVATE CK_BBOOL TRUE if object is a private object. FALSE if object is a

public object. Default value is token-specific, and may

depend on the values of other attributes of the object.

CKA_MODIFIABLE CK_BBOOL TRUE if object can be modified. FALSE if object can not

be modified. Default is TRUE.

CKA_LABEL RFC2279 string Description of the object. Default is empty.

Only the CKA_LABEL attribute can be modified after the object is created. The CKA_TOKEN,

CKA_PRIVATE, and CKA_MODIFIABLE attributes can be changed in the process of copying an object.

The CKA_TOKEN attribute identifies whether the object is a token object or a session object.

When the CKA_PRIVATE attribute is TRUE, a user may not access the object until the user has been

authenticated to the token.

The value of the CKA_MODIFIABLE attribute determines whether or not an object is read-only.

ProtectToolkit C unmodifiable objects can be deleted. Objects may however specify CKA_DELETABLE to

FALSE, for token objects only, in which case the object may not be deleted using the C_DestroyObject

function. Only by re-initializing the token can the object be destroyed.

The CKA_LABEL attribute is intended to assist users in browsing.

Data Objects
Data objects (object class CKO_DATA) hold information defined by an application. Other than providing

access to it, Cryptoki does not attach any special meaning to a data object. The following table lists the

attributes supported by data objects, in addition to the common attributes listed in Table 1 and Table 6:

Table 7 – Data Object Attributes

Attribute Data Type Meaning

CKA_APPLICATION RFC2279

string

Description of the application that manages the object

(default empty)

CKA_OBJECT_ID Byte Array DER-encoding of the object identifier indicating the data

object type (default empty)

CKA_VALUE Byte array Value of the object (default empty)

Each of these attributes may be modified after the object is created.

The CKA_APPLICATION attribute provides a means for applications to indicate ownership of the data

objects they manage. However Cryptoki does not provide a means of ensuring that only a particular

application has access to a data object.

The CKA_OBJECT_ID attribute provides an application an independent and expandable way to indicate the

type of a data object. Cryptoki does not provide a means of insuring that the data object identifier matches

the data object type.

ProtectToolkit C Programming Guide

19

Certificate Objects
The following figure illustrates details of certificate objects:

Figure 4 - Certificate Object Attribute Hierarchy

Certificate objects (object class CKO_CERTIFICATE) hold public-key or attribute certificates. Other than

providing access to certificate objects, Cryptoki does not attach any special meaning to certificates.

ProtectToolkit C however does include a number of extensions to Cryptoki that allows for more

sophisticated certificate processing.

In addition to a number of extension attributes, it is possible to use a certificate object in place of a public

key object. It is also possible to generate certificates (or certification requests) from public keys. Finally it

is possible to introduce trusted certificates that allow for certificate path verification.

The following table defines the common certificate object attributes, in addition to the common attributes

listed in Table 1 and Table 6:

Table 8 – Common Certificate Object Attributes

Attribute Data Type Meaning

CKA_CERTIFICATE_TYPE1 CK_CERTIFICATE_TYPE Type of certificate

CKA_TRUSTED2,3 CK_BBOOL Trust state of the object; see

above description

CKA_DERIVE2 CK_BBOOL Indicates if certificate can be

used in derive mechanisms

1
Must be specified when the object is created.

2 SafeNet Extension
3 May be specified as TRUE only by the Security Officer.

The CKA_CERTIFICATE_TYPE attribute may not be modified after an object is created.

ProtectToolkit C Programming Guide

20

X.509 Public Key Certificate Objects

X.509 certificate objects (certificate type CKC_X_509) hold X.509 public key certificates. The following

table defines the X.509 certificate object attributes, in addition to the common attributes listed in Table 1,

Table 6 and Table 8:

Table 9 – X.509 Certificate Object Attributes

Attribute Data Type Meaning

CKA_SUBJECT1 Byte array DER-encoding of the certificate subject

name

CKA_SUBJECT_STR2 Byte array Printable representation of

CKA_SUBJECT attribute

CKA_ID Byte array Key identifier for public/private key pair

(default empty)

CKA_ISSUER Byte array DER-encoding of the certificate issuer

name (default empty)

CKA_ISSUER_STR2 Byte array Printable representation of CKA_ISSUER

attribute

CKA_SERIAL_NUMBER Byte array DER-encoding of the certificate serial

number (default empty)

CKA_SERIAL_NUMBER_INT2 Big Integer Certificate serial number as an integer

(default empty)

CKA_VALUE1 Byte array BER-encoding of the certificate

1 Must be specified when the object is created.
2
SafeNet Extension

Only the CKA_ID, CKA_ISSUER and CKA_SERIAL_NUMBER attributes may be modified after the object

is created.

The CKA_ID attribute is intended to be a means of distinguishing multiple public/private key pairs held by

the same subject (whether stored in the same token or not). Since subject names, as well as identifiers,

distinguish keys, it is possible that keys that have different subjects may have the same CKA_ID value

without introducing any ambiguity.

It is intended, in the interests of interoperability, that the subject name and key identifier for a certificate is to

be the same as those for the corresponding public and private keys (though it is not required that all be stored

in the same token). Cryptoki does not enforce this association or even the uniqueness of the key identifier for

a given subject. In fact an application may leave the key identifier empty.

The CKA_ISSUER and CKA_SERIAL_NUMBER attributes are for compatibility with PKCS #7 and

Privacy Enhanced Mail (RFC1421).

NOTE: With the version 3 extensions to X.509 certificates, the key identifier may be carried in the

certificate. It is intended that the CKA_ID value be identical to the key identifier in such a certificate

extension, however Cryptoki will not enforce this.

ProtectToolkit C Programming Guide

21

Certificate Request Objects

Certificate request objects (object class CKO_CERTIFICATE_REQUEST) hold a PKCS#10 certificate

request. This object class is a vendor defined extension class. The following table defines the Certificate

request object attributes, in addition to the common attributes listed in Table 1, Table 6 and Table 8:

Table 10 – Certificate Request Object Attributes

Attribute Data Type Meaning

CKA_SUBJECT Byte array DER-encoding of the certificate subject name

CKA_SUBJECT_STR2 Byte array Printable representation of CKA_SUBJECT

attribute

CKA_VALUE1 Byte array BER-encoding of the certificate

1 Must be specified when the object is created.
2
SafeNet Extension

Certificate Revocation List

Certificate Revocation List (CRL) objects (object class CKO_CRL) hold a certificate revocation list. This

object class is a vendor defined extension class.

The following table defines the CRL object attributes, in addition to the common attributes listed in Table 1,

Table 6 and Table 8:

Table 51 – Certificate Revocation Object Attributes

Attribute Data Type Meaning

CKA_SUBJECT Byte array DER-encoding of the certificate subject name

CKA_SUBJECT_STR2 Byte array Printable representation of CKA_SUBJECT

attribute

CKA_VALUE1 Byte array BER-encoding of the certificate

1
Must be specified when the object is created.2 SafeNet Extension

ProtectToolkit C Programming Guide

22

Key Objects
The following figure illustrates details of key objects:

Figure 5 - Key Attribute Detail

Key objects hold encryption or authentication keys, which can be public keys, private keys, or secret keys.

The following common footnotes apply to all the tables describing attributes of keys:

Table 6 – Common footnotes for key attribute tables

 1 Must be specified when object is created with C_CreateObject.

 2 Must not be specified when object is created with C_CreateObject.

 3 Must be specified when object is generated with C_GenerateKey or C_GenerateKeyPair.

 4 Must not be specified when object is generated with C_GenerateKey or C_GenerateKeyPair.

 5 Must be specified when object is unwrapped with C_UnwrapKey.

 6 Must not be specified when object is unwrapped with C_Unwrap.

 7 Cannot be revealed if object has CKA_SENSITIVE attribute set to TRUE or its CKA_EXTRACTABLE

attribute set to FALSE.

8 May be modified after object is created with a C_SetAttributeValue call, or in the process of

copying object with a C_CopyObject call. As mentioned previously, however, it is possible that a

particular token may not permit modification of the attribute.

9 Default value is token-specific, and may depend on the values of other attributes.

10 SafeNet Extension

ProtectToolkit C Programming Guide

23

The following table defines the attributes common to public key, private key and secret key classes, in

addition to the common attributes listed in Table 1 and Table 6:

Table 7 – Common Key Attributes

Attribute Data Type Meaning

CKA_KEY_TYPE1,3,5 CK_KEY_TYPE Type of key

CKA_ID8 Byte array Key identifier for key (default empty)

CKA_START_DATE8 CK_DATE Start date for the key (default empty). If not

empty then the attribute holds starting date

for the key.

CKA_END_DATE8 CK_DATE End date for the key (default empty). If not

empty then the attribute holds expiry date

for the key.

CKA_ADMIN_CERT
10

 Byte array DER encoded certificate of the key

administrator. See more details in the

discussion on Key Usage Limits.

CKA_DERIVE8 CK_BBOOL TRUE if key supports key derivation (that

is, if other keys can be derived from this

one (default FALSE)

CKA_LOCAL2,4,6 CK_BBOOL TRUE only if key was either • generated

locally (that is, on the token) with a

C_GenerateKeyor

C_GenerateKeyPaircall • created with

a C_CopyObjectcall as a copy of a key

which had its CKA_LOCAL attribute set to

TRUE

CKA_MECHANISM_LIST10 CKA_MECHAN

ISM_ TYPE array

List of allowable mechanisms that can be

used. For more information see the entry for

this attribute in the Additional Attribute

Types section above.

Public Key Objects

Public key objects (object class CKO_PUBLIC_KEY) hold public keys. This version of Cryptoki recognizes

four types of public keys: RSA, DSA, Diffie-Hellman and Elliptic Curve. The following table defines the

attributes common to all public keys, in addition to the common attributes listed in Table 1, Table 6, and

Table 13:

Table 84 – Common Public Key Attributes

Attribute Data Type Meaning

CKA_SUBJECT8 Byte array DER-encoding of the key subject name (default

empty)

CKA_SUBJECT_STR10 Byte array Printable version of CKA_SUBJECT

CKA_ENCRYPT8 CK_BBOOL TRUE if key supports encryption 9

CKA_VERIFY8 CK_BBOOL TRUE if key supports verification where the

signature is an appendix to the data 9

CKA_VERIFY_RECOVER8 CK_BBOOL TRUE if key supports verification where the

data is recovered from the signature 9

CKA_WRAP8 CK_BBOOL TRUE if key supports wrapping (that is, can be

used to wrap other keys)9

CKA_EXPORT10 CK_BBOOL TRUE if the key may be used to export

Exportable keys.

ProtectToolkit C Programming Guide

24

It is intended in the interests of interoperability that the subject name and key identifier for a public key is to

be the same as those for the corresponding certificate and private key. However, this is not enforced, and it is

not required that the certificate and private key be stored on the same token.

To map between ISO/IEC 9594-8 (X.509) key usage flags for public keys and the PKCS #11 attributes for

public keys, use the following table. ProtectToolkit C does not enforce these usage flags. When a certificate

object is created it may have any of the standard Cryptoki usage attributes, which is enforced.

Table 15 – Mapping of X.509 key usage flags to Cryptoki attributes for public keys

Key Usage Flags for Public Keys

in X.509 Public Key Certificates

Corresponding Cryptoki

Attributes for Public Keys

dataEncipherment CKA_ENCRYPT

digitalSignature, keyCertSign, cRLSign CKA_VERIFY

digitalSignature, keyCertSign, cRLSign CKA_VERIFY_RECOVER

keyAgreement CKA_DERIVE

keyEncipherment CKA_WRAP

nonRepudiation CKA_VERIFY

nonRepudiation CKA_VERIFY_RECOVER

RSA Public Key Objects

RSA public key objects (object class CKO_PUBLIC_KEY, key type CKK_RSA) hold RSA public keys. The

following table defines the RSA public key object attributes, in addition to the common attributes listed in

Table 1, Table 6, Table 13, and Table 14:

Table 9 – RSA Public Key Object Attributes

Attribute Data Type Meaning

CKA_MODULUS1,4,6 Big integer Modulus n

CKA_MODULUS_BITS2,3,6 CK_ULONG Length in bits of modulus n

CKA_PUBLIC_EXPONENT1,3,6 Big integer Public exponent e

Depending on the token, there may be limits on the length of key components. See PKCS #1 for more

information on RSA keys.

DSA Public Key Objects

DSA public key objects (object class CKO_PUBLIC_KEY, key type CKK_DSA) hold DSA public keys. The

following table defines the DSA public key object attributes, in addition to the common attributes listed in

Table 1, Table 6, Table 13, and Table 14:

Table 17 – DSA Public Key Object Attributes

Attribute Data Type Meaning

CKA_PRIME1,3,6 Big integer Prime p (512 to 1024 bits, in steps of 64 bits)

CKA_SUBPRIME1,3,6 Big integer Subprime q (160 bits)

CKA_BASE1,3,6 Big integer Base g

CKA_VALUE1,4,6 Big integer Public value y

ProtectToolkit C Programming Guide

25

The CKA_PRIME, CKA_SUBPRIME and CKA_BASE attribute values are collectively the “DSA

parameters”.

Diffie-Hellman Public Key Objects

Diffie-Hellman public key objects (object class CKO_PUBLIC_KEY, key type CKK_DH) hold Diffie-

Hellman public keys. The following table defines the Diffie-Hellman public key object attributes, in

addition to the common attributes listed in Table 1, Table 6, Table 13, and Table 14:

Table 108 – Diffie-Hellman Public Key Object Attributes

Attribute Data Type Meaning

CKA_PRIME1,3,6 Big integer Prime p

CKA_BASE1,3,6 Big integer Base g

CKA_VALUE1,4,6 Big integer Public value y

The CKA_PRIME and CKA_BASE attribute values are collectively the “Diffie-Hellman parameters”.

Depending on the token, there may be limits on the length of the key components. See PKCS #3 for more

information on Diffie-Hellman keys.

Elliptic Curve Public Key Objects

EC (also related to ECDSA) public key objects (object class CKO_PUBLIC_KEY, key type CKK_EC or

CKK_ECDSA in PKCS#11 v2.10) hold EC public keys. The following table defines the EC public key

object attributes, in addition to the common attributes listed in Table 1, Table 6, Table 13, and Table 14:

Table 119 – Elliptic Curve Public Key Object Attributes

Attribute Data Type Meaning

CKA_EC_PARAMS
1,3

(CKA_ECDSA_PARAMS)

Byte Array DER-encoding of an ANSI X9.62

Parameters value

CKA_POINT
1,4

Byte Array DER-encoding of an ANSI X9.62 ECPoint

value Q

The CKA_EC_PARAMS or CKA_ECDSA_PARAMS attribute value is known as the “EC domain

parameters” and is defined in ANSI X9.62 as a choice of three parameter representation methods with the

following syntax:

Parameters ::= CHOICE {

ecParameters ECParameters,

namedCurve CURVES.&id({CurveNames}),

implicitlyCA NULL

}

This allows detailed specification of all required values using choice ecParameters, the use of a namedCurve

as an object identifier substitute for a particular set of elliptic curve domain parameters, or implicitlyCA to

indicate that the domain parameters are explicitly defined elsewhere. The use of a namedCurve is

recommended over the choice ecParameters. The choice implicitlyCA must not be used in Cryptoki.

Both the namedCurve and ecParameters methods are supported in ProtectToolkit C, see

CKM_EC_KEY_PAIR_GEN mechanism for details.

ProtectToolkit C Programming Guide

26

Private Key Objects

Private key objects (object class CKO_PRIVATE_KEY) hold private keys. This version of ProtectToolkit C

recognizes four types of private key: RSA, DSA, Diffie-Hellman and Elliptic Curve. The following defines

the attributes common to all private keys, in addition to the common attributes listed in Table 1, Table 6, and

Table 13.

Table 20 – Common Private Key Attributes

Attribute Data Type Meaning

CKA_SUBJECT8 Byte array DER-encoding of certificate subject name

(default empty)

CKA_SUBJECT_STR10 Byte array Printable version of CKA_SUBJECT

(default empty)

CKA_SENSITIVE8 (see below) CK_BBOOL TRUE if key is sensitive9

CKA_SECONDARY_AUTH CK_BBOOL This is not supported.

CKA_AUTH_PIN_FLAGS2,4,6 CK_FLAGS This is not supported.

CKA_DECRYPT8 CK_BBOOL TRUE if key supports decryption9

CKA_SIGN8 CK_BBOOL TRUE if key supports signatures where the

signature is an appendix to the data9

CKA_SIGN_RECOVER8 CK_BBOOL TRUE if key supports signatures where the

data can be recovered from the signature9

CKA_UNWRAP8 CK_BBOOL TRUE if key supports unwrapping (that is,

can be used to unwrap other keys)9

CKA_EXTRACTABLE8 (see below) CK_BBOOL TRUE if key is extractable9

CKA_ALWAYS_SENSITIVE2,4,6 CK_BBOOL TRUE if key has always had the

CKA_SENSITIVE attribute set to TRUE

CKA_NEVER_EXTRACTABLE2,4,6 CK_BBOOL TRUE if key has never had the

CKA_EXTRACTABLE attribute set to

TRUE

CKA_USAGE_COUNT10 CK_ULONG This optional field will hold a usage

counter. The numeric value is incremented

each time the key is used.

CKA_EXPORTABLE10 CK_BBOOL TRUE if key may be wrapped with a key

that has the CKA_EXPORT attribute set.

CKA_IMPORT10 CK_BBOOL If TRUE and CKA_UNWRAP is FALSE

supports unwrapping only using

CKM_WRAPKEY_DES3_CBC.

ProtectToolkit C Programming Guide

27

RSA Private Key Objects

RSA private key objects (object class CKO_PRIVATE_KEY, key type CKK_RSA) hold RSA private keys.

The following table defines the RSA private key object attributes, in addition to the common attributes listed

in Table 1, Table 6, Table 13, and Table 19:

Table 121 – RSA Private Key Object Attributes

Attribute Data Type Meaning

CKA_MODULUS1,4,6 Big integer Modulus n

CKA_PUBLIC_EXPONENT4,6 Big integer Public exponent e

CKA_PRIVATE_EXPONENT1,4,6,7 Big integer Private exponent d

CKA_PRIME_14,6,7 Big integer Prime p

CKA_PRIME_24,6,7 Big integer Prime q

CKA_EXPONENT_14,6,7 Big integer Private exponent d modulo p-1

CKA_EXPONENT_24,6,7 Big integer Private exponent d modulo q-1

CKA_COEFFICIENT4,6,7 Big integer CRT coefficient q-1 mod p

RSA modulus size may range from 512 to 4096 bits (or 1024 to 4096 bits in FIPS mode). RSA private keys

can include all CRT components or just the modulus and exponent. Performance is greatly enhanced by

providing all CRT components so this is advised. Any RSA keys generated locally will always include all

components.

NOTE: When generating an RSA private key, there is no CKA_MODULUS_BITS attribute specified. This

is because RSA private keys are only generated as part of an RSA key pair, and the CKA_MODULUS_BITS

attribute for the pair is specified in the template for the RSA public key.

DSA Private Key Objects

DSA private key objects (object class CKO_PRIVATE_KEY, key type CKK_DSA) hold DSA private keys.

The following table defines the DSA private key object attributes, in addition to the common attributes listed

in Table 1, Table 6, Table 13, and Table 19:

Table 132 – DSA Private Key Object Attributes

Attribute Data Type Meaning

CKA_PRIME1,4,6 Big integer Prime p (512 to 1024 bits, in steps of 64 bits)

CKA_SUBPRIME1,4,6 Big integer Subprime q (160 bits)

CKA_BASE1,4,6 Big integer Base g

CKA_VALUE1,4,6,7 Big integer Private value x

The CKA_PRIME, CKA_SUBPRIME and CKA_BASE attribute values are collectively the “DSA

parameters”. See FIPS PUB 186 for more information on DSA keys.

NOTE: When generating a DSA private key, the DSA parameters are not specified in the key’s template.

This is because DSA private keys are only generated as part of a DSA key pair, and the DSA parameters for

the pair are specified in the template for the DSA public key. If they are present in the private key template

they are ignored.

ProtectToolkit C Programming Guide

28

Diffie-Hellman Private Key Objects

Diffie-Hellman private key objects (object class CKO_PRIVATE_KEY, key type CKK_DH) hold Diffie-

Hellman private keys. The following table defines the Diffie-Hellman private key object attributes, in

addition to the common attributes listed in Table 1, Table 6, Table 13, and Table 19:

Table 23 – Diffie-Hellman Private Key Object Attributes

Attribute Data Type Meaning

CKA_PRIME1,4,6 Big integer Prime p

CKA_BASE1,4,6 Big integer Base g

CKA_VALUE1,4,6,7 Big integer Private value x

CKA_VALUE_BITS2,6 CK_ULONG Length in bits of private value x

The CKA_PRIME and CKA_BASE attribute values are collectively the “Diffie-Hellman parameters”.

Depending on the token, there may be limits on the length of the key components. See PKCS #3 for more

information on Diffie-Hellman keys.

NOTE: When generating a Diffie-Hellman private key, the Diffie-Hellman parameters are not specified in

the key’s template. This is because Diffie-Hellman private keys are only generated as part of a Diffie-

Hellman key pair, and the Diffie-Hellman parameters for the pair are specified in the template for the Diffie-

Hellman public key. If they are present in the private key template they are ignored.

Elliptic Curve Private Key Objects

EC (also related to ECDSA) private key objects (object class CKO_PRIVATE_KEY, key type CKK_EC or

CKK_ECDSA in PKCS#11 v2.10) hold EC private keys. The following table defines the EC private key

object attributes, in addition to the common attributes listed in Table 1, Table 6, Table 13, and Table 20:

Table 24 – Elliptic Curve Private Key Object Attributes

Attribute Data Type Meaning

CKA_EC_PARAMS
1,4,6

(CKA_ECDSA_PARAMS)

Byte Array DER-encoding of an ANSI X9.62

Parameters value

CKA_POINT
1,4,6,7

Byte Array ANSI X9.62 private value d

The CKA_EC_PARAMS or CKA_ECDSA_PARAMS attribute value is known as the “EC domain

parameters” and is defined in ANSI X9.62 as a choice of three parameter representation methods with the

following syntax:

Parameters ::= CHOICE {

ecParameters ECParameters,

namedCurve CURVES.&id({CurveNames}),

implicitlyCA NULL

}

This allows detailed specification of all required values using choice ecParameters, the use of a namedCurve

as an object identifier substitute for a particular set of elliptic curve domain parameters, or implicitlyCA to

indicate that the domain parameters are explicitly defined elsewhere. The use of a namedCurve is

recommended over the choice ecParameters. The choice implicitlyCA must not be used in Cryptoki.

Both the ecParameters and the namedCurve method are supported in ProtectToolkit C. See

CKM_EC_KEY_PAIR_GEN mechanism for details.

ProtectToolkit C Programming Guide

29

NOTE: When generating an EC private key, the EC domain parameters are not specified in the key’s

template. This is because EC private keys are generated only as part of an EC key pair, and the EC domain

parameters for the pair are specified in the template for the EC public key.

Secret Key Objects

Secret key objects (object class CKO_SECRET_KEY) hold secret keys. This version of Cryptoki recognizes

the following types of secret key: generic, RC2, RC4, DES, DES2, DES3, CAST128 (also known as

CAST5), IDEA, and AES. The following table defines the attributes common to all secret keys, in addition

to the common attributes listed in Table 1, Table 6, and Table 13:

Table 25 – Common Secret Key Attributes

Attribute Data Type Meaning

CKA_SENSITIVE8 (see below) CK_BBOOL TRUE, if object is sensitive (default FALSE)

CKA_ENCRYPT8 CK_BBOOL TRUE, if key supports encryption9

CKA_DECRYPT8 CK_BBOOL TRUE, if key supports decryption9

CKA_SIGN8 CK_BBOOL TRUE, if key supports signatures (that is,

authentication codes) where the signature is an

appendix to the data9

CKA_VERIFY8 CK_BBOOL TRUE, if key supports verification (that is, of

authentication codes) where the signature is an

appendix to the data9

CKA_WRAP8 CK_BBOOL TRUE, if key supports wrapping (that is, can

be used to wrap other keys)9

CKA_UNWRAP8 CK_BBOOL TRUE, if key supports unwrapping (that is,

can be used to unwrap other keys)9

CKA_EXTRACTABLE8 (see below) CK_BBOOL TRUE, if key is extractable9

CKA_ALWAYS_SENSITIVE2,4,6 CK_BBOOL TRUE if key has always had the

CKA_SENSITIVE attribute set to TRUE

CKA_NEVER_EXTRACTABLE2,4,6
CK_BBOOL

TRUE, if key has never had the

CKA_EXTRACTABLE attribute set to TRUE

CKA_SUBJECT8 Byte array DER-encoding of certificate subject name

(default empty)

CKA_EXPORT10 CK_BBOOL TRUE, if the key may be used to wrap

Exportable keys. Restrictions apply on who

can set this attribute to TRUE.

CKA_EXPORTABLE10 CK_BBOOL TRUE, if key may be wrapped with a key

attribute set with CKA_EXPORT.

CKA_IMPORT10 CK_BBOOL If TRUE and CKA_UNWRAP is FALSE

supports unwrapping only using

CKM_WRAPKEY_DES3_CBC.

CKA_CHECK_VALUE Byte Array A calculated key check value. Fixed size of 3

bytes.

After an object is created, the CKA_SENSITIVE attribute may be changed, but only to the value TRUE.

Similarly, after an object is created, the CKA_EXTRACTABLE attribute may be changed, but only to the

value FALSE. Attempts to make other changes to the values of these attributes should return the error code

CKR_ATTRIBUTE_READ_ONLY.

ProtectToolkit C Programming Guide

30

If the CKA_SENSITIVE attribute is TRUE, or if the CKA_EXTRACTABLE attribute is FALSE, then

certain attributes of the secret key cannot be revealed in plain text outside the token. The attributes that are

affected by the sensitive and extractable attributes are specified by the 7-superscript in the attribute table, in

the section describing that type of key.

If the CKA_EXTRACTABLE and CKA_EXPORTABLE attribute is FALSE, then the key cannot be wrapped.

Generic Secret Key Objects

Generic secret key objects (object class CKO_SECRET_KEY, key type CKK_GENERIC_SECRET) hold

generic secret keys. These keys do not support encryption, decryption, signatures or verification (other than

HMAC algorithms); however, other keys can be derived from them. The following table defines attributes

of generic secret key objects, in addition to the common attributes listed in Table 1, Table 6, Table 13, and

Table 23:

Table 26 – Generic Secret Key Object Attributes

Attribute Data Type Meaning

CKA_VALUE1,4,6,7 Byte array Key value (arbitrary length)

CKA_VALUE_LEN2,3,6 CK_ULONG Length in bytes of key value

RC2 Secret Key Objects

RC2 secret key objects (object class CKO_SECRET_KEY, key type CKK_RC2) hold RC2 keys. The

following table defines the RC2 secret key object attributes, in addition to the common attributes listed in

Table 1, Table 6, Table 13, and Table 23:

Table 14 – RC2 Secret Key Object Attributes

Attribute Data Type Meaning

CKA_VALUE1,4,6,7 Byte array Key value (1 to 128 bytes)

CKA_VALUE_LEN2,3,6 CK_ULONG Length in bytes of key value

RC4 Secret Key Objects

RC4 secret key objects (object class CKO_SECRET_KEY, key type CKK_RC4) hold RC4 keys. The

following table defines the RC4 secret key object attributes, in addition to the common attributes listed in

Table 1, Table 6, Table 13, and Table 23:

Table 28 – RC4 Secret Key Object

Attribute Data Type Meaning

CKA_VALUE1,4,6,7 Byte array Key value (1 to 256 bytes)

CKA_VALUE_LEN2,3,6 CK_ULONG Length in bytes of key value

ProtectToolkit C Programming Guide

31

AES Secret Key Objects

AES secret key objects (object class CKO_SECRET_KEY, key type CKK_AES) hold AES keys. The

following table defines the AES secret key object attributes, in addition to the common attributes listed in

Table 1, Table 13, and Table 23:

Table 15 – AES Secret Key Object Attributes

Attribute Data Type Meaning

CKA_VALUE1,4,6,7 Byte array Key value (16 to 32 bytes)

CKA_VALUE_LEN2,3,6 CK_ULONG Length in bytes of key value

DES Secret Key Objects

DES secret key objects (object class CKO_SECRET_KEY, key type CKK_DES) hold single-length DES

keys. The following table defines the DES secret key object attributes, in addition to the common attributes

listed in Table 1, Table 6, Table 13, and Table 23:

Table 30 – DES Secret Key Object

Attribute Data Type Meaning

CKA_VALUE
1,4,6,7

Byte array Key value (always 8 bytes long)

DES keys should always have their parity bits properly set as described in FIPS PUB 46-2. However,

attempting to create or unwrap a DES key with incorrect parity will not return an error as the key will still

function correctly.

DES2 Secret Key Objects

DES2 secret key objects (object class CKO_SECRET_KEY, key type CKK_DES2) hold double-length DES

keys. The following table defines the DES2 secret key object attributes, in addition to the common attributes

listed in Table 1, Table 6, Table 13, and Table 23:

Table 31 – DES2 Secret Key Object Attributes

Attribute Data Type Meaning

CKA_VALUE
1,4,6,7

Byte array Key value (always 16 bytes long)

DES2 keys should have their parity bits properly set as described in FIPS PUB 46-2 (that is, each of the DES

keys comprising a DES2 key should have its parity bits properly set). However, attempting to create or

unwrap a DES2 key with incorrect parity will not return an error as the key will still function correctly.

DES3 Secret Key Objects

DES3 secret key objects (object class CKO_SECRET_KEY, key type CKK_DES3) hold triple-length DES

keys. The following table defines the DES3 secret key object attributes, in addition to the common attributes

listed in Table 1, Table 6, Table 13, and Table 23:

Table 162 – DES3 Secret Key Object Attributes

Attribute Data Type Meaning

CKA_VALUE
1,4,6,7

Byte array Key value (always 24 bytes long)

ProtectToolkit C Programming Guide

32

DES3 keys should always have their parity bits properly set as described in FIPS PUB 46-2 (that is, each of

the DES keys comprising a DES3 key should have its parity bits properly set). However, attempting to create

or unwrap a DES3 key with incorrect parity will not return an error as the key will still function correctly.

CAST128 (CAST5) Secret Key Objects

CAST128 (also known as CAST5) secret key objects (object class CKO_SECRET_KEY, key type

CKK_CAST128 or CKK_CAST5) hold CAST128 keys. The following table defines the CAST128 secret

key object attributes, in addition to the common attributes listed in Table 1, Table 6, Table 13, and Table 23:

Table 173 – CAST128 (CAST5) Secret Key Object Attributes

Attribute Data Type Meaning

CKA_VALUE1,4,6,7 Byte array Key value (1 to 16 bytes)

CKA_VALUE_LEN2,3,6 CK_ULONG Length in bytes of key value

IDEA Secret Key Objects

IDEA secret key objects (object class CKO_SECRET_KEY, key type CKK_IDEA) hold IDEA keys. The

following table defines the IDEA secret key object attributes, in addition to the common attributes listed in

Table 1, Table 6, Table 13, and Table 23:

Table 184 – IDEA Secret Key Object

Attribute Data Type Meaning

CKA_VALUE
1,4,6,7

Byte array Key value (always 16 bytes long)

SEED Secret Key Objects

SEED secret key objects (object class CKO_SECRET_KEY, key type CKK_SEED) hold SEED keys. The

following table defines the SEED secret key object attributes, in addition to the common attributes listed in

Table 1, Table 6, Table 13, and Table 23:

Table 35 – SEED Secret Key Object

Attribute Data type Meaning

CKA_VALUE
1,4,6,7,10

Byte array Key value (always 16 bytes long)

Key Parameter Objects
ProtectToolkit C includes support for key parameter objects (as specified in PKCS#11 2.11 draft 3). These

objects are used to store parameters associated with DSA or DH keys. It is possible to generate new objects

of this type using the C_GenerateKey function.

Key parameter objects (object class CKO_DOMAIN_PARAMETERS) hold public key generation parameters.

This version of Cryptoki recognizes the following types of key parameters: DSA and Diffie-Hellman. The

following table defines the footnotes that apply to each of the following attribute tables:

Table 36 – Common footnotes for key parameter attribute tables

 1 Must be specified when object is created with C_CreateObject.

 2 Must not be specified when object is created with C_CreateObject.

 3 Must be specified when object is generated with C_GenerateKey or C_GenerateKeyPair.

 4 Must not be specified when object is generated with C_GenerateKey or C_GenerateKeyPair.

ProtectToolkit C Programming Guide

33

The following table defines the attributes common to key attribute objects in addition to the common

attributes listed in Table 1 and Table 6:

Table 197 – Common Key Parameter Attributes

Attribute Data Type Meaning

CKA_KEY_TYPE1 CK_KEY_TYPE Type of key the parameters can be used to generate.

CKA_LOCAL2,4 CK_BBOOL TRUE only if key parameters were either:

  generated locally (that is, on the token) with a
C_GenerateKey

 created with a C_CopyObjectcall as a copy of

key parameters which had its CKA_LOCAL

attribute set to TRUE

The rules applying to the CKA_LOCAL mean that this attribute has the value TRUE if and only if the key

was originally generated on the token by a C_GenerateKey call.

DSA Public Key Parameter Objects

DSA public key parameter objects (object class CKO_DOMAIN_PARAMETERS, key type CKK_DSA) hold

DSA public key parameters. The following table defines the DSA public key parameter object attributes, in

addition to the common attributes listed in Table 1, Table 6, and Table 35:

Table 38 – DSA Public Key Parameter Object Attributes

Attribute Data Type Meaning

CKA_PRIME1,4 Big integer Prime p (512 to 1024 bits, in steps of

64 bits)

CKA_SUBPRIME1,4 Big integer Subprime q (160 bits)

CKA_BASE1,4 Big integer Base g

CKA_PRIME_BITS2,3 CK_ULONG Length of the prime value

The CKA_PRIME, CKA_SUBPRIME and CKA_BASE attribute values are collectively the “DSA

parameters”. See FIPS PUB 186 for more information on DSA key parameters.

Objects of this type may be generated by using the C_GenerateKey with the

CKM_DSA_PARAMETER_GEN mechanism.

Diffie-Hellman Public Key Parameter Objects

Diffie-Hellman public key parameter objects (object class CKO_DOMAIN_PARAMETERS, key type

CKK_DH) hold Diffie-Hellman public key parameters. The following table defines the Diffie-Hellman

public key parameter object attributes, in addition to the common attributes listed in Table 1, Table 6 and

Table 35:

Table 39 – Diffie-Hellman Public Key Parameter Object Attributes

Attribute Data Type Meaning

CKA_PRIME1,4 Big integer Prime p

CKA_BASE1,4 Big integer Base g

CKA_PRIME_BITS2,3 CK_ULONG Length of the prime value

ProtectToolkit C Programming Guide

34

The CKA_PRIME and CKA_BASE attribute values are collectively the “Diffie-Hellman parameters”.

Depending on the token, there may be limits on the length of the key components. See PKCS #3 for more

information on Diffie-Hellman key parameters.

Objects of this type may be generated by using the C_GenerateKey with the

CKM_DH_PKCS_PARAMETER_GEN mechanism.

Elliptic Curve Public Key Parameter Objects

Elliptic Curve public key parameter objects (object class CKO_DOMAIN_PARAMETERS, key type

CKK_EC) hold Elliptic Curve public key parameters.

The following table defines the Elliptic Curve public key parameter object attributes, in addition to the

common attributes listed in Tables 7.2, 7.14 and 7.41:

Table 40 – Elliptic Curve Public Key Parameter Object Attributes

Attribute Data Type Meaning

CKA_EC_PARAMS
1,3,6

 Byte Array DER encoding of ANSI X9.62

Parameters value

The CKA_EC_PARAMS attribute values is the “Elliptic Curve parameters”. Depending on the token, there

may be limits on the length of the key components.

PTK C does not support generation of this type of object.

When objects of this type are stored using the C_CreateObject then the domain parameters are verified.

See description of CKM_EC_KEY_PAIR_GEN mechanism for more details on the Parameter value.

Mechanisms
Characteristics of all ProtectToolkit C mechanisms are summarized in the tables that follow. Both PKCS #11

standard mechanisms and SafeNet proprietary mechanisms are included.

Table 41 lists the operations supported by each mechanism.

Table 42 lists the key size range and any parameters defined for each mechanism.

NOTE: Functions in bold in the tables are SafeNet proprietary.

After the tables are notes corresponding to the superscript numbers and, in alphabetical order, a detailed

description of each mechanism.

Table 41 – Mechanisms - Operations Supported

Mechanism Encrypt

&

Decrypt

Sign &

Verify

SR &

VR1

Digest Gen.

Key /

Key-Pair

Wrap &

Un-wrap

Derive FIPS

CKM_ARIA_CBC y y

CKM_ ARIA _CBC_PAD y y

CKM_ ARIA _ECB y y

CKM_ ARIA _KEY_GEN y

CKM_ ARIA _MAC y

CKM_ ARIA _MAC_GENERAL y

CKM_AES_CBC y y y

CKM_AES_CBC_PAD y y y

CKM_AES_ECB y y y

ProtectToolkit C Programming Guide

35

Mechanism Encrypt

&

Decrypt

Sign &

Verify

SR &

VR1

Digest Gen.

Key /

Key-Pair

Wrap &

Un-wrap

Derive FIPS

CKM_AES_KEY_GEN y y

CKM_AES_KEY_WRAP y y

CKM_AES_KEY_WRAP_PAD y y

CKM_AES_MAC y

CKM_AES_MAC_GENERAL y

CKM_ARDFP15 y

CKM_CAST128_CBC

(CKM_CAST5_CBC)
y y

CKM_CAST128_CBC_PAD

(CKM_CAST5_CBC_PAD)
y y

CKM_CAST128_ECB

(CKM_CAST5_ECB)
y y

CKM_CAST128_ECB_PAD4 y y

CKM_CAST128_KEY_GEN

(CKM_CAST5_KEY_GEN)
 y

CKM_CAST128_MAC

(CKM_CAST5_MAC)
 y

CKM_CAST128_MAC_GENERAL

(CKM_CAST5_MAC_GENERAL)
 y

CKM_CONCATENATE_BASE_AND

_DATA
 y y

CKM_CONCATENATE_BASE_AND

_KEY
 y y

CKM_CONCATENATE_DATA_AN

D_BASE
 Y y

CKM_DECODE_PKCS_74 Y y

CKM_DECODE_ X_5094 Y y

CKM_DES_BCF 4, 15
y y

CKM_DES_CBC y y

CKM_DES_CBC_PAD y y

CKM_DES_DERIVE_CBC4 y

CKM_DES_DERIVE_ECB4 y

CKM_DES_ECB y y

CKM_DES_ECB_PAD4 y y

CKM_DES_KEY_GEN y

CKM_DES_MAC y

CKM_DES_MAC_GENERAL y

CKM_DES_MDC_2_PAD14 y

CKM_DES_OFB644 Y

CKM_DES2_KEY_GEN y yes

CKM_DES3_BCF 4, 15
Y y y15

CKM_DES3_CBC y y y

CKM_DES3_CBC_PAD y y y

ProtectToolkit C Programming Guide

36

Mechanism Encrypt

&

Decrypt

Sign &

Verify

SR &

VR1

Digest Gen.

Key /

Key-Pair

Wrap &

Un-wrap

Derive FIPS

CKM_DES3_DDD_CBC4 Y y

CKM_DES3_DERIVE_CBC4 y

CKM_DES3_DERIVE_ECB4 y

CKM_DES3_ECB Y y y

CKM_DES3_ECB_PAD4 Y y y

CKM_DES3_KEY_GEN y y

CKM_DES3_MAC y y

CKM_DES3_MAC_GENERAL y y

CKM_DES3_OFB644 y y

CKM_DES3_RETAIL_CFB_MAC4 Y y

CKM_DES3_X919_MAC_GENERA

L4

 Y y

CKM_DES3_X919_MAC4 Y y

CKM_DH_PKCS_DERIVE y yes

CKM_DH_PKCS_KEY_PAIR_GEN y y

CKM_DH_PKCS_PARAMETER_GE

N
 y y

CKM_DSA y2 y

CKM_DSA_KEY_PAIR_GEN y y

CKM_DSA_PARAMETER_GEN y y

CKM_DSA_SHA1 y no
6

CKM_DSA_SHA1_PKCS4 y no
6

CKM_DSA_SHA224_PKCS4 y yes

CKM_DSA_SHA256_PKCS4 y yes

CKM_EC_KEY_PAIR_GEN Y y

CKM_ECDH1_DERIVE Y Yes

CKM_ECDSA y Y

CKM_ECDSA_SHA1 y no
6

CKM_ECDSA_SHA224 y Y

CKM_ECDSA_SHA256 y Y

CKM_ECDSA_SHA386 y Y

CKM_ECDSA_SHA512 y Y

CKM_ECIES4 y2

CKM_ENCODE_ATTRIBUTES4 y Y

CKM_ENCODE_PKCS_104 y y

CKM_ENCODE_PUBLIC_KEY4 y y

CKM_ENCODE_X_509_LOCAL_C

ERT4

 y y

CKM_ENCODE_X_5094 y y

ProtectToolkit C Programming Guide

37

Mechanism Encrypt

&

Decrypt

Sign &

Verify

SR &

VR1

Digest Gen.

Key /

Key-Pair

Wrap &

Un-wrap

Derive FIPS

CKM_EXTRACT_KEY_FROM_KEY y no

CKM_FM_DOWNLOAD4, 8, 9 y6 y

CKM_FM_DOWNLOAD_24, 8, 9 y6 y

CKM_GENERIC_SECRET_KEY_GE
N

 y y

CKM_IDEA_CBC y y

CKM_IDEA_CBC_PAD y y

CKM_IDEA_ECB y y

CKM_IDEA_ECB_PAD4 y y

CKM_IDEA_KEY_GEN y

CKM_IDEA_MAC y

CKM_IDEA_MAC_GENERAL y

CKM_KEY_TRANSLATION4, 7 y

CKM_KE.Y_WRAP_SET_OAEP y y

CKM_MD2 y

CKM_MD2_HMAC y

CKM_MD2_HMAC_GENERAL y

CKM_MD2_KEY_DERIVATION y

CKM_MD2_RSA_PKCS y

CKM_MD5 y

CKM_MD5_HMAC y

CKM_MD5_HMAC_GENERAL y

CKM_MD5_KEY_DERIVATION y

CKM_MD5_RSA_PKCS y

CKM_NVB15 y

CKM_OS_UPGRADE4, 8 y 6 y

CKM_OS_UPGRADE_24, 8 y 6 y

CKM_PBA_SHA1_WITH_SHA1_H
MAC

 Y

CKM_PBE_MD2_DES_CBC y

CKM_PBE_MD5_CAST128_CBC

(CKM_PBE_MD5_CAST5_CBC)
 y

CKM_PBE_MD5_DES_CBC y

CKM_PBE_SHA1_CAST128_CBC
(CKM_PBE_SHA1_CAST5_CBC)

 y

CKM_PBE_SHA1_DES2_EDE_CBC y

CKM_PBE_SHA1_DES3_EDE_CBC y

CKM_PBE_SHA1_RC2_128_CBC Y

CKM_PBE_SHA1_RC2_40_CBC Y

CKM_PBE_SHA1_RC4_128 Y

ProtectToolkit C Programming Guide

38

Mechanism Encrypt

&

Decrypt

Sign &

Verify

SR &

VR1

Digest Gen.

Key /

Key-Pair

Wrap &

Un-wrap

Derive FIPS

CKM_PBE_SHA1_RC4_40 Y

CKM_PKCS12_PBE_EXPORT Y

CKM_PKCS12_PBE_IMPORT Y

CKM_PP_LOAD_SECRET4 y y

CKM_RC2_CBC y y

CKM_RC2_CBC_PAD y y

CKM_RC2_ECB y y

CKM_RC2_ECB_PAD4 y Y

CKM_RC2_KEY_GEN y

CKM_RC2_MAC y

CKM_RC2_MAC_GENERAL y

CKM_RC4 y

CKM_RC4_KEY_GEN y

CKM_REPLICATE_TOKEN_RSA_A

ES
 y y

CKM_RIPEMD128 y

CKM_RIPEMD128_HMAC y

CKM_RIPEMD128_HMAC_GENER

AL
 y

CKM_RIPEMD128_RSA_PKCS y

CKM_RIPEMD160 y

CKM_RIPEMD160_HMAC y

CKM_RIPEMD160_HMAC_GENER

AL
 y

CKM_RIPEMD160_RSA_PKCS y

CKM_RSA_9796 y2 y

CKM_RSA_FIPS_186_4_PRIME_KE

Y_PAIR_GEN

 y y

CKM_RSA_PKCS y2 y2 y y y

CKM_RSA_PKCS_KEY_PAIR_GEN y Yes*

CKM_RSA_PKCS_OAEP y2 y y

CKM_RSA_X_509 y2 y2 y y

CKM_RSA_X9_31_KEY_PAIR_GEN y y

CKM_SECRET_RECOVER

_WITH_ATTRIBUTES4
 y y

CKM_SECRET_SHARE_WITH_ATTRI

BUTES4
 y y

CKM_SEED_CBC4 y Y

CKM_SEED_CBC_PAD4 y Y

CKM_SEED_ECB4 y Y

CKM_SEED_ECB_PAD4 y Y

ProtectToolkit C Programming Guide

39

Mechanism Encrypt

&

Decrypt

Sign &

Verify

SR &

VR1

Digest Gen.

Key /

Key-Pair

Wrap &

Un-wrap

Derive FIPS

CKM_SEED_KEY_GEN4 y

CKM_SEED_MAC4 y

CKM_SEED_MAC_GENERAL4 y

CKM_SET_ATTRIBUTES 4

CKM_SHA_1 y Yes

CKM_SHA_1_HMAC y Y

CKM_SHA_1_HMAC_GENERAL y Y

CKM_SHA1_KEY_DERIVATION y

CKM_SHA1_RSA_PKCS y no
6

CKM_SHA1_RSA_PKCS_TIMEST

AMP4

 y 10

CKM_SHA224 y Y

CKM_SHA224_HMAC y Y

CKM_SHA224_HMAC_GENERAL y Y

CKM_SHA224_KEY_DERIVATION y

CKM_SHA224_RSA_PKCS y Y

CKM_SHA256 y Y

CKM_SHA256_HMAC y Y

CKM_SHA256_HMAC_GENERAL y Y

CKM_SHA256_KEY_DERIVATION y

CKM_SHA256_RSA_PKCS y Y

CKM_SHA384 y Y

CKM_SHA384_HMAC y Y

CKM_SHA384_HMAC_GENERAL y Y

CKM_SHA384_KEY_DERIVATION y

CKM_SHA384_RSA_PKCS y Y

CKM_SHA512 y Y

CKM_SHA512_HMAC y Y

CKM_SHA512_HMAC_GENERAL y Y

CKM_SHA512_KEY_DERIVATION y No

CKM_SHA512_RSA_PKCS y Y

CKM_SSL3_KEY_AND_MAC_DERI
VE

 y No

CKM_SSL3_MASTER_KEY_DERIV

E
 y

CKM_SSL3_MD5_MAC y

CKM_SSL3_PRE_MASTER_KEY_G
EN

 y Y

CKM_SSL3_SHA1_MAC y

CKM_VISA_CVV4 y

ProtectToolkit C Programming Guide

40

Mechanism Encrypt

&

Decrypt

Sign &

Verify

SR &

VR1

Digest Gen.

Key /

Key-Pair

Wrap &

Un-wrap

Derive FIPS

CKM_WRAPKEY_DES3_CBC4 y Y

CKM_WRAPKEY_DES3_ECB4 y Y

CKM_WRAPKEY_AES_CBC4 y Y

CKM_WRAPKEYBLOB_DES3_CB

C4
 y Y

CKM_WRAPKEYBLOB_AES_CB

C4
 y Y

CKM_X9_42_DH_KEY_PAIR_GE

N4
 y Y

CKM_X9_42_DH_PARAMETER_G

EN4
 y Y

CKM_X9_42_DH_DERIVE4 Y y

CKM_XOR_BASE_AND_DATA y y

CKM_XOR_BASE_AND_KEY4 y Y

CKM_ZKA_MDC_2_KEY_DERIV

ATION4

 y

Note: In the above table, “y” means “yes” a condition is true for the given mechanism, while an empty cell means that the

condition is not true.

Some mechanisms are explicitly marked ”no” in the FIPS column – this is to indicate mechanisms that formerly were

acceptable for FIPS, but which are no longer acceptable in FIPS mode because the standard (or its interpretation by the

compliance-testing/validation community) has evolved. Some of the mechanisms marked “no” can still be used for verify

operations, in which case they are marked with the 6 subscript note (ie, no
6
) . See the following table for a complete list of the

subscripts and their meanings.

ProtectToolkit C Programming Guide

41

Table 42 – Mechanisms - Key Size Range and Parameters

Mechanism Min Max

-1 ==

infinite

Parameter

CKM_ ARIA _CBC 16 32 byte[16]

CKM_ ARIA _CBC_PAD 16 32 byte[16]

CKM_ ARIA _ECB 16 32 Null

CKM_ ARIA _KEY_GEN 16 32 Null

CKM_ ARIA _MAC 16 32 Null

CKM_ ARIA _MAC_GENERAL 16 32 CK_MAC_GENERAL_PARAMS

CKM_AES_KEY_WRAP 16 32 Byte[8] (optional)

CKM_AES_KEY_WRAP_PAD 16 32 Byte[8] (optional)

CKM_AES_CBC 16 32 byte[16]

CKM_AES_CBC_PAD 16 32 byte[16]

CKM_AES_ECB 16 32 Null

CKM_AES_KEY_GEN 16 32 Null

CKM_AES_MAC 16 32 Null

CKM_AES_MAC_GENERAL 16 32 CK_MAC_GENERAL_PARAMS

CKM_CAST128_CBC (CKM_CAST5_CBC) 1 16 byte[8]

CKM_CAST128_CBC_PAD
(CKM_CAST5_CBC_PAD)

1 16 byte[8]

CKM_CAST128_ECB (CKM_CAST5_ECB) 1 16 Null

CKM_CAST128_ECB_PAD4 1 16 Null

CKM_CAST128_KEY_GEN
(CKM_CAST5_KEY_GEN)

1 16 Null

CKM_CAST128_MAC (CKM_CAST5_MAC) 1 16 Null

CKM_CAST128_MAC_GENERAL
(CKM_CAST5_MAC_GENERAL)

1 16 CK_MAC_GENERAL_PARAMS

CKM_CONCATENATE_BASE_AND_DATA 0 -1 CK_KEY_DERIVATION_STRING_DATA

CKM_CONCATENATE_BASE_AND_KEY 0 -1 CK_OBJECT_HANDLE

CKM_CONCATENATE_DATA_AND_BASE 0 -1 CK_KEY_DERIVATION_STRING_DATA

CKM_DECODE_PKCS_74 0 0 Null

CKM_DECODE_ X_5094 0 0 Null

CKM_DES_BCF 4, 15 8 8 byte[8]

CKM_DES_CBC 8 8 byte[8]

CKM_DES_CBC_PAD 8 8 byte[8]

CKM_DES_DERIVE_CBC4 8 8 CK_DES_CBC_PARAMS

CKM_DES_DERIVE_ECB4 8 8 byte[n*8]

CKM_DES_ECB 8 8 Null

CKM_DES_ECB_PAD4 8 8 Null

CKM_DES_KEY_GEN 8 8 Null

ProtectToolkit C Programming Guide

42

Mechanism Min Max

-1 ==

infinite

Parameter

CKM_DES_MAC 8 8 CK_MAC_GENERAL_PARAMS

CKM_DES_MAC_GENERAL 8 8 CK_MAC_GENERAL_PARAMS

CKM_DES_MDC_2_PAD14 0 0 Null

CKM_DES_OFB644 8 8 byte[8]

CKM_DES2_KEY_GEN 16 16 Null

CKM_DES3_BCF 4, 15 16 24 byte[8]

CKM_DES3_CBC 16 24 byte[8]

CKM_DES3_CBC_PAD 16 24 byte[8]

CKM_DES3_DDD_CBC4 16 24 byte[8]

CKM_DES3_DERIVE_CBC4 16 24 CK_DES2_CBC_PARAMS

CK_DES3_CBC_PARAMS

CKM_DES3_DERIVE_ECB4 0 0 byte[n*8]

CKM_DES3_ECB 16 24 Null

CKM_DES3_ECB_PAD4 16 24 Null

CKM_DES3_KEY_GEN 24 24 Null

CKM_DES3_MAC 16 24 Null

CKM_DES3_MAC_GENERAL 16 24 CK_MAC_GENERAL_PARAMS

CKM_DES3_OFB644 16 24 byte[8]

CKM_DES3_RETAIL_CFB_MAC4 16 24 byte[8] (IV)

CKM_DES3_X919_MAC_GENERAL4 16 24 byte[8]

CKM_DES3_X919_MAC4 16 24 CK_MAC_GENERAL_PARAMS

CKM_DH_PKCS_DERIVE 12 512/

1024

4096 byte[] (Big Integer)

CKM_DH_PKCS_KEY_PAIR_GEN 12 512/

1024

4096 Null

CKM_DH_PKCS_PARAMETER_GEN 12 512/

1024

4096 Null

CKM_DSA 12 512/

2048

4096 Null

CKM_DSA_KEY_PAIR_GEN 12 512/

2048

4096 Null

CKM_DSA_PARAMETER_GEN 12 512/

2048

4096 Null

CKM_DSA_SHA1 512/

2048

4096 Null

CKM_DSA_SHA1_PKCS4 512/

2048

4096 Null

CKM_DSA_SHA224_PKCS4 1024

/204

8

4096 Null

CKM_DSA_SHA256_PKCS4 1024

/204

4096 Null

ProtectToolkit C Programming Guide

43

Mechanism Min Max

-1 ==

infinite

Parameter

8

CKM_EC_KEY_PAIR_GEN 160/

224

571 Null

CKM_ECDH1_DERIVE 160 571 CK_ECDH1_DERIVE_PARAMS

CKM_ECDSA 160/

224

571 Null

CKM_ECDSA_SHA1 160/

224

571 Null

CKM_ECDSA_SHA224 160/

224

571 Null

CKM_ECDSA_SHA256 160/

224

571 Null

CKM_ECDSA_SHA384 160/

224

571 Null

CKM_ECDSA_SHA512 160/

224

571 Null

CKM_ECIES 4 160 571 CK_ECIES_PARAMS

CKM_ENCODE_ATTRIBUTES4 0 0 Null

CKM_ENCODE_PKCS_104 0 0 Null

CKM_ENCODE_PUBLIC_KEY4 0 0 Null

CKM_ENCODE_X_509_LOCAL_CERT4 0 0 Null

CKM_ENCODE_X_5094 0 0 CK_MECH_TYPE_AND_OBJECT

CKM_EXTRACT_KEY_FROM_KEY 0 0 CK_EXTRACT_PARAMS

CKM_FM_DOWNLOAD4, 8, 9 , 11 512/

1024

4096 Null

CKM_FM_DOWNLOAD_24, 8, 9 , 11 2048

/102

4

4096 Null

CKM_GENERIC_SECRET_KEY_GEN 0 -1 Null

CKM_IDEA_CBC 16 16 byte[8]

CKM_IDEA_CBC_PAD 16 16 byte[8]

CKM_IDEA_ECB 16 16 Null

CKM_IDEA_ECB_PAD4 16 16 Null

CKM_IDEA_KEY_GEN 16 16 Null

CKM_IDEA_MAC 16 16 Null

CKM_IDEA_MAC_GENERAL 16 16 CK_MAC_GENERAL_PARAMS

CKM_KEY_TRANSLATION4, 7 512 4096 Null

CKM_KEY_WRAP_SET_OAEP 11 512/

1024

4096 CK_KEY_WRAP_SET_OAEP_PARAMS

CKM_MD2 0 0 Null

CKM_MD2_HMAC 0 0 Null

ProtectToolkit C Programming Guide

44

Mechanism Min Max

-1 ==

infinite

Parameter

CKM_MD2_HMAC_GENERAL 0 0 CK_MAC_GENERAL_PARAMS

CKM_MD2_KEY_DERIVATION 0 0 Null

CKM_MD2_RSA_PKCS 512 4096 Null

CKM_MD5 0 0 Null

CKM_MD5_HMAC 0 0 Null

CKM_MD5_HMAC_GENERAL 0 0 CK_MAC_GENERAL_PARAMS

CKM_MD5_KEY_DERIVATION 0 0 Null

CKM_MD5_RSA_PKCS 512 4096 Null

CKM_NVB15 0 0 Null

CKM_OS_UPGRADE4, 8, 9 1024 4096 Null

CKM_OS_UPGRADE_24, 8, 9 1024 4096 Null

CKM_PBA_SHA1_WITH_SHA1_HMAC 20 20 CK_PBE_PARAMS

CKM_PBE_MD2_DES_CBC 8 8 CK_PBE_PARAMS

CKM_PBE_MD5_CAST128_CBC

(CKM_PBE_MD5_CAST5_CBC)
16 16 CK_PBE_PARAMS

CKM_PBE_MD5_DES_CBC 8 8 CK_PBE_PARAMS

CKM_PBE_SHA1_CAST128_CBC

(CKM_PBE_SHA1_CAST5_CBC)
16 16 CK_PBE_PARAMS

CKM_PBE_SHA1_DES2_EDE_CBC 16 16 CK_PBE_PARAMS

CKM_PBE_SHA1_DES3_EDE_CBC 24 24 CK_PBE_PARAMS

CKM_PBE_SHA1_RC2_128_CBC 16 16 CK_PBE_PARAMS

CKM_PBE_SHA1_RC2_40_CBC 5 5 CK_PBE_PARAMS

CKM_PBE_SHA1_RC4_128 16 16 CK_PBE_PARAMS

CKM_PBE_SHA1_RC4_40 5 5 CK_PBE_PARAMS

CKM_PKCS12_PBE_EXPORT 13 1 -1 CKM_PKCS12_PBE_EXPORT_PARAMS

CKM_PKCS12_PBE_IMPORT 14 1 -1 CKM_PKCS12_PBE_IMPORT_PARAMS

CKM_PP_LOAD_SECRET4 1 -1 CK_PP_LOAD_SECRET_PARAMS

CKM_RC2_CBC 1 128 CK_RC2_CBC_PARAMS

CKM_RC2_CBC_PAD 1 128 CK_RC2_CBC_PARAMS

CKM_RC2_ECB 1 128 CK_RC2_PARAMS

CKM_RC2_ECB_PAD4 1 128 CK_RC2_PARAMS

CKM_RC2_KEY_GEN 1 128 Null

CKM_RC2_MAC 1 128 CK_RC2_PARAMS

CKM_RC2_MAC_GENERAL 1 128 CK_RC2_MAC_GENERAL_PARAMS

CKM_RC4 0 256 Null

CKM_RC4_KEY_GEN 0 256 Null

CKM_REPLICATE_TOKEN_RSA_AES 2048 2048 CK_REPLICATE_TOKEN_PARAMS

CKM_RIPEMD128 0 0 Null

CKM_RIPEMD128_HMAC 0 0 Null

ProtectToolkit C Programming Guide

45

Mechanism Min Max

-1 ==

infinite

Parameter

CKM_RIPEMD128_HMAC_GENERAL 0 0 CK_MAC_GENERAL_PARAMS

CKM_RIPEMD128_RSA_PKCS 512 4096 Null

CKM_RIPEMD160 0 0 Null

CKM_RIPEMD160_HMAC 0 0 Null

CKM_RIPEMD160_HMAC_GENERAL 0 0 CK_MAC_GENARAL_PARAMS

CKM_RIPEMD160_RSA_PKCS 512 4096 Null

CKM_RSA_9796 512 4096 Null

CKM_RSA_PKCS 11 512/

1024

4096 Null

CKM_RSA_PKCS_KEY_PAIR_GEN 11 512/

1024

4096 Null

CKM_RSA_PKCS_OAEP 11 512/

1024

4096 CK_RSA_PKCS_OAEP_PARAMS

CKM_RSA_FIPS_186_4_PRIME_KEY_PAIR_GE

N 11

2048 3072 CK_ULONG (optional)

CKM_RSA_X_509 11 512/

1024

4096 Null

CKM_RSA_X9_31_KEY_PAIR_GEN 11 1024 4096 Null

CKM_SECRET_RECOVER_WITH_ATTRIBUTES4 0 -1 CK_SECRET_SHARE_PARAMS

CKM_SECRET_SHARE_WITH_ATTRIBUTES4 0 -1 Null

CKM_SEED_CBC4 16 16 byte[16]

CKM_SEED_CBC_PAD4 16 16 byte[16]

CKM_SEED_ECB4 16 16 Null

CKM_SEED_ECB_PAD4 16 16 Null

CKM_SEED_KEY_GEN4 16 16 Null

CKM_SEED_MAC4 16 16 Null

CKM_SEED_MAC_GENERAL4 16 16 CK_MAC_GENERAL_PARAMS

CKM_SET_ATTRIBUTES 4 0 0 Null

CKM_SHA_1 0 0 Null

CKM_SHA_1_HMAC 0 -1 Null

CKM_SHA_1_HMAC_GENERAL 0 -1 CK_MAC_GENERAL_PARAMS

CKM_SHA1_KEY_DERIVATION 0 0 Null

CKM_SHA1_RSA_PKCS 11 512 4096 Null

CKM_SHA1_RSA_PKCS_TIMESTAMP4 , 11 512 4096 CK_TIMESTAMP_PARAMS

CKM_SHA2246 0 0 Null

CKM_SHA225_HMAC 0 -1 Null

CKM_SHA224_HMAC_GENERAL 0 -1 CK_MAC_GENERAL_PARAMS

CKM_SHA224_KEY_DERIVATION 0 0 Null

CKM_SHA224_RSA_PKCS 11 512/

1024

4096 Null

ProtectToolkit C Programming Guide

46

Mechanism Min Max

-1 ==

infinite

Parameter

CKM_SHA256 0 0 Null

CKM_SHA256_HMAC 0 -1 Null

CKM_SHA256_HMAC_GENERAL 0 -1 CK_MAC_GENERAL_PARAMS

CKM_SHA256_KEY_DERIVATION 0 0 Null

CKM_SHA256_RSA_PKCS 11 512/

1024

4096 Null

CKM_SHA384 0 0 Null

CKM_SHA384_HMAC 0 -1 Null

CKM_SHA384_HMAC_GENERAL 0 -1 CK_MAC_GENERAL_PARAMS

CKM_SHA384_KEY_DERIVATION 0 0 Null

CKM_SHA384_RSA_PKCS 11 512/

1024

4096 Null

CKM_SHA512 0 0 Null

CKM_SHA512_HMAC 0 -1 Null

CKM_SHA512_HMAC_GENERAL 0 -1 CK_MAC_GENERAL_PARAMS

CKM_SHA512_KEY_DERIVATION 0 0 Null

CKM_SHA512_RSA_PKCS 11 512/

1024

4096 Null

CKM_SSL3_KEY_AND_MAC_DERIVE 48 48 CK_SSL3_KEY_MAT_PARAMS

CKM_SSL3_MASTER_KEY_DERIVE 48 48 CK_SSL3_MASTER_KEY_DERIVE_PARAMS

CKM_SSL3_MD5_MAC 0 -1 CK_MAC_GENERAL_PARAMS

CKM_SSL3_PRE_MASTER_KEY_GEN 48 48 CK_VERSION

CKM_SSL3_SHA1_MAC 0 -1 CK_MAC_GENERAL_PARAMS

CKM_VISA_CVV4 16 16 Null

CKM_WRAPKEY_DES3_CBC4 16 24 Null

CKM_WRAPKEY_DES3_ECB4 16 24 Null

CKM_WRAPKEY_AES_CBC 4 16 32 Null

CKM_WRAPKEYBLOB_DES3_CBC 4 16 32 Null

CKM_WRAPKEYBLOB_AES_CBC 4 16 32 Null

CKM_X9_42_DH_KEY_PAIR_GEN 4 1024 4096 null

CKM_X9_42_DH_PARAMETER_GEN 4 1024 4096 null

CKM_X9_42_DH_DERIVE 4 1024 4096 CK_X9_42_DH1_DERIVE_PARAMS

CKM_XOR_BASE_AND_DATA 0 -1 CK_KEY_DERIVATION_STRING_DATA

CKM_XOR_BASE_AND_KEY4 0 -1 CK_OBJECT_HANDLE

CKM_ZKA_MDC_2_KEY_DERIVATION4 0 0 byte[arbitrary]

Note – key size limitations specified above may also be further limited depending on the specific operation

being performed e.g. CKM_DES3_CBC mechanism specified 16 byte key as a lower limit but in FIPS mode

such keys are only allowed for legacy decryption operations and not new encryptions. For more details see

the relevant section.

ProtectToolkit C Programming Guide

47

1 SR = SignRecover, VR = VerifyRecover

2 Single part operation only

3 Mechanism can be used only for wrapping, not unwrapping

4 Mechanism SafeNet proprietary

5 Sign Only

6 Verify Only

7
Only available when CKF_ENTRUST_READY set in Security Policy Register.

8
Only available on Administration token

9 Only available on FM Enabled FW

10 Sign only

11
All RSA operations performed under FIPS mode are carried out only if the specified key has a modulus of 2048

bits or greater. Any attempt to create an RSA key smaller than 2048 bits while running in FIPS mode results in a

CKR_KEY_SIZE_RANGE or CKA_TEMPLATE_INCONSISTENT error.

12All DSA and DH operations performed under FIPS mode are carried out only if the specified key has a modulus of

2048 bits or greater. Any attempt to create a DSA or DH key smaller than 2048 bits while running in FIPS mode

results in a CKR_KEY_SIZE_RANGE or CKA_TEMPLATE_INCONSISTENT error.

13 Wrap

14 Unwrap

15Available in SW Emulation only

ProtectToolkit C Programming Guide

48

CKM_AES_CBC

AES-CBC, denoted CKM_AES_CBC, is a mechanism for single and multiple-part encryption and decryption;

key wrapping; and key unwrapping, based on NIST’s Advanced Encryption Standard and cipher-block

chaining mode. It has a parameter, a 16-byte initialization vector.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may not be able to

wrap/unwrap every secret key that it supports. For wrapping, the mechanism encrypts the value of the

CKA_VALUE attribute of the key that is wrapped; padded on the trailing end with up to block size, minus

one, null bytes so that the resulting length is a multiple of the block size. The output data is the same length

as the padded input data. It does not wrap the key type, key length, or any other information about the key.

The application must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key and truncates the result according to the

CKA_KEY_TYPE attribute of the template and, if it has one and the key type supports it, the

CKA_VALUE_LEN attribute of the template. The mechanism contributes the result as the CKA_VALUE

attribute of the new key. Other attributes required by the key type must be specified in the template.

Constraints on key types and the length of data are summarized in the following table:

Table 43 – AES-CBC: Key and Data Length

Function Key Type Input length Output length Comments

C_Encrypt AES Multiple of

block size

same as input length no final part

C_Decrypt AES Multiple of

block size

same as input length no final part

C_WrapKey AES Any input length rounded up to

multiple of the block size

C_UnwrapKey AES Multiple of

block size

determined by type of key

being unwrapped or

CKA_VALUE_LEN

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO

structure specify the supported range of AES key sizes, in bytes.

CKM_AES_CBC_PAD

AES-CBC with PKCS padding, denoted CKM_AES_CBC_PAD, is a mechanism for single and multiple-part

encryption and decryption; key wrapping; and key unwrapping, based on NIST’s Advanced Encryption

Standard; cipher-block chaining mode; and the block cipher padding method detailed in PKCS #7. It has a

parameter, a 16-byte initialization vector.

The PKCS padding in this mechanism allows the length of the plaintext value to be recovered from the

cipher text value. No value should be specified for the CKA_VALUE_LEN attribute when unwrapping keys

with this mechanism.

In addition to being able to wrap and unwrap secret keys, this mechanism can wrap and unwrap RSA, Diffie-

Hellman, X9.42 Diffie-Hellman, and DSA private keys. The entries in Table 40 for data length constraints

when wrapping and unwrapping keys do not apply to wrapping and unwrapping private keys.

ProtectToolkit C Programming Guide

49

Constraints on key types and the length of data are summarized in the following table: For this mechanism,

the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the

supported range of AES key sizes, in bytes.

Table 44 – AES-CBC with PKCS Padding: Key and Data Length

Function Key Type Input Length Output Length

C_Encrypt AES Any Input length rounded up to

multiple of the block size

C_Decrypt AES Multiple of block size Between 1 and block size bytes

shorter than input length

C_WrapKey AES Any Input length rounded up to

multiple of the block size

C_UnwrapKey
AES Multiple of block size

Between 1 and block length bytes

shorter than input length

CKM_AES_ECB

AES-ECB, denoted CKM_AES_ECB, is a mechanism for single- and multiple-part encryption and

decryption; key wrapping; and key unwrapping, based on NIST Advanced Encryption Standard and

electronic codebook mode. It does not have a parameter.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may not be able to

wrap/unwrap every secret key that it supports. For wrapping, the mechanism encrypts the value of the

CKA_VALUE attribute of the key that is wrapped; padded on the trailing end with up to block size, minus

one, null bytes so that the resulting length is a multiple of the block size. The output data is the same length

as the padded input data. It does not wrap the key type, key length, or any other information about the key.

The application must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key and truncates the result according to the

CKA_KEY_TYPE attribute of the template and, if it has one and the key type supports it, the

CKA_VALUE_LEN attribute of the template. The mechanism contributes the result as the

CKA_VALUEattribute of the new key. Other attributes required by the key type must be specified in the

template.

Constraints on key types and the length of data are summarized in the following table:

Table 45 – AES-ECB: Key and Data Length

Function Key Type Input Length Output Length Comments

C_Encrypt AES Multiple of block size Same as input length No final part

C_Decrypt AES Multiple of block size Same as input length No final part

C_WrapKey AES Any Input length rounded

up to multiple of

block size

C_UnwrapKey AES Multiple of block size Determined by type

of key being

unwrapped or

CKA_VALUE_LEN

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO

structure specify the supported range of AES key sizes, in bytes.

ProtectToolkit C Programming Guide

50

CKM_AES_KEY_GEN

The AES key generation mechanism, denoted CKM_AES_KEY_GEN, is a key generation mechanism for

NIST’s Advanced Encryption Standard. It does not have a parameter.

The mechanism generates AES keys with a particular length in bytes, as specified in the CKA_VALUE_LEN

attribute of the template for the key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE and CKA_VALUE attributes to the new

key. Other attributes supported by the AES key type (specifically, the flags indicating which functions the

key supports) may be specified in the template for the key or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO

structure specify the supported range of AES key sizes, in bytes. Key sizes from 8 to 256 bytes are

supported. The algorithm block size is 16 bytes.

CKM_AES_MAC

AES-MAC, denoted by CKM_AES_MAC, is a special case of the general-length AES-MAC mechanism (see

section above). AES-MAC always produces and verifies MACs that are half the block size in length. It does

not have a parameter.

Constraints on key types and the length of data are summarized in the following table:

Table 20 – AES-MAC: Key and Data Length

Function Key Type Data Length Signature Length

C_Sign AES Any ½ block size (8 bytes)

C_Verify AES Any ½ block size (8 bytes)

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO

structure specify the supported range of AES key sizes, in bytes.

CKM_AES_MAC_GENERAL

General-length AES-MAC, denoted CKM_AES_MAC_GENERAL, is a mechanism for single- and multiple-

part signatures and verification, based on NIST Advanced Encryption Standard.

It has a parameter, a CK_MAC_GENERAL_PARAMS structure, which specifies the output length desired

from the mechanism.

The output bytes from this mechanism are taken from the start of the final AES cipher block produced in the

MACing process.

Constraints on key types and the length of data are summarized in the following table:

Table 21 – General-length AES-MAC: Key and Data Length

Function Key Type Data Length Signature Length

C_Sign AES Any 0-block size, as specified in parameters

C_Verify AES Any 0-block size, as specified in parameters

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO

structure specify the supported range of AES key sizes, in bytes.

ProtectToolkit C Programming Guide

51

CKM_CAST128_ECB_PAD

This is a padding mechanism. Other padding mechanisms implemented are: CKM_RC2_ECB_PAD,

CKM_DES_ECB_PAD, CKM_DES3_ECB_PAD and CKM_IDEA_ECB_PAD.

These block cipher mechanisms are all based on the corresponding Electronic Code Book (ECB) algorithms,

implied by their name, but with the addition of the block-cipher padding method detailed in PKCS#7.

These mechanisms are supplied for compatibility only and their use in new applications is not

recommended.

PKCS#11 Version 2.1 specifies mechanisms for Chain Block Cipher algorithms with and without padding

and ECB algorithms without padding, but not ECB with padding. These mechanisms fill this gap. The

mechanisms may be used for general data encryption and decryption and also for key wrapping and

unwrapping (provided all the access conditions of the relevant keys are satisfied).

CKM_DECODE_PKCS_7

This mechanism is used with the C_DeriveKey function to derive a set of X.509 Certificate objects and

X.509 CRL objects from a PKCS#7 object. The base key object handle is a CKO_DATA object (the PKCS#7

encoding) which has a CKA_OBJECT_ID attribute indicating the type of the object as being a PKCS#7

encoding. This mechanism does not take any parameters.

One of the functions of PKCS7 is a mechanism for distributing certificates and CRLs in a single encoded

package. In this case the PKCS7 message content is usually empty. This mechanism is provided to split

certificates and CRLs from such a PKCS7 encoding so that those certificates and CRLs may be further

processed.

This mechanism will decode a PKCS7 encoding and create PKCS#11 objects for all certificates (object class

CKO_CERTIFICATE) and CRLs (object class CKO_CRL) that it finds in the encoding. The signature on

the PKCS7 content is not verified. The parameter containing the newly derived key is the last Certificate or

CRL that is extracted from the PKCS7 encoding. The attribute template is applied to all objects extracted

from the encoding.

CKM_DECODE_X_509

This mechanism is used with the C_DeriveKey function to derive a public key object from an X.509

certificate or a PKCS#10 certification request. This mechanism does not perform a certificate validation.

The base key object handle should refer to the X.509 certificate or PKCS#10 certificate request. This

mechanism has no parameter.

CKM_DES_DERIVE_CBC

The CKM_DES_DERIVE_CBC and CKM_DES3_DERIVE_CBC mechanisms are used with the

C_DeriveKey function to derive a secret key by performing a CBC (no padding) encryption. They create a

new secret key whose value is generated by encrypting the provided data with the provided Single, Double

or Triple length DES key.

Three new mechanism Parameter structures are created, CK_DES_CBC_PARAMS,

CK_DES2_CBC_PARAMS and CK_DES3_CBC_PARAMS, for use by these mechanisms. These

structures consists of 2-byte arrays, the first array contains the IV (must be 8 bytes) and the second array

contains the data to be encrypted, being 8, 16 or 24 bytes in length, for each PARAMS structure

respectively.

These mechanisms require the pParameter in the CK_MECHANISM structure to be a pointer to one of the

above new Parameter structures and the parameterLen to be the size of the provided Parameter structure.

If the length of data to be encrypted by the CBC mechanism does not fit into one of the above PARAMS

structures, the developer must produce their own byte array with the following layout. The first 8 bytes must

be the IV, then the data to be encrypted. To use this array, the pParameter in the CK_MECHANISM

structure must be a pointer to this array and the parameterLen is the length of the IV (must be 8 bytes) plus

the length of the provided data, which must be a multiple of 8 bytes.

ProtectToolkit C Programming Guide

52

The following rules apply to the provided attribute template:

 If no length or key type is provided in the template, then the key produced by these mechanisms is a

generic secret key. Its length is equal to the length of the provided data.

 If no key type is provided in the template, but a length is, then the key produced by these mechanisms

is a generic secret key of the specified length, extracted from the left bytes of the cipher text.

 If no length is provided in the template, but a key type is, then that key type must have a well-defined

length. If it does, then the key produced by these mechanisms is of the type specified in the template.

If it doesn’t, an error is returned.

 If both a key type and a length are provided in the template, the length must be compatible with that

key type. The key produced by these mechanisms is of the specified type and length, extracted from

the left bytes of the cipher text.

If a DES key is derived with these mechanisms, the parity bits of the key are set properly. If the requested

type of key requires more bytes than the length of the provided data, an error is generated.

These mechanisms have the following rules about key sensitivity and extractability:

 If the base key has its CKA_SENSITIVE attribute set to TRUE, so does the derived key. If not, then

the derived key’s CKA_SENSITIVE attribute is set either from the supplied template or else it

defaults to TRUE.

 Similarly, the derived key’s CKA_EXTRACTABLE attribute is set either from the supplied template

or else it defaults to the value of the CKA_EXTRACTABLE of the base key.

 The derived key’s CKA_ALWAYS_SENSITIVE attribute is set to TRUE if and only if the base key

has its CKA_ALWAYS_SENSITIVE attribute set to TRUE.

 Similarly, the derived key’s CKA_NEVER_EXTRACTABLE attribute is set to TRUE if and only if

the base key has its CKA_NEVER_EXTRACTABLE attribute set to TRUE.

CKM_DES_DERIVE_ECB

The CKM_DES_DERIVE_ECB and CKM_DES3_DERIVE_ECB mechanisms are used with the

C_DeriveKey function to derive a secret key by performing an ECB (no padding) encryption. They create a

new secret key whose value is generated by encrypting the provided data with the provided single, double or

triple length DES key.

The CKM_DES_DERIVE_ECB and CKM_DES3_DERIVE_ECB mechanisms require the pParameter in

the CK_MECHANISM structure to be the pointer to the data that is to be encrypted. The parameterLen is

the length of the provided data, which must be a multiple of 8 bytes.

The following rules apply to the provided attribute template:

 If no length or key type is provided in the template, then the key produced by these mechanisms is a

generic secret key. Its length is equal to the length of the provided data.

 If no key type is provided in the template, but a length is, then the key produced by these mechanisms

is a generic secret key of the specified length, extracted from the left bytes of the cipher text.

 If no length is provided in the template, but a key type is, then that key type must have a well-defined

length. If it does, then the key produced by these mechanisms is of the type specified in the template.

If it doesn’t, an error is returned.

 If both a key type and a length are provided in the template, the length must be compatible with that

key type. The key produced by these mechanisms is of the specified type and length, extracted from

the left bytes of the cipher text.

If a DES key is derived with these mechanisms, the parity bits of the key are set properly. If the requested

type of key requires more bytes than the length of the provided data, an error is generated.

ProtectToolkit C Programming Guide

53

The mechanisms have the following rules about key sensitivity and extractability:

 If the base key has its CKA_SENSITIVE attribute set to TRUE, so does the derived key. If not, then

the derived key’s CKA_SENSITIVE attribute is set either from the supplied template or else it

defaults to TRUE.

 Similarly, the derived key’s CKA_EXTRACTABLE attribute is set either from the supplied template

or else it defaults to the value of the CKA_EXTRACTABLE of the base key.

 The derived key’s CKA_ALWAYS_SENSITIVE attribute is set to TRUE if and only if the base key

has its CKA_ALWAYS_SENSITIVE attribute set to TRUE.

 Similarly, the derived key’s CKA_NEVER_EXTRACTABLE attribute is set to TRUE if and only if

the base key has its CKA_NEVER_EXTRACTABLE attribute set to TRUE.

CKM_DES_ECB_PAD

See the entry for CKM_CAST128_ECB_PAD.

CKM_DES_MDC_2_PAD1

This mechanism is a hash function as defined in ISO/IEC DIS 10118-2 using DES as block algorithm.

This mechanism implements padding in accordance with ISO 10118-1 Method 1. Basically, zeros are used

to pad the input data to a multiple of eight if required. If the input data is already a multiple of eight, then no

padding is added.

CKM_DES_OFB64

Single DES-OFB64 denoted CKM_DES_OFB64 is a mechanism for single and multiple part encryption and

decryption; based on DES Output Feedback Mode.

It has a parameter, an 8-byte initialization vector.

This mechanism does not require either clear text or cipher text to be presented in multiple block lengths.

There is no padding required. The mechanism will always return a reply equal in length to the request.

CKM_DES3_DDD_CBC

CKM_DES3_DDD_CBC is a mechanism for single- and multiple-part encryption and decryption, key

wrapping and key unwrapping, based on the DES block cipher and cipher-block chaining mode as defined in

FIPS PUB 81.

The DES3-DDD cipher encrypts an 8 byte block by D(KL, D(KR, D(KL, data)))and decrypts with

E(KL, E(KR, E(KL, cipher))); where Key = KL || KR, and E(KL, data) is a single DES

encryption using key KL and D(KL, cipher)is a single DES decryption.

It has a parameter, an initialization vector for cipher block chaining mode. The initialization vector has the

same length as the block size, which is 8 bytes.

Constraints on key types and the length of data are summarized in the following table:

Table 22 – DES3-DDD Block Cipher CBC: Key and Data Length

Function Key Type Input Length Output Length Comments

C_Encrypt CKK_DES2 Any input length rounded up

to multiple of block size

no final part

C_Decrypt CKK_DES2 Multiple of

block size

same as input length no final part

C_WrapKey CKK_DES2 Any input length rounded up

to multiple of block size

C_UnwrapKey CKK_DES2 Any Determined by type of

key being unwrapped or

CKA_VALUE_LEN

ProtectToolkit C Programming Guide

54

For the encrypt and wrap operations, the mechanism performs zero-padding when the input data or wrapped

key’s length is not a multiple of 8. That is, the value 0x00 is appended to the last block until its length is 8

(for example, plaintext 0x01 would be padded to become 0x010x000x000x000x000x000x000x00).

With the exception of the algorithm specified in this section, the use of this mechanism is identical to the use

of other secret key mechanisms. Therefore, for further details on aspects not covered here (for example,

access control, or error codes) refer to the PKCS#11 standard.

CKM_DES3_DERIVE_CBC

See the entry for CKM_DES_DERIVE_CBC.

CKM_DES3_DERIVE_ECB

See the entry for CKM_DES_DERIVE_ECB.

CKM_DES3_ECB_PAD

See the entry for CKM_CAST128_ECB_PAD.

CKM_DES3_OFB64

Triple DES-OFB64 denoted CKM_DES3_OFB64is a mechanism for single and multiple part encryption and

decryption; based on DES Output Feedback Mode.

It has a parameter, an 8-byte initialization vector.

This mechanism does not require either clear text or cipher text to be presented in multiple block lengths.

There is no padding required. The mechanism will always return a reply equal in length to the request.

CKM_DES3_RETAIL_CFB_MAC

This is a signature generation and verification mechanism. The produced MAC is 8 bytes in length. It is an

extension of the single length key MAC mechanisms. It takes an 8 byte IV as a parameter, which is

encrypted (ECB mode) with the left most key value before the first data block is MAC'ed.

The data, which must be a multiple of 8 bytes, is MAC’ed with the left most key value in the normal

manner, but the final cipher block is then decrypted (ECB mode) with the middle key value and encrypted

(ECB mode) with the Right most key part.

For double length DES keys, the Right key component is the same as the Left key component.

CKM_DES3_X919_MAC

See the entry for CKM_DES3_X919_MAC_GENERAL.

CKM_DES3_X919_MAC_GENERAL

CKM_DES3_X919_MAC and CKM_DES3_X919_MAC_GENERAL are signature generation and

verification mechanisms, as defined by ANSI X9.19. They are an extension of the single length key MAC

mechanisms. The data is MAC’ed with the left most key value in the normal manner, but the final cipher

block is then decrypted (ECB mode) with the middle key value and encrypted (ECB mode) with the Right

most key part.

For double length keys, the Right key component is the same as the Left key component.

CKM_DH_PKCS_PARAMETER_GEN

The PKCS #3 Diffie-Hellman key parameter generation mechanism, denoted

CKM_DH_PKCS_PARAMETER_GEN, is a key parameter generation mechanism based on Diffie-Hellman

key agreement, as defined in PKCS #3. It does not have a parameter.

ProtectToolkit C Programming Guide

55

The mechanism generates Diffie-Hellman key parameters with a particular prime length in bits, as specified

in the CKA_PRIME_BITS attribute of the template for the key parameters. The mechanism contributes the

CKA_CLASS, CKA_KEY_TYPE, CKA_PRIME, CKA_BASE, and CKA_PRIME_BITS attributes to the new

object. Other attributes supported by the Diffie-Hellman key parameter types may also be specified in the

template for the key parameters, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO

structure specify the supported range of Diffie-Hellman prime sizes, in bits.

CKM_DSA_PARAMETER_GEN

The DSA key parameter generation mechanism, denoted CKM_DSA_PARAMETER_GEN, is a key parameter

generation mechanism based on the Digital Signature Algorithm defined in FIPS PUB 186. This mechanism

does not have a parameter.

The mechanism generates DSA key parameters with a particular prime length in bits, as specified in the

CKA_PRIME_BITS attribute of the template for the key parameters. The mechanism contributes the

CKA_CLASS, CKA_KEY_TYPE, CKA_PRIME, CKA_BASE, CKA_SUBPRIME, and CKA_PRIME_BITS

attributes to the new object. Other attributes supported by the DSA key parameter types may also be

specified in the template for the key parameters, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO

structure specify the supported range of DSA prime sizes, in bits.

CKM_DSA_SHA1_PKCS

The PKCS #1 DSA signature with SHA-1 mechanism, denoted CKM_DSA_SHA1_PKCS, performs single

and multiple-part digital signature and verification operations without message recovery. The operations

performed are as described in PKCS #1 with the object identifier sha1WithDSAEncryption.

It is similar to the PKCS#11 mechanism CKM_RSA_SHA1_PKCSexcept DSA is used instead of RSA. This

mechanism has no parameter.

CKM_EC_KEY_PAIR_GEN

The elliptic curve key pair generation mechanism, denoted CKM_EC_KEY_PAIR_GEN, is a key pair

generation mechanism for EC Operation.

This mechanism operates as specified in PKCS#11, with the following adjustments.

The CKA_EC_PARAMS or CKA_ECDSA_PARAMS attribute value must be supplied in the Public Key

Template. This attribute is known as the “EC domain parameters” and is defined in ANSI X9.62 as a choice

of three parameter representation methods with the following syntax:

Parameters ::= CHOICE {

ecParameters ECParameters,

namedCurve CURVES.&id({CurveNames}),

implicitlyCA NULL

}

If the CKA_EC_PARAMS attribute contains a namedCurve then it must be the of DER OID-encoding of

one of the following supported curves:

 { iso(1) member-body(2) US(840) x9-62(10045) curves(3) characteristicTwo(0)

c2tnb191v1(5) }

 { iso(1) member-body(2) US(840) x9-62(10045) curves(3) prime(1) prime192v1(1) }

 { iso(1) identified-organization(3) Certicom(132) certicom_ellipticCurve(0)

secp224r1(33) }

 { iso(1) member-body(2) US(840) x9-62(10045) curves(3) prime(1) prime256v1(7) }

 { iso(1) identified-organization(3) Certicom(132) certicom_ellipticCurve(0)

secp384r1(34) }

ProtectToolkit C Programming Guide

56

 { iso(1) identified-organization(3) Certicom(132) certicom_ellipticCurve(0)

secp521r1(35) }

Plus the custom curve with unofficial OID:

 { iso(1) member-body(2) US(840) x9-62(10045) curves(3) characteristicTwo(0) c2tnb191v1e (15) }

Refer to the CT_DerEncodeNamedCurve function in the CTUTIL library for a convenient way to obtain the

encodings of supported namedCurve OIDs.

If the CKA_EC_PARAMS attribute is in the form of the ECParameters sequence then the domain

parameters may be described explicitly. In this way the developer is able to specify the curve parameters for

curves that the firmware has no prior knowledge of.

Support for ECParameters sequence is disabled unless the Security Configuration “User Specified ECC

Domain Parameters Allowed”is enabled (see ctconf –fE).

Refer to the CT_GetECCDomainParameters function in the CTUTILS library and the

KM_EncodeECParamsP and KM_EncodeECParams2M functions from the KMLIB library for convenient

methods to obtain ECParameters encodings.

CKM_ECDH1_DERIVE

The elliptic curve Diffie-Hellman (ECDH) key derivation mechanism, denoted

CKM_ECDH1_DERIVE, is a mechanism for key derivation based on the Diffie-

Hellman version of the elliptic curve key agreement scheme, as defined in ANSI X9.63,

where each party contributes one key pair all using the same EC domain parameters.

This mechanism has a parameter, a CK_ECDH1_DERIVE_PARAMS structure.

typedef struct CK_ECDH1_DERIVE_PARAMS {

 CK_EC_KDF_TYPE kdf; /* key derivation function */

 CK_ULONG ulSharedDataLen; /* optional extra shared data */

 CK_BYTE_PTR pSharedData;

 CK_ULONG ulPublicDataLen; /* other party public key value */

 CK_BYTE_PTR pPublicData;

} CK_ECDH1_DERIVE_PARAMS;

typedef struct CK_ECDH1_DERIVE_PARAMS * CK_ECDH1_DERIVE_PARAMS_PTR;

The fields of the structure have the following meanings:

kdf This is the Key Derive Function (see below for the

description of the possible values of this field).

ulSharedDataLen This is the length of the optional shared data used by

some of the key derive functions. This may be zero if

there is no shared data.

pSharedData This is the address of the optional shared data or NULL if

there is no shared data.

ulPublicDataLen This is the length of the other party public key.

pPublicData This is the pointer to the other party public key. Only

uncompressed format is accepted.

The mechanism calculates an agreed value using the EC Private key referenced by the base object handle and

the EC Public key passed to the mechanism through the pPublicData field of the mechanism parameter.

The length of the agreed value is equal to the ‘q’ value of the underlying EC curve.

The agreed value is then processed by the Key Derive Function (kdf) to produce the CKA_VALUE of the

new Secret Key object.

ProtectToolkit C Programming Guide

57

Four main types of KDFs are supported:

 The NULL KDF performs no additional processing and can be used to obtain the raw agreed value.

Basically: Key = Z

 The CKF_<hash>_KDF algorithms are based on the algorithm described in section 5.6.3 of ANSI

X9.63 2001. Basically: Key = H(Z || counter || OtherInfo)

 The CKF_<hash>_SES_KDF algorithms are based on the variant of the x9.63 algorithm specified in

Technical Guideline TR-03111 - Elliptic Curve Cryptography (ECC) based on ISO 15946 Version 1.0,

Bundesamt Fur Sicherheit in der Informationstechnik (BSI)

Basically: Key = H(Z || counter) where counter is a user specified parameter

 The CKF_<hash>_NIST_KDF algorithms are based on the algorithm described in NIST 800-56A

Concatenisation Algorithm

Basically: Key = H(counter || Z || OtherInfo)

The CKF_SES_<hash>_KDF algorithms require the value of the counter to be specified. This is done by

arithmetically adding the counter value to the CKF value.

The following Counter values are defined in TR-03111:

Counter Name Value Description

CKD_SES_ENC_CTR 0x00000001 Default encryption Key

CKD_SES_AUTH_CTR 0x00000002 Default authentication Key

CKD_SES_ALT_ENC_CTR 0x00000003 Alternate encryption Key

CKD_SES_ALT_AUTH_CTR 0x00000004 alternate Authentication Key

CKD_SES_MAX_CTR 0x0000FFFF Maximum counter value

For example:

To derive a session key to be used as an Alternate key for Encryption the counter must equal 0x00000003. If

the SHA-1 hash algorithm is required then the kdf value would be set like this:

CK_ECDH1_DERIVE_PARAMS Params;

Params.kdf = CKD_SHA1_SES_KDF + CKD_SES_ALT_ENC_CTR;

The table below describes the supported KDFs.

KDF Type Description

CKD_NULL The null transformation. The derived key value is produced by taking bytes from

the left of the agreed value. The new key size is limited to the size of the agreed

value.

The Shared Data is not used by this KDF and pSharedData should be NULL.

CKD_SHA1_KDF This KDF generates secret keys of virtually any length using the algorithm

described in X9.63 with the SHA-1 hash algorithm.

Shared data may be provided.

CKD_SHA224_KDF This KDF generates secret keys of virtually any length using the algorithm

described in X9.63 with the SHA-224 hash algorithm.

Shared data may be provided.

CKD_SHA256_KDF This KDF generates secret keys of virtually any length using the algorithm

described in X9.63 with the SHA-256 hash algorithm.

Shared data may be provided.

ProtectToolkit C Programming Guide

58

KDF Type Description

CKD_SHA384_KDF This KDF generates secret keys of virtually any length using the algorithm

described in X9.63 with the SHA-384 hash algorithm.

Shared data may be provided.

CKD_SHA512_KDF This KDF generates secret keys of virtually any length using the algorithm

described in X9.63 with the SHA-512 hash algorithm.

Shared data may be provided.

CKD_RIPEMD160_KDF This KDF generates secret keys of virtually any length using the algorithm

described in X9.63 with the RIPE MD 160 hash algorithm.

Shared data may be provided.

This KDF is not available if the HSM is configured for “Only allow Fips

Approved Algorithms”.

CKD_SHA1_SES_KDF This KDF generates session keys. It uses the algorithm described in TR-03111

with the SHA-1 hash algorithm.

Shared data may be provided but typically it is not used.

The counter value that is a parameter to this KDF must be added to this constant.

CKD_SHA224_SES_KDF This KDF generates single, double and triple length DES keys that are intended

for Encryption operations. It uses the algorithm described in TR-03111 with the

SHA-224 hash algorithm.

Shared data may be provided but typically it is not used.

The counter value that is a parameter to this KDF must be added to this constant.

CKD_SHA256_SES_KDF This KDF generates single, double and triple length DES keys that are intended

for Encryption operations. It uses the algorithm described in TR-03111 with the

SHA-256 hash algorithm.

Shared data may be provided but typically it is not used.

The counter value that is a parameter to this KDF must be added to this constant.

CKD_SHA384_SES_KDF This KDF generates single, double and triple length DES keys that are intended

for Encryption operations. It uses the algorithm described in TR-03111 with the

SHA-384 hash algorithm.

Shared data may be provided but typically it is not used.

The counter value that is a parameter to this KDF must be added to this constant.

CKD_SHA512_SES_KDF This KDF generates single, double and triple length DES keys that are intended

for Encryption operations. It uses the algorithm described in TR-03111 with the

SHA-512 hash algorithm.

Shared data may be provided but typically it is not used.

The counter value that is a parameter to this KDF must be added to this constant.

CKD_RIPEMD160_SES_KDF This KDF generates single, double and triple length DES keys that are intended

for Encryption operations. It uses the algorithm described in TR-03111 with the

Ripe MD 160 hash algorithm.

Shared data may be provided but typically it is not used.

The counter value that is a parameter to this KDF must be added to this constant.

This KDF is not available if the HSM is configured for “Only allow Fips

Approved Algorithms”.

CKD_SHA1_NIST_KDF This KDF generates secret keys of virtually any length using the algorithm

described in NIST 800-56A with the SHA-1 hash algorithm.

Shared data should be formatted according to the standard.

CKD_SHA224_NIST_KDF This KDF generates secret keys of virtually any length using the algorithm

described in NIST 800-56A with the SHA-224 hash algorithm.

Shared data should be formatted according to the standard.

ProtectToolkit C Programming Guide

59

KDF Type Description

CKD_SHA256_NIST_KDF This KDF generates secret keys of virtually any length using the algorithm

described in NIST 800-56A with the SHA-256 hash algorithm.

Shared data should be formatted according to the standard.

CKD_SHA384_NIST_KDF This KDF generates secret keys of virtually any length using the algorithm

described in NIST 800-56A with the SHA-384 hash algorithm.

Shared data should be formatted according to the standard.

CKD_SHA512_NIST_KDF This KDF generates secret keys of virtually any length using the algorithm

described in NIST 800-56A with the SHA-512 hash algorithm.

Shared data should be formatted according to the standard.

CKD_RIPEMD160_NIST_KDF This KDF generates secret keys of virtually any length using the algorithm

described in NIST 800-56A with the RIPE MD 160 hash algorithm.

Shared data should be formatted according to the standard.

This KDF is not available if the HSM is configured for “Only allow Fips

Approved Algorithms”.

This mechanism derives a secret value, and truncates the result according to the

CKA_KEY_TYPE attribute of the template and, if it has one and the key type supports

it, the CKA_VALUE_LEN attribute of the template. (The truncation removes bytes

from the leading end of the secret value.) The mechanism contributes the result as the

CKA_VALUE attribute of the new key; other attributes required by the key type must be

specified in the template.

The following rules apply to the provided attribute template:

 A key type must be provided in the template or else a Template Error is returned.

 If no length is provided in the template then that key type must have a well-defined length. If it doesn’t,

an error is returned.

 If both a key type and a length are provided in the template, the length must be compatible with that key

type.

 If a DES key is derived with these mechanisms, the parity bits of the key are set properly.

 If the requested type of key requires more bytes than the Key Derive Function can provide, an error is

generated.

The mechanisms have the following rules about key sensitivity and extractability:

 The CKA_SENSITIVE, CKA_EXTRACTABLE and CKA_EXPORTABLE attributes in the template

for the new key can both be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes

all take on the default value TRUE.

 If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key

will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the

derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its

CKA_SENSITIVE attribute.

 Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the

derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to

CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite

value from its CKA_EXTRACTABLE attribute.

ProtectToolkit C Programming Guide

60

CKM_ECIES

The Elliptic Curve Integrated Encryption Scheme (ECIES) mechanism, denoted CKM_ECIES, performs

single-part encryption and decryption operations. The operations performed are as described in ANSI

X9.63-2001.

This mechanism has a parameter, a CK_ECIES_PARAMS structure. This structure is defined as follows:

typedef struct CK_ECIES_PARAMS

{

CK_EC_DH_PRIMITIVE dhPrimitive;

 CK_EC_KDF_TYPE kdf;

 CK_ULONG ulSharedDataLen1;

 CK_BYTE_PTR pSharedData1;

 CK_EC_ENC_SCHEME encScheme;

 CK_ULONG ulEncKeyLenInBits;

 CK_EC_MAC_SCHEME macScheme;

 CK_ULONG ulMacKeyLenInBits;

 CK_ULONG ulMacLenInBits;

 CK_ULONG ulSharedDataLen2;

 CK_BYTE_PTR pSharedData2;

} CK_ECIES_PARAMS;

The fields of this structure have the following meanings:

dhPrimitive This is the Diffie-Hellman primitive used to derive the

shared secret value. Valid value:

CKDHP_STANDARD

kdf This is the key derivation function used on the shared

secret value. Valid value:

CKD_SHA1_KDF

ulSharedDataLen1 This is the length in bytes of the key derivation shared

data.

pSharedData1 This is the key derivation padding data shared between

the two parties.

encScheme This is the encryption scheme used to transform the input

data. Valid value:

CKES_XOR

ulEncKeyLenInBits This is the bit length of the key to use for the encryption

scheme.

macScheme This is the MAC scheme used for MAC generation or

validation. Valid values:

CKMS_HMAC_SHA1

CKMS_SHA1

NB: The MAC scheme CKMS_SHA1, should only be

used for compatability with RSA BSAFE® Crypto-C,

which uses a NON-STANDARD MAC scheme, which

was defined in the 10/97 X9.63 Draft, but was removed

from the released ANSI X9.63-2001 specification.

ProtectToolkit C Programming Guide

61

ulMacKeyLenInBits This is the bit length of the key to use for the MAC

scheme.

ulMacLenInBits This is the bit length of the MAC scheme output.

ulSharedDataLen2 This is the length in bytes of the MAC shared data.

pSharedData2 This is the MAC padding data shared between the two

parties.

The pSharedData1 and pSharedData2 parameters are optional, and if not supplied then they must be NULL

and the ulSharedDataLen1 and ulSharedDataLen2 parameters must be zero. With the MAC scheme

CKMS_SHA1, any supplied shared data is ignored.

With the encryption scheme CKES_XOR, the ulEncKeyLenInBits parameter MUST be zero. With any other

encryption scheme, the ulEncKeyLenInBits parameter must be set to the applicable key length in bits.

With the MAC scheme CKMS_SHA1, the ulMacKeyLenInBits parameter must be 0. With any other MAC

scheme, the ulMacKeyLenInBits parameter must be a minimum of 80 bits, and a multiple of 8 bits.

The ulMacLenInBits parameter must be a minimum of 80 bits, a multiple of 8 bits, and not greater than the

maximum output length for the specified Hash.

Constraints on key types and the length of the data are summarized in the following table.

Table 239 – ECIES: Key and Data Length

Function Key Type Input Length Output Length

C_Encrypt EC public key any 1 + 2modLen + any +

macLen

C_Decrypt EC private key 1 + 2modLen + any +

macLen

any

Where:

 modLen is the curve modulus length

 macLen is the length of the produced MAC

The encrypted data is in the format QE||EncData||MAC, where:

 QE is the uncompressed bit string of the ephemeral EC public key

 EncData is the encrypted data

 MAC is the generated MAC

CKM_ENCODE_ATTRIBUTES

This wrapping mechanism takes the attributes of an object and encodes them. The encoding is not encrypted

therefore the wrapping key object handle parameter is ignored.

If the object is sensitive then only non-sensitive attributes of the object are encoded. The encoding format is

a simple proprietary encoding with the attribute type, length, a value presence indicator (Boolean) and the

attribute value. This simple encoding format is used wherever BER or DER is not required.

ProtectToolkit C Programming Guide

62

CKM_ENCODE_PKCS_10

This mechanism is used with the C_DeriveKey function to create a PKCS#10 certification request from a

public key. Either an RSA or DSA public key may be used with this function. The PKCS#10 certificate

request could then be sent to a Certificate authority for signing.

From PKCS#10

A certification request consists of a distinguished name, a public key and optionally a set of attributes that

are collectively signed by the entity requesting certification. Certification requests are sent to a certification

authority, which will transform the request to an X.509 public-key certificate.

Usage

 Use CKM_RSA_PKCS_KEY_PAIR_GEN to generate a key.

 Add a CKA_SUBJECT attribute to the public key, containing the subject's distinguished name.

 Initialize the signature mechanism to sign the request. Note that a digest/sign mechanism must be

chosen. For example, CKM_SHA1_RSA_PKCS

 Call C_DeriveKey with the CKM_ENCODE_PKCS_10 mechanism to perform the generation.

 On success, an object handle for the certificate request is returned.

 The object's CKA_VALUE attribute contains the PKCS#10 request.

CKM_ENCODE_PUBLIC_KEY

This wrapping mechanism performs a DER encoding of a Public Key object. The encoding is not encrypted

therefore the wrapping key object handle parameter is ignored.

Public keys of type CKK_RSA, CKK_DSA and CKK_DH may be encoded with this mechanism. The

encoding format is defined in PKCS#1. This mechanism has no parameter.

CKM_ENCODE_X_509

This mechanism is used with the C_DeriveKey function to derive an X.509 certificate from a public key

or a PKCS#10 certification request. This mechanism creates a new X.509 certificate based on the provided

public key or certification request signed with a CA key. This mechanism takes no parameter.

The new certificate validity period is based on the CKA_START_DATE and CKA_END_DATE attributes

on the base object. If the start date is missing the current time is used. If the end date is missing the

certificate is valid for one year. These dates may be specified as relative values by adding the + character at

the start of the date value. The start date is relative to 'now' and the end date is relative to the start date if

relative times are specified. Negative relative times are not allowed. If the start or end date is invalid then

the error CKR_TEMPLATE_INCONSISTENT is returned.

The certificate’s serial number is taken from the template’s CKA_SERIAL_NUMBER,

CKA_SERIAL_NUMBER_INT or the signing key’s CKA_USAGE_COUNT in that order. If none of these

values is available CKR_WRAPPING_KEY_HANDLE_INVALID error is returned.

To determine the Subject distinguished name for the new certificate if the base object is a public key the

algorithm will use the CKA_SUBJECT_STR, CKA_SUBJECT from the template or the base key (in that

order). If none of these values is available CKR_KEY_HANDLE_INVALID is returned.

It is also possible to include arbitrary X.509 extensions in the certificate. These are not verified for validity

nor parsed for correctness. Rather they are included verbatim in the newly generated certificate. In order to

specify an extension use the CKA_PKI_ATTRIBUTE_BER_ENCODED attribute with the value specified as

a BER encoding of the attribute. If the base object is a Certification request or a self-signed certificate the

subject is taken from the objects encoded subject name.

Currently this mechanism supports generation of RSA or DSA certificates. On success, a handle to a new

CKO_CERTIFICATE object is returned. The certificate will include the CKA_ISSUER,

CKA_SERIAL_NUMBER and CKA_SUBJECT attributes as well as a CKA_VALUE attribute which will

contain the DER encoded certificate.

ProtectToolkit C Programming Guide

63

To create a X.509 certificate that uses EC keys, either provide a PKCS#10 certificate request that was

created with EC keys, or provide an EC public key for the hBaseKey parameter to the function. To sign the

certificate as a CA using EC keys, use the CKM_ECDSA_SHA1 mechanism to initialise the sign operation

before calling C_DeriveKey().

Usage

 Create a key-pair using the CKM_RSA_PKCS mechanism (this is the key-pair for the new certificate),

or

 Create a CKO_CERTIFICATE_REQUEST object (with the object's CKA_VALUE attribute set to

the PKCS#10 data)

 This object is the "base-key" used in the C_DeriveKey function

 Initialize the signature mechanism to sign the request using C_SignInit. Note that a digest / sign

mechanism must be chosen. For example, CKM_SHA1_RSA_PKCS

 Call C_DeriveKey with CKM_ENCODE_X_509 to perform the generation

The new certificate's template may contain:

CKA_ISSUER_STR

CKA_ISSUER

The distinguished name of the issuer of the new certificate. If

this attribute is not included the issuer is taken from the

signing key's CKA_SUBJECT attribute. CKA_ISSUER is the

encoded version of this attribute.

CKA_SERIAL_NUMBER_INT

CKA_SERIAL_NUMBER

The serial number of the new certificate. If this attribute is not

included the serial number is set to the value of the

CKA_USAGE_COUNT attribute of the signing key.

CKA_SERIAL_NUMBER is the encoded version of this

attribute.

CKA_SUBJECT_STR

CKA_SUBJECT

If the base key (i.e. the input object) is a public key then either

the template must contain this attribute or the public key must

have a CKA_SUBJECT attribute. This attribute contains the

distinguished name of the subject. When the base key is a

PKCS#10 certification request the CKA_SUBJECT

information is taken from there. CKA_SUBJECT is the

encoded version of this attribute.

CKA_START_DATE

CKA_END_DATE

These attributes are used to determine the new certificate’s

validity period. If the start date is missing the current date is

used. If the end date is missing the date is set to one year from

the start date. Relative values may be specified (see above).

CKA_PKI_ATTRIBUTE_BER

_ENCODED

These attributes are used to determine the new certificate’s

extended attributes.

CKM_ENCODE_X_509_LOCAL_CERT

This mechanism is similar to the CKM_ENCODE_X_509 mechanism in that it is used to create an X 509

public key certificate. The basic difference is that this mechanism has additional usage controls.

This mechanism will only create certificates for public keys locally generated on the adapter. That is, the

base key must have a CKA_CLASS attribute of CKO_PUBLIC_KEYand have the CKA_LOCAL attribute

set to TRUE.

In addition, the signing key specified in the mechanism parameter (see below) must have the

CKA_SIGN_LOCAL_CERT attribute set to TRUE. It is used with the C_KeyDerive function only, (that

is, it is a derive mechanism).

ProtectToolkit C Programming Guide

64

It takes a parameter that is a pointer to a CK_MECH_TYPE_AND_OBJECT structure.

typedef struct CK_MECH_TYPE_AND_OBJECT {

CK_MECHANISM_TYPE mechanism;

CK_OBJECT_HANDLE obj;

} CK_MECH_TYPE_AND_OBJECT;

The above mechanism field specifies the actual signature mechanism to use in generation of the certificate

signature. This must be one of the multipart digest RSA or DSA algorithms. The obj field above specifies

the signature generation key. That is, it should specify a RSA or DSA private key as appropriate for the

chosen signature mechanism.

To create a X.509 local certificate that uses EC keys, either provide a PKCS#10 certificate request that was

created with EC keys, or provide an EC public key for the hBaseKey parameter to the function. To sign the

certificate as a CA using EC keys, use the CKM_ECDSA_SHA1 mechanism to initialize the sign operation

before calling C_DeriveKey(). The CKM_ECDSA_SHA1 mechanism and EC key must also be specified

in the mechanism parameter.

CKM_IDEA_ECB_PAD

See the entry for CKM_CAST128_ECB_PAD.

CKM_NVB

This is a message digest mechanism. It is an implementation of the NVB (Nederlandse Vereiniging van

Banken) Dutch hash standard. This hash algorithm is also known as the BGC hash, version 7.1. This

mechanism is only available in the software Emulation version of the PTK C.

CKM_KEY_TRANSLATION

This is a key wrapping mechanisms as used by Entrust compliant applications. This mechanism is only

visible when the CKF_ENTRUST_READY flag is set in the SecurityMode attribute of the Adapter

Configuration object in the Admin Token of the adapter.

CKM_PBA_SHA1_WITH_HMAC_SHA1

This is a mechanism used for generating a 160-bit generic secret key from a password and a salt value by

using the SHA-1 digest algorithm and an iteration count.

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input information for the

key generation process. The parameter also has a field to hold the location of an application-supplied buffer

which will receive an IV; for this mechanism, the contents of this field are ignored, since authentication with

SHA-1-HMAC does not require an IV.

The key generated by this mechanism will typically be used for computing a SHA-1 HMAC to perform

password-based authentication (not password-based encryption). At the time of this writing, this is primarily

done to ensure the integrity of a PKCS #12 PDU.

CKM_PBE_SHA1_RC2_128_CBC

This is a mechanism used for generating a 128-bit RC2 secret key and IV from a password and a salt value

by using the SHA-1 digest algorithm and an iteration count.

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input information for the

key generation process and the location of the application-supplied buffer that will receive the 8-byte IV

generated by the mechanism.

When the key and IV generated by this mechanism are used to encrypt or decrypt, the effective number of

bits in the RC2 search space should be set to 128. This ensures compatibility with the ASN.1 Object

Identifier pbeWithSHA1And128BitRC2-CBC.

The key and IV produced by this mechanism will typically be used for performing password-based

encryption.

ProtectToolkit C Programming Guide

65

CKM_PBE_SHA1_RC2_40_CBC

This is a mechanism used for generating a 40-bit RC2 secret key and IV from a password and a salt value by

using the SHA-1 digest algorithm and an iteration count.

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input information for the

key generation process and the location of the application-supplied buffer that will receive the 8-byte IV

generated by the mechanism.

When the key and IV generated by this mechanism are used to encrypt or decrypt, the effective number of

bits in the RC2 search space should be set to 40. This ensures compatibility with the ASN.1 Object

Identifier pbeWithSHA1And40BitRC2-CBC.

The key and IV produced by this mechanism will typically be used for performing password-based

encryption.

CKM_PBE_SHA1_RC4_128

This is a mechanism used for generating a 128-bit RC4 secret key from a password and a salt value by using

the SHA-1 digest algorithm and an iteration count.

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input information for the

key generation process. The parameter also has a field to hold the location of an application-supplied buffer

that will receive an IV; for this mechanism, the contents of this field are ignored, since RC4 does not require

an IV. The key produced by this mechanism will typically be used for performing password-based

encryption.

CKM_PBE_SHA1_RC4_40

This is a mechanism used for generating a 40-bit RC4 secret key from a password and a salt value by using

the SHA-1 digest algorithm and an iteration count.

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input information for the

key generation process. The parameter also has a field to hold the location of an application-supplied buffer

which will receive an IV; for this mechanism, the contents of this field are ignored, since RC4 does not

require an IV.

The key produced by this mechanism will typically be used for performing password-based encryption.

CKM_PKCS12_PBE_EXPORT

The PKCS#12 export mechanism, denoted CKM_PKCS12_PBE_EXPORT is a mechanism for wrapping a

private key and a certificate. The outcome of the wrapping operation is a PKCS#12 byte buffer.

This mechanism has a parameter, a CK_PKCS12_PBE_EXPORT_PARAMS structure.

This mechanism will enforce a password length based on the token. If the PIN is too short, then

CKR_PIN_LEN_RANGE is returned.

This mechanism does not require a wrapping key and it only support RSA, ECDSA and DSA private keys

and certificates.

During the wrapping operation, this mechanism performs a sign and verify test on the supplied

key/certificate pair. Should this test fail, the wrapping operation will abort.

If the exported key is marked CKA_EXPORTABLE=TRUE and CKA_EXTRACTABLE=FALSE this

mechanism forces the export to be performed under the Security Officer session. In this case, the user must

ensure that the private key is either visible to the Security Ofiicer or made available to the Security Officer

by performing a copy.

Note that the user performing the private key export is asked to supply two (2) passwords. These passwords

must be identical if MS Windows is to be used to later extract the created PKCS#12 file. For other 3
rd

party

tools such as OpenSSL these two passwords do not have to be the same.

ProtectToolkit C Programming Guide

66

CK_PKCS12_PBE_EXPORT_PARAMS is a structure that provides parameter to the

CKM_PKCS12_PBE_EXPORT mechanism. This structure is defined as follows:

typedef struct CK_PKCS12_PBE_EXPORT_PARAMS

{

CK_OBJECT_HANDLE keyCert;

CK_CHAR_PTR passwordAuthSafe;

CK_SIZE passwordAuthSafeLen;

CK_CHAR_PTR passwordHMAC;

CK_SIZE passwordHMACLen;

CK_MECHANISM_TYPE safeBagKgMech;

CK_MECHANISM_TYPE safeContentKgMech;

CK_MECHANISM_TYPE hmacKgMech;

}

The fields of the structure have the following meanings:

keyCert This is the certificate handle for the associated private key.

passwordAuthSafe This is the password for the PBE keys.

passwordAuthSafeLen This is the length of the password.

passwordHMAC This is the password for the PBA keys.

passwordHMACLen This is the length of the password.

safeBagKgMech This is the key generation mechanism for SafeBag encryption.

It is only applicable to pkcs8ShroudedKeyBag. Valid options

are:

CKM_PBE_SHA1_RC4_128

CKM_PBE_SHA1_RC4_40

CKM_PBE_SHA1_DES3_EDE_CBC

CKM_PBE_SHA1_DES2_EDE_CBC

CKM_PBE_SHA1_RC2_128_CBC

CKM_PBE_SHA1_RC2_40_CBC

safeContentKgMech This is the key generation mechanism for SafeContent

encryption. It is only applicable to EncryptedData. Valid

options are:

CKM_PBE_SHA1_RC4_128

CKM_PBE_SHA1_RC4_40

CKM_PBE_SHA1_DES3_EDE_CBC

CKM_PBE_SHA1_DES2_EDE_CBC

CKM_PBE_SHA1_RC2_128_CBC

CKM_PBE_SHA1_RC2_40_CBC

hmacKgMech This is the key generation mechanism for generating PFX

MAC. Valid option is:

CKM_PBA_SHA1_WITH_SHA1_HMAC

ProtectToolkit C Programming Guide

67

CKM_PKCS12_PBE_IMPORT

The PKCS#12 import mechanism, denoted CKM_PKCS12_PBE_IMPORT is a mechanism for unwrapping

a private key and certificate(s). This mechanism shall return the user a handle to a private key and handle(s)

to certificate(s). Note that multiple certificate handles could be returned depending on the contents of the

PKCS#12 file.

NOTE: This mechanism does not import optional PKCS#12 bag attributes and PKCS#8 private-key

attributes. These components are discarded during import.

The mechanism has a parameter, a CK_PKCS12_PBE_IMPORT_PARAMS structure. This mechanism

does not require an unwrapping key and supports RSA, DH, DSA and EC Private Keys and certificates.

CK_PKCS12_PBE_IMPORT_PARAMS is a structure that provides parameters to the

CKM_PKCS12_PBE_IMPORT mechanism. This structure is defined as follows:

typedef struct CK_PKCS12_PBE_IMPORT_PARAMS

{

/** AuthenticatedSafe password */

CK_CHAR_PTR passwordAuthSafe;

/** Size of AuthenticatedSafe password */

CK_SIZE passwordAuthSafeLen;

/** HMAC password */

CK_CHAR_PTR passwordHMAC;

/** Size of HMAC password */

CK_SIZE passwordHMACLen;

/** Certificate attributes */

CK_ATTRIBUTE_PTR certAttr;

/** Number of certificate attributes */

CK_COUNT certAttrCount;

/** Handle to returned certificate(s) */

CK_OBJECT_HANDLE_PTR hCert;

/** Number of returned certificate handle(s) */

CK_COUNT_PTR hCertCount;

}CK_PKCS12_PBE_IMPORT_PARAMS;

The fields of the structure have the following meanings:

passwordAuthSafe This is the password to the authenticated safe container.

passwordAuthSafeLen This is the length of password.

passwordHMAC This is the password to HMAC.

certAttr These are the attributes assigned to certificate.

certAttrCount This is the number of entries in certAttr.

hCert This is the returned certificate handle(s).

hCertCount This is the number of handles allocated for hCert or the

number of certificates found in PKCS#12 file. See below.

ProtectToolkit C Programming Guide

68

Length Prediction

The PKCS#12 file may contain more than one certificate, as such, the user would need to allocate sufficient

buffer to hold the returned handles. The user needs to specify NULL as a parameter to the returned certificate

handle (hCert), the import mechanism shall then return a count (hCertCount) of the certificate found

the in the PKCS#12 file. Using the value of hCertCount, the user then allocates the required buffer to

hold the returned certificate handles for the next C_UnwrapKey function call.

Returning Multiple Ceritificates

Assuming the user has allocated sufficient buffer to hold the certificate handles and there is multiple certificate

in the PKCS#12 files, the import mechanism shall populate buffer hCert with the allocated certificate handles.

The returned hCertCount shall match the specified value.

Reporting Remaining Certificates

In the event of the user not reserving sufficient buffer in hCert and there are more certificates to be

unwrapped, the import mechanism shall unwrap up to a maximum of cerficate handles allocated by the user

and return the total count of the certificates found in the PKCS#12 file. For example, if the user initially

allocated one handle (hCertCount=1) and the PKCS#12 contains 2 certificates, the import mechanism

shall extract the first certificate it encounters and return hCertCount=2. In this case, the returned

hCertCount shall always be larger than the specified value.

PKCS#12 Import Return Code

The following vendor specific return code may be returned in the event of errors:

CKR_PKCS12_DECODE This error code is returned when there is an

error decoding the PKCS#12 file.

CKR_PKCS12_UNSUPPORTED_SAFEBAG_TYPE This error code is returned when unsupported

SafeBag is found. The import mechanism for

this release only supports keyBag,

pkcs8ShroudedKeyBag, and certBag.

CKR_PKCS12_UNSUPPORTED_PRIVACY_MODE This error code is returned when a PKCS#12

file with unsupported privacy mode is

encountered. The import mechanism for this

release only supports password privacy mode.

CKR_PKCS12_UNSUPPORTED_INTEGRITY_MODE This error code is returned when a PKCS#12

file with unsupported integrity mode is

encountered. The import mechanism for this

release only supports password integrity mode.

CKM_PP_LOAD_SECRET

This is a key generate mechanism to provide the capability to load a clear key component from a directly

attached pin pad device.

It has a parameter, a CK_PP_LOAD_SECRET_PARAMS, which holds the operational details for the

mechanism.

struct CK_PP_LOAD_SECRET_PARAMS

{

/** Entered characters should be masked with '*' or similar to hide the

* value being entered. An error is returned if this is TRUE

* and the device does not support this feature. */

 CK_BBOOL bMaskInput;

/** Entered characters should be converted from the ASCII representation

* to binary before being stored, according to the conversion type

* supplied. If the device does not support the specified type of input

* (e.g. hex input on a decimal keyboard), an error is returned.

* The octal and decimal representations will expect 3 digits per byte,

ProtectToolkit C Programming Guide

69

* whereas the hexadecimal representations will expect 2 digits per byte.

* An error is returned if the data contains invalid encoding (such

* as 351 for decimal conversion).

*/

 CK_PP_CONVERT_TYPE cConvert;

/** The time to wait for operator response - in seconds. An error is

* returned if the operation does not complete in the specified time.

* This field may be ignored if the device does not support a configurable

* timeout. */

 CK_CHAR cTimeout;

/** Reserved for future extensions. Must be set to zero. */

 CK_CHAR reserved;

/** The prompt to be displayed on the device. If the prompt cannot fit on

* the device display, the output is clipped. If the device does not

* have any display, the operation will continue without any prompt, or

* error.

*

* The following special characters are recognized on the display:

* - Newline (0x0a): Continue the display on the next line.

*/

 CK_CHAR_PTR prompt;

};

The template supplied with the call to the C_GenerateKey function determines the type of object

generated by the operation. CKA_CLASS may be CKO_SECRETKEY only, and the only key type

supported is CKK_GENERIC_SECRET. (This restriction applies because only key components are to be

entered by this mechanism).

The normal rules for template consistencies apply. In particular the CKA_ALWAYS_SENSITIVE must be

set FALSE and the CKA_NEVER_EXTRACTABLE must be FALSE.

The expected size of the object value created by this operation is supplied in the

CKA_VALUE_LEN parameter in the template.

CKM_RC2_ECB_PAD

See the entry for CKM_CAST128_ECB_PAD.

CKM_REPLICATE_TOKEN_RSA_AES

This mechanism is a SafeNet vendor defined mechanism for wrapping and unwrapping tokens.

Wrapping Tokens

The mechanism wraps the token associated with the hSession parameter to C_WrapKey() into

a protected format. When the mechanism is used to wrap a token it has a required parameter, a

CK_REPLICATE_TOKEN_PARAMS_PTR.

The CK_REPLICATE_TOKEN_PARAMS structure is defined as follows:

typedef struct CK_REPLICATE_TOKEN_PARAMS {

CK_CHAR peerId[CK_SERIAL_NUMBER_SIZE];

} CK_REPLICATE_TOKEN_PARAMS;

ProtectToolkit C Programming Guide

70

The peerId field identifies the peer public key on the administrative token. The public key is used to wrap

the token encryption key and therefore must identify the public key of the destination HSM.

CK_REPLICATE_TOKEN_PARAMS_PTR is a pointer to a

CK_REPLICATE_TOKEN_PARAMS.

The following conditions must be satisfied:

 The token being wrapped which is associated with the hSession parameter to the C_WrapKey() must

be a regular user token (i.e. NOT the administrative token or a smart-card token).

 The session state for hSession must be one of CKS_RO_USER_FUNCTIONS or

CKS_RW_USER_FUNCTIONS.

 The hWrappingKey parameter to C_WrapKey() must specify CK_INVALID_HANDLE.

 The hKey parameter to C_WrapKey() must specify CK_INVALID_HANDLE.

Unwrapping Tokens

This mechanism unwraps the protected token information, replacing the entire token contents of the token

associated with the hSession parameter to C_UnwrapKey().When the mechanism is used for unwrapping a

token, a mechanism parameter must not be specified.

The following conditions must be satisfied:

 The token being unwrapped which is associated with the hSession parameter to C_UnwrapKey() must

be a regular user token. That is, NOT the administrative token or a smart card token.

 The session state for hSession must be CKS_RW_USER_FUNCTIONS.

 The hUnwrappingKey parameter to C_UnwrapKey() must specify

CK_INVALID_HANDLE.

 The pTemplate parameter to C_UnwrapKey() must specify NULL.

 The ulAttributeCount parameter to C_UnwrapKey() must specify zero.

 The phKey parameter to C_UnwrapKey() must specify NULL.

 Any new sessions must be deferred until the operation has finished.

 The current session must be the only session in existence for the token.

 The application should call C_Finalize() upon completion.

CKM_RSA_PKCS_KEY_PAIR_GEN

The mechanism denoted CKM_RSA_PKCS_KEY_PAIR_GEN is a Key Pair Generation mechanism to

create a new RSA key pair of objects using the method described in PKCS#1

This PTK C mechanism has an optional parameter of type CK_ULONG which, if provided, will spcify the

size in bits of the random public exponent.

CKM_SECRET_RECOVER_WITH_ATTRIBUTES

The Secret Recovery Mechanism denoted CKM_SECRET_RECOVER_WITH_ATTRIBUTES is a

derive mechanism to create a new key object by combining two or more shares.

The mechanism has no parameter.

The C_DeriveKey parameter hBaseKey is the handle of one of the share objects. The mechanism will obtain

the CKA_LABEL value from hBaseKey and then treat all data objects with the same label as shares.

A template is not required as all the attributes of the object are also recovered from the secret.

Usage Note

To avoid shares getting mixed up between different uses of this mechanism the developer should ensure that

data objects with the same label are all from the same secret share batch.

ProtectToolkit C Programming Guide

71

For further information about secure key backup and restoration see the ProtectToolkit C Administration

Manual.

ProtectToolkit C Programming Guide

72

CKM_SECRET_SHARE_WITH_ATTRIBUTES

The Secret Share Mechanism denoted CKM_SECRET_SHARE_WITH_ATTRIBUTES is a derive

mechanism to create M shares of a key such that N shares are required to recover the secret, where N is less

than or equal to M.

The mechanism creates a secret value by combining all the attributes of the base key and then shares that

secret into M shares.

The algorithm used is according to A. Shamir - How to Share a Secret, Communications of the ACM vol. 22,

no. 11, November 1979, pp. 612-613

It has a parameter, a CK_SECRET_SHARE_PARAMS, which specifies the number of shares M and the

recovery threshold N. See below for the definition.

The mechanism will create M data objects and return the object handle of one of them. It is expected that the

data objects would be copied to a smart card token for storage.

The template supplied is used to specify the CKA_LABEL attribute of each new data object. If the

CKA_LABEL attribute is not provided in the template then a CKR_TEMPLATE_INCOMPLETE error is

returned.

The mechanism contributes the CKA_VALUE attribute of each data object. Any attempt to specify a

CKA_VALUE attribute in the template will cause the mechanism to return the error:

CKR_TEMPLATE_INCONSISTENT.

The default value of the CKA_TOKEN, CKA_PRIVATE attribute of the new objects is false. The new data

objects will have a CKA_SENSITIVE attribute. If the CKA_SENSITIVE attribute of the base key is true

then the data objects is sensitive. If the base key is not sensitive then the data objects take the value of

CKA_SENSITIVE from the template or it is defaulted to false.

Usage Note

To avoid shares getting mixed up between different uses of this mechanism the developer should ensure that

there are no data objects with the same label already on the token before attempting to use this mechanism.

If objects are found then these objects should be deleted or a different label chosen.

Security Note

The key to be exported with this mechanism requires the CKA_DERIVE attribute to be true. This has the

effect of enabling other key derive mechanisms to be performed with the key. If this is not desired then the

CKA_MECHANISM_LIST attribute may be used with the key to restrict its derive operations to this

mechanism.

For further information about secure key backup and restoration see the ProtectToolkit C Administration

Manual.

Secret Share Mechanism Parameter

CK_SECRET_SHARE_PARAMS is used to specify the number of shares M and the recovery threshold N for

secret sharing mechanisms. It is defined as follows:

typedef struct CK_SECRET_SHARE_PARAMS {

CK_ULONG n;

CK_ULONG m;} CK_SECRET_SHARE_PARAMS;

The fields of the structure have the following meanings:

n Number of shares required to recover the secret. Must be at least two and not greater than the number of

shares m Total number of shares. Must be at least two and not greater than sixty four.

CK_SECRET_SHARE_PARAMS_PTR is a pointer to a CK_SECRET_SHARE_PARAMS.

ProtectToolkit C Programming Guide

73

CKM_SEED_CBC

SEED-CBC, denoted CKM_SEED_CBC, is a mechanism for single and multiple part encryption and

decryption, key wrapping and key unwrapping, based on the KISA (Korean Information Security Agency)

SEED specification and cipher-block chaining mode.

It has a single parameter; a 16-byte initialization vector.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may not be able to

wrap/unwrap every secret key that it supports. For wrapping, the mechanism encrypts the value of the

CKA_VALUE attribute of the key that is wrapped, padded on the trailing end with up to block size minus one

null bytes so that the resulting length is a multiple of the block size. The output data is the same length as the

padded input data. It does not wrap the key type, key length, or any other information about the key; the

application must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result according to the

CKA_KEY_TYPE attribute of the template and, if it has one and the key type supports it, the

CKA_VALUE_LEN attribute of the template. The mechanism contributes the result as the CKA_VALUE

attribute of the new key. Other attributes required by the key type must be specified in the template.

Constraints on key types and the length of data are summarized in the following table.

Table 50 – SEED-CBC: Key and Data Length

Function Key Type Input Length Output Length Comments

C_Encrypt CKK_SEED Multiple of

block size

Same as input length No final part

C_Decrypt CKK_SEED Multiple of

block size

Same as input length No final part

C_WrapKey CKK_SEED Any Input length rounded up

to multiple of the block

size

C_UnwrapKey CKK_SEED Multiple of

block size

Determined by type of

key being unwrapped or

CKA_VALUE_LEN

CKM_SEED_CBC_PAD

SEED-CBC with PKCS padding, denoted CKM_SEED_CBC_PAD, is a mechanism for single and multiple

part encryption and decryption; key wrapping; and key unwrapping, based on the KISA (Korean Information

Security Agency) SEED specification, cipher-block chaining mode and the block cipher padding method

detailed in PKCS #7.

It has a single parameter; a 16-byte initialization vector.

The PKCS padding in this mechanism allows the length of the plaintext value to be recovered from the

ciphertext value. Therefore, when unwrapping keys with this mechanism, no value should be specified for

the CKA_VALUE_LEN attribute.

In addition to being able to wrap and unwrap secret keys, this mechanism can wrap and unwrap RSA, Diffie-

Hellman, X9.42 Diffie-Hellman, and DSA private keys.

ProtectToolkit C Programming Guide

74

Constraints on key types and the length of data are summarized in the following table. The data length

constraints do not apply to the wrapping and unwrapping of private keys.

Table 241 – SEED-CBC with PKCS Padding: Key and Data Length

Function Key Tpe Input Length Output Length

C_Encrypt CKK_SEED Any This is the input length plus one, rounded

up to a multiple of the block size.

C_Decrypt CKK_SEED Multiple of block

size

Between 1 and block size bytes shorter

than input length.

C_WrapKey CKK_SEED Any This is the input length plus one, rounded

up to a multiple of the block size.

C_UnwrapKey CKK_SEED Multiple of block

size

Between 1 and block length bytes shorter

than input length.

CKM_SEED_ECB

SEED-ECB, denoted CKM_SEED_ECB, is a mechanism for single- and multiple-part encryption and

decryption; key wrapping; and key unwrapping, based on the KISA (Korean Information Security Agency)

SEED specification and electronic codebook mode. It does not have a parameter

This mechanism can wrap and unwrap any secret key. Of course, a particular token may not be able to

wrap/unwrap every secret key that it supports. For wrapping, the mechanism encrypts the value of the

CKA_VALUE attribute of the key that is wrapped, padded on the trailing end with up to block size, minus

one null bytes so that the resulting length is a multiple of the block size. The output data is the same length

as the padded input data. It does not wrap the key type, key length, or any other information about the key;

the application must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result according to the

CKA_KEY_TYPE attribute of the template and, if it has one and the key type supports it, the

CKA_VALUE_LEN attribute of the template. The mechanism contributes the result as the

CKA_VALUEattribute of the new key. Other attributes required by the key type must be specified in the

template.

Constraints on key types and the length of data are summarized in the following table.

Table 52 – SEED-ECB: Key and Data Length

Function Key Type Input Length Output Length Comments

C_Encrypt CKK_SEED Multiple of

block size

Same as input length No final part

C_Decrypt CKK_SEED Multiple of

block size

Same as input length No final part

C_WrapKey CKK_SEED Any Input length rounded up

to multiple of block size

C_UnwrapKey CKK_SEED Multiple of

block size

Determined by type of

key being unwrapped or

CKA_VALUE_LEN

ProtectToolkit C Programming Guide

75

CKM_SEED_ECB_PAD

SEED-ECB with PKCS padding, denoted CKM_SEED_ECB_PAD, is a mechanism for single- and multiple-

part encryption and decryption, key wrapping and key unwrapping, based on the KISA (Korean Information

Security Agency) SEED specification, electronic code book mode and the block cipher padding method

detailed in PKCS #7. It does not have a parameter.

The PKCS padding in this mechanism allows the length of the plaintext value to be recovered from the

ciphertext value. Therefore, when unwrapping keys with this mechanism, no value should be specified for

the CKA_VALUE_LEN attribute.

In addition to being able to wrap and unwrap secret keys, this mechanism can wrap and unwrap RSA, Diffie-

Hellman, X9.42 Diffie-Hellman, and DSA private keys. The entries in Table 53 – SEED-ECB with PKCS

Padding: Key and Data Length for data length constraints when wrapping and unwrapping keys do not

apply to wrapping and unwrapping private keys. Constraints on key types and the length of data are

summarized in the following table.

Table 53 – SEED-ECB with PKCS Padding: Key and Data Length

Function Key Type Input Length Output Length

C_Encrypt

CKK_SEED Any This is the input length plus one, rounded

up to a multiple of the block size.

C_Decrypt CKK_SEED Multiple of

block size

Between 1 and block size bytes shorter

than input length.

C_WrapKey CKK_SEED Any This is the input length plus one, rounded

up to a multiple of the block size.

C_UnwrapKey CKK_SEED Multiple of

block size

Between 1 and block length bytes shorter

than input length.

CKM_SEED_KEY_GEN

The SEED key generation mechanism, denoted CKM_SEED_KEY_GEN, is a key generation mechanism for

the Korean Information Security Agency’s SEED algorithm.

The mechanism does not have a parameter, and it generates SEED keys 16 bytes in length.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, CKA_VALUE_LEN, and CKA_VALUE

attributes to the new key. Other attributes supported by the SEED key type (specifically, the flags indicating

which functions the key supports) may be specified in the template for the key, or they may be assigned

default initial values.

For this mechanism, the ulMinKeySizeand ulMaxKeySizefields of the CK_MECHANISM_INFO

structure specify the supported range of SEED key sizes, in bytes, which is 16.

The algorithm block size is 16 bytes.

CKM_SEED_MAC

SEED-MAC, denoted by CKM_SEED_MAC, is a special case of the general-length SEEDMAC mechanism.

SEED-MAC always produces and verifies MACs that are eight bytes in length. It does not have a parameter.

Constraints on key types and the length of data are summarized in the following table.

Table 54 – SEED-MAC: Key and Data Length

Function Key Type Data Length Signature Length

C_Sign CKK_SEED any ½ block size (8 bytes)

C_Verify CKK_SEED any ½ block size (8 bytes)

ProtectToolkit C Programming Guide

76

CKM_SEED_MAC_GENERAL

General-length SEED-MAC, denoted CKM_SEED_MAC_GENERAL, is a mechanism for single and multiple

part signatures and verification, based on the KISA (Korean Information Security Agency) SEED

specification.

It has a single parameter, a CK_MAC_GENERAL_PARAMS structure, which specifies the output length

desired from the mechanism.

The output bytes from this mechanism are taken from the start of the final SEED cipher block produced in

the MACing process.

Constraints on key types and the length of data are summarized in the following table.

Table 55 – General-length SEED-MAC: Key and Data Length

Function Key Type Data Length Signature Length

C_Sign CKK_SEED Any 0-block size, as specified in parameters

C_Verify CKK_SEED Any 0-block size, as specified in parameters

CKM_SET_ATTRIBUTES

The Set Object Attribute Mechanism denoted CKM_SET_ATTRIBUTES is a TICKET mechanism used to

modify the attributes of a key. It does not take a parameter.

The ticket specifies the Digest of the key/object to modify and the new attribute values. The ticket is

digitally signed and the certificate used to verify the signature must be contained in the

CKA_ADMIN_CERT attribute of the key object being modified.

This mechanism is only used with the CT_PresentTicket command.

CKM_SHA1_RSA PKCS_TIMESTAMP

The PKCS#11 mechanism CKM_SHA1_RSA_PKCS_TIMESTAMP provides time stamping functionality.

The supported signing functions are C_Sign_Init and C_Sign. This mechanism supports single and multiple-

part digital signatures and verification with message recovery. The mechanism uses the SHA1 hash function

to generate the message digest. The mechanism only supports one second granularity in the timestamp

although the timestamp format will provide for future sub-second granularity.

A monotonic counter object is used to generate the unique serial number that forms part of the timestamp.

The monotonic counter object is automatically created when a token is initialized and exists by default in the

Admin Token.

The following structure is used to provide the optional mechanism parameters in the CK_MECHANISM

structure. The CK_MECHANISM structure is defined in the PKCS #11 v2.10: Cryptographic Token

Interface Standard, RSA Laboratories December 1999.

typedef struct CK_TIMESTAMP_PARAMS {

CK_BBOOL useMilliseconds;

 CK_TIMESTAMP_FORMAT timestampFormat;

} CK_TIMESTAMP_PARAMS;

The "useMilleseconds" parameter specifies whether the timestamp should include millisecond granularity.

The default value for this parameter is FALSE. If the mechanism parameters are specified then the

useMilliseconds parameter must be set to FALSE as only one-second granularity is provided in the first

release of the mechanism’s implementation.

ProtectToolkit C Programming Guide

77

The "timeStampFormat" parameter specifies the input/output format of the data to be timestamped. This

provides the ability to introduce future support for timestamping protocols such as those defined in

RFC3161. The default value for this parameter is CK_TIMESTAMP_FORMAT_PTKC. If the mechanism

parameters are specified then the timeStampType parameter must be set to

CK_TIMESTAMP_FORMAT_PTKC as only this format is supported in the first release.

For CK_TIMESTAMP_FORMAT_PTKC the mechanism expects the input data to be a stream of bytes for

which a message digest must be computed and a timestamp generated according to the format defined

below. If mechanism parameters are passed and the two parameters are not set as defined above, the

C_SignInit function returns CKR_MECHANISM_PARAM_INVALID.

C_Sign is defined in the PKCS #11 standard as:

CK_DEFINE_FUNCTION(CK_RV, C_Sign)(

CK_SESSION_HANDLE hSession,

CK_BYTE_PTR pData,

CK_ULONG ulDataLen,

CK_BYTE_PTR pSignature,

CK_ULONG_PTR pulSignatureLen);

The parameter formats are defined in the following tables.

Table 56 – Input format (=pData in C_Sign)

C-Definition Description

unsigned char Data Transaction data (variable length), maximum of 3k

Table 57 – Output format (=pSignature in C_Sign)

C-Definition Contents on Output

Unsigned char serialnumber[20] This is a unique number for each timestamp, padded with

zeroes in a Big Endian 20 byte array. The number is read

from the CKH_MONOTONIC_COUNTER hardware

feature object on the same token as the signing key. By this

read action the value contained by the object is

automatically increased by 1.

Unsigned char timestamp[15] This is the timestamp in the format of GeneralizedTime

specified in RFC3161. The syntax is:

YYYYMMDDhhmmss[.s...]Z The sub-second component

is optional and not supported in the intial release but still

defined to ensure backward compatibility in the future.

Unsigned char sign[128] RSA Signature

NOTE 1: Please see the PKCS #11 v2.10: Cryptographic Token Interface Standard, RSA Laboratories

December 1999 for a definition of types.

NOTE 2: It is highly recommended that the RFC3161 format timestamp provided by the HSM be stored on

the host to allow future independent third party timestamp verification.

ProtectToolkit C Programming Guide

78

The mechanism will perform the following:

 Input data that is provided by the calling host.

 Obtain the time from within the ProtectHost.

 Calculate a signature across the merged input data and time data using PKCS#1 type 01 padding as

follows:

Signature = Sign(SHA1(Data || serialnumber || timestamp)

 Output part of the input data, the time data and the signature.

Verification of the signature can be performed using the CKM_SHA1_RSA_PKCS_TIMESTAMP

mechanism with C_Verify or C_VerifyRecover. The difference between the two functions is that

C_Verify calculates the hash but does not return it to the caller where as C_VerifyRecover() returns

the hash. The following is passed as input data: <data><serialnumber><timestamp>

CKM_VISA_CVV

This is a signature generation and verification method. The Card Verification Value signature is generated as

specified by VISA.

The mechanism does not have a parameter.

Constraints on key types and the length of data are summarized in the following table:

Table 58 – VISA CVV: Key and Data Length

Function Key Type Input Length Output Length

C_Sign CKK_DES2 16 2

C_Verify CKK_DES2 16, 22 N/A

2
 Data length, signature length.

CKM_WRAPKEY_DES3_CBC

The CKM_WRAPKEY_DES3_CBC and CKM_WRAPKEY_DES3_ECB mechanisms are used to wrap a

key value plus all of its attributes so that the entire key can be reconstructed without a template at the

destination. The key value is encoded and encrypted using CKM_DES3_CBC_PAD and then combined with

all other object attributes. The result are then MACed. The wrapping key is supplied as normal to the

C_Wrap and C_Unwrap Cryptoki functions.

The C_Unwrap operation will fail with CKR_SIGNATURE_INVALID if any of the key’s attributes have

been tampered with while the key was in transit.

Encoding Format

The encoding is a proprietary encoding where fields are identified by their position (no tags). All fields are

preceded by an encoding of the length of the content. The length may be zero indicating an empty field but

must always be present. Where the length is zero the content is not present (zero bytes). Where the length is

non zero the content has the number of bytes equal to the value of the encoded length. The length is encoded

as a 32-bit big-endian binary value and can thus take values from 0 to (232 -1) i.e. around 4 gigabytes.

ProtectToolkit C Programming Guide

79

Definitions

wK This is the wrapping key under which the subject key is to be wrapped. This key must

be valid for the operation Ex.

mK This is a randomly generated MAC key using CKM_DES2_KEY_GEN. This key is

used with Mx.

cK This is clear encoding of the subject key. For single part symmetric keys, this is just the

key value. For compound (e.g., RSA) keys, it is a BER encoding as per PKCS#1.

a This is the encoded non-sensitive subject key attributes. The attributes are encoded with

an attribute header, which is the number of attributes (4 byte), followed by a list of sub

encodings which contain the attribute type (4 byte), content length (4 byte), a content

presence indicator (1 byte), and the content bytes. The presence indicator allows the

content length value to be non-zero, but, where presence indicator = 0, no content bytes

are included. If the presence indicator is 1 then the content length must be the number

of bytes indicated by the content length field. All numeric values are encoded as big-

endian. Note that the sensitive attributes are contained in cK.

E x This is encryption using CKM_DES3_(ECB/CBC)_PAD with key 'x'.

M x
This is MAC generation using CKM_DES3_MAC_GENERAL (8 byte MAC result)

with key 'x'.

A wrapped key using CKM_WRAPKEY_DES3_ECB or CKM_WRAPKEY_DES3_CBC is made up of the

following fields:

 ecK the encrypted key value, ecK = EwK(cK).

 a the encoded non-sensitive subject key attributes.

 m a MAC of the key value and attributes, m = MmK(cK + a).

 emK the encrypted MAC key value, emK = EwK(mK).

These fields are then encoded as described above.

E.g. Using CKM_WRAPKEY_DES3_CBC on a Single length DES key, with a Triple DES Wrapping key,

produces the encoding:

|length | ecK – encrypted key value

00000010 2B847CF929FA2148A0A59BB6D44BBD74

|length | a – encoded non-sensitive attributes

00000120

00000019000000010000000101010000000200000001010000000003000000

05017465737400000001060000000101008000012800000001010000000107

00000001010100000162000000010101800001290000000101010000017000

00000101010000010400000001010100000105000000010101000001080000

000101010000010A0000000101010000010300000001010000000163000000

01010100000000000000040100000004000001000000000401000000130000

01610000000401000000088000010200000010013230303131313031313234

35303330300000010C00000001010000000102000000000000000110000000

00000000011100000000000000016500000001010000000164000000010100

000000000000000000

|length | m – MAC of key value and attributes

00000008 6256751248BFA515

|length | emK – encrypted MAC key value

00000018 2B847CF929FA214837ACF80D3AA9D1470082249D71E053DA

ProtectToolkit C Programming Guide

80

CKM_WRAPKEY_DES3_ECB

See the entry for CKM_WRAPKEY_DES3_CBC.

CKM_WRAPKEY_AES_CBC

The CKM_WRAPKEY_AES_CBC mechanism is used to wrap a key value plus all of its attributes so that

the entire key can be reconstructed without a template at the destination.

This mechanism is the same as the CKM_WRAPKEY_DES3_CBC mechanism described above but uses

only NIST approved cryptographic algorithms and key sizes.

The following fields in the encoding are computed differently to those in CKM_WRAPKEY_DES3_CBC

mechanism described above.

mK This is a randomly generated 256-bit MAC key using

CKM_GENERIC_SECRET_KEY_GEN. This key is used with Mx.

E x This is encryption using CKM_AES_CBC_PAD with key 'x'.

M x
This is MAC generation using CKM_SHA512_HMAC_GENERAL (16 byte MAC

result) with key 'x'.

CKM_WRAPKEYBLOB_AES_CBC, CKM_WRAPKEY_DES3_ECB

The CKM_WRAPKEYBLOB_AES_CBC and CKM_WRAPKEYBLOB_DES3_CBC mechanism is used to

wrap a private key value using the Microsoft PRIVATEKEYBLOB format.

http://msdn.microsoft.com/en-us/library/cc250013(PROT.13).aspx

The RSA private key is formatted as shown below and then the result is encrypted by

CKM_AES_CBC_PAD or CKM_DES3_CBC_PAD:

Header 12 bytes long = 07 02 00 00 00 A4 00 00 52 53 41 32

Bit Length (32 bit LE)

PubExp (32 bit LE)

Modukus (BitLength/8 bytes long LE)

P (BitLength/8 bytes long LE)

Q (BitLength/8 bytes long LE)

Dp (BitLength/8 bytes long LE)

Dq (BitLength/8 bytes long LE)

Iq (BitLength/8 bytes long LE)

D (BitLength/8 bytes long LE)

CKM_XOR_BASE_AND_KEY

XORing key derivation, denoted CKM_XOR_BASE_AND_KEY, is a mechanism which provides the

capability of deriving a secret key by performing a bit XORing of two existing secret keys. The two keys are

specified by handles; the values of the keys specified are XORed together in a buffer to create the value of

the new key.

This mechanism takes a parameter, a CK_OBJECT_HANDLE. This handle produces the key value

information that is XORed with the base key’s value information (the base key is the key whose handle is

supplied as an argument to C_DeriveKey).

http://msdn.microsoft.com/en-us/library/cc250013(PROT.13).aspx

ProtectToolkit C Programming Guide

81

For example, if the value of the base key is 0x01234567,and the value of the other key is 0x89ABCDEF,

then the value of the derived key is taken from a buffer containing the string 0x88888888.

 If no length or key type is provided in the template, then the key produced by this mechanism is a

generic secret key. Its length is equal to the minimum of the lengths of the data and the value of the

original key.

 If no key type is provided in the template, but a length is, then the key produced by this mechanism is

a generic secret key of the specified length.

 If no length is provided in the template, but a key type is, then that key type must have a well-defined

length. If it does, then the key produced by this mechanism is of the type specified in the template. If

it doesn’t, an error is returned.

 If both a key type and a length are provided in the template, the length must be compatible with that

key type. The key produced by this mechanism is of the specified type and length.

 If a key type is provided in the template the behavior depends on whether the type is identical to the

type of the base key. If the base key is of type CKK_GENERIC_SECRET then you can change the

type of the new key. Otherwise you can change the type only if the ”Pure PKCS11” configuration

flag has been set.

If a DES, DES2, DES3, or CDMF key is derived with this mechanism, the parity bits of the key are set

properly.

If the requested type of key requires more bytes than are available by taking the shorter of the two key’s

value, an error is generated.

This mechanism has the following rules about key sensitivity and extractability:

 If the base key has its CKA_SENSITIVE attribute set to TRUE, so does the derived key. If not, then

the derived key’s CKA_SENSITIVE attribute is set either from the supplied template or from a

default value.

 Similarly, the derived key’s CKA_EXTRACTABLE attribute is set either from the supplied template

or else it defaults to the value of the CKA_EXTRACTABLE of the base key.

 The derived key’s CKA_ALWAYS_SENSITIVE attribute is set to TRUE if and only if the base key

has its CKA_ALWAYS_SENSITIVE attribute set to TRUE.

 Similarly, the derived key’s CKA_NEVER_EXTRACTABLE attribute is set to TRUE if and only if

the base key has its CKA_NEVER_EXTRACTABLE attribute set to TRUE.

CKM_ZKA_MDC_2_KEY_DERIVATION

This is the ZKA MDC-2 and DES based key derivation mechanism. The algorithm implemented by this

mechanism is defined in the ZKA technical appendix, “Technischer Anhang zum Vertrag über die Zulassung

als Netzbetreiber im electronic-cash-System der deutschen Kreditwirtschaft” V5.2, section 1.9.2.3,

“Generierung kartenindividueller Schlüssel”.

It has a parameter, the derivation data, which is an arbitrary-length byte array.

This mechanism only operates with the C_DeriveKey()function.

ProtectToolkit C Programming Guide

82

The derivation data is digested using the CKM_DES_MDC_2_PAD1 mechanism, and the result is ECB

decrypted with the base key. The result is used to make the value of a derived secret key. Only keys of type

CKK_DES, CKK_DES2 and CKK_DES3 can be used as the base key for this mechanism. The derived key

can have any key type with key length less than or equal to 16 bytes.

 If no key type and no length is provided in the template, then the key produced by this mechanism

is a generic secret key. Its length is 16 bytes (the output size of MDC2).

 If no key type is provided in the template, but a length is provided, then the key produced by this

mechanism is a generic secret key of the specified length – created by discarding one or more bytes

from the right hand side of the decryption result.

 If a key type is provided in the template, but no length is provided, then that key type must have a

well-defined length. If it does, then the key produced by this mechanism is of the type specified in the

template. If it doesn’t, an error is returned.

 If both a key type and a length are provided in the template, the length must be compatible with

that key type. The key produced by this mechanism is of the specified type and length. If the length

isn’t compatible with the key type, an error is returned.

 If the derived key type is CKK_DES, or CKK_DES2, the parity bits of the key are set properly.

 If the derived key value length requested is more than 16 bytes, an error is returned.

The following key sensitivity and extractability rules apply for this mechanism:

 The CKA_SENSITIVE, CKA_EXTRACTABLE and CKA_EXPORTABLE attributes in the

template for the new key can be specified to be either TRUE or FALSE. If omitted, these attributes

each take on the value of the corresponding attribute of the base key. The default value for the

CKA_EXTRACTABLE and CKA_EXPORTABLE attributes is TRUE. The default value of the

CKA_SENSITIVE attribute depends on the security flags. If the No clear Pins security flag is set, the

default value is TRUE; otherwise, it is false.

 If the base key has its CKA_ALWAYS_SENSITIVE attribute set to FALSE, then the derived key

will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to TRUE, then the

derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its

CKA_SENSITIVE attribute.

 If the base key has its CKA_NEVER_EXTRACTABLE attribute set to FALSE, then the derived key

will too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to TRUE, then the

derived key has its CKA_NEVER_EXTRACTABLE attribute set to TRUE only if both

CKA_EXTRACTABLE and CKA_EXPORTABLE attributes are FALSE. Otherwise, it is set to

FALSE.

ProtectToolkit C Programming Guide

83

Vendor-Defined Error Codes
The table below lists the error codes that may be returned from ProtectToolkit C which are Vendor

extensions to the PKCS#11 standard.

Table 59 – SafeNet defined Error Codes

Name Value Description

CKR_TIME_STAMP 0x80000101 Not used

CKR_ACCESS_DENIED 0x80000102 Attempting to call C_InitToken when

HSM configured for “No Clear Pins”

Use CT_InitToken instead.

CKR_CRYPTOKI_UNUSABLE 0x80000103 Not used

CKR_ENCODE_ERROR 0x80000104 Template encode/decode error. Usually

internal error but may be caused by badly

formed function request parameters.

CKR_V_CONFIG 0x80000105 Not used

CKR_SO_NOT_LOGGED_IN 0x80000106 Operation requires session to be in SO RW

mode.

CKR_CERT_NOT_VALIDATED 0x80000107 Public key certificate chain not terminated

by a TRUSTED certificate.

CKR_PIN_ALREADY_INITIALIZED 0x80000108 Calling C_InitPIN when pin is already

initialised. Use C_SetPIN instead.

CKR_REMOTE_SERVER_ERROR 0x8000010A Not used

CKR_CSA_HW_ERROR 0x8000010B Not used

CKR_NO_CHALLENGE 0x80000110 Not used

CKR_RESPONSE_INVALID 0x80000111 Failure to disable an FM

CKR_EVENT_LOG_NOT_FULL 0x80000113 Attempting to erase Event log when it is

not full.

CKR_OBJECT_READ_ONLY 0x80000114 Attempting to C_DestroyObject with

CKA_DELETABLE=TRUE

CKR_TOKEN_READ_ONLY 0x80000115 Not used

CKR_TOKEN_NOT_INITIALIZED 0x80000116 Attempting to Reset a Token that is not

initialised

CKR_NOT_ADMIN_TOKEN 0x80000117 Attempting to create an object or write an

attribute of an object on a normal token

that should only be on an Admin token

CKR_AUTHENTICATION_REQUIRED 0x80000130 Not used

CKR_OPERATION_NOT_PERMITTED 0x80000131 Attempting to generate a timestamp when

the RTC is not working or trusted.

PKCS#12 import package has more than

one private key.

CKR_PKCS12_DECODE 0x80000132 PKCS#12 package corrupt

CKR_PKCS12_UNSUPPORTED_SAFEBAG_TYPE 0x80000133 PKCS#12 package contains unrecognised

SAFEBAG

CKR_PKCS12_UNSUPPORTED_PRIVACY_MODE 0x80000134 PKCS#12 package contains unrecognised

privacy (public key mode not psupported)

CKR_PKCS12_UNSUPPORTED_INTEGRITY_MODE 0x80000135 PKCS#12 package contains unrecognised

integrity (should be MAC)

ProtectToolkit C Programming Guide

84

Name Value Description

CKR_KEY_NOT_ACTIVE 0x80000136 Key has exceeded its usage limit or dates.

CKR_ET_NOT_ODD_PARITY 0x80000140 DES key being loaded into HSM has bad

parity (should be odd) – fix key or enable

“Des Keys Even Parity Allowed” mode

(ctconf –fd)

CKR_CANNOT_DERIVE_KEYS 0x80000381 Internal error when establishing a secure

messaging connection.

CKR_BAD_REQ_SIGNATURE 0x80000382 Corrupt request to HSM when using

secure messaging (network or device

driver error)

CKR_BAD_REPLY_SIGNATURE 0x80000383 Corrupt reply from HSM when using

secure messaging (network or device

driver error)

CKR_SMS_ERROR 0x80000384 General error from secure messaging

system – probably caused by HSM failure

or network failure.

CKR_BAD_PROTECTION 0x80000385 Cryptoki library has failed to apply proper

secure message protection – internal error.

CKR_DEVICE_RESET 0x80000386 HSM has unexpectantly shutdown. Check

the event log for errors (ctconf –e)

CKR_NO_SESSION_KEYS 0x80000387 Cryptoki library has failed to establish

keys for secure message protection –

internal error.

CKR_BAD_REPLY 0x80000388 Reply message from HSM is badly

formatted (network or device driver error).

CKR_KEY_ROLLOVER 0x80000389 Secure messaging system has not

implemented key rollover protocol

properly

CKR_NEED_IV_UPDATE 0x80000310 Secure messaging system has not

implemented key rollover protocol

properly

CKR_DUPLICATE_IV_FOUND 0x80000311 Not used

CKR_BAD_REQUEST 0x80001001 Badly formed request message (network or

device driver error)

CKR_BAD_ATTRIBUTE_PACKING 0x80001002 Cryptoki client has failed to encode

attribute list correctly.

CKR_BAD_ATTRIBUTE_COUNT 0x80001003 Cryptoki client has failed to encode

attribute list correctly.

CKR_BAD_PARAM_PACKING 0x80001004 Cryptoki client has failed to encode

function parameters correctly.

CKR_EXTERN_DCP_ERROR 0x80001386 Not used

CKR_WLD_CONFIG_NOT_FOUND 0x80002001 ET_PTKC_WLD configuration data not

consistent

CKR_WLD_CONFIG_ITEM_READ_FAILED 0x80002002 ET_PTKC_WLD configuration data not

available

CKR_WLD_CONFIG_NO_TOKEN_LABEL 0x80002003 ET_PTKC_WLD configuration data not

formatted correctly

CKR_WLD_CONFIG_TOKEN_LABEL_LEN 0x80002004 ET_PTKC_WLD configuration data not

ProtectToolkit C Programming Guide

85

Name Value Description

formatted correctly

CKR_WLD_CONFIG_TOKEN_SERIAL_NUM_LEN 0x80002005 ET_PTKC_WLD configuration data not

formatted correctly

CKR_WLD_CONFIG_SLOT_DESCRIPTION_LEN 0x80002006 ET_PTKC_WLD configuration data not

formatted correctly

CKR_WLD_CONFIG_ITEM_FORMAT_INVALID 0x80002007 ET_PTKC_WLD configuration data not

formatted correctly

CKR_WLD_LOGIN_CACHE_INCONSISTENT 0x80002010 Internal error in cryptoki library where

WLD values are inconsistent.

CKR_HA_MAX_SLOTS_INVALID_LEN

0x80003001 Too many virtual WLD slots are defined

CKR_HA_SESSION_HANDLE_INVALID

0x80003002

Unknown session handle passed to

Cryptoki library.

CKR_HA_CANNOT_RECOVER_KEY

0x80003005 HA recovery process needs to create a key

but is unable to

CKR_HA_NO_HSM

0x80003006 HA has tried to recover a lost session but

no ore working HSMs are available.

CKR_HA_OUT_OF_OBJS 0x80003007 The HA feature has reached its caopacity

to manage session objects – too many

objects created.

ProtectToolkit C Programming Guide

86

C H A P T E R 5

SAMPLE PROGRAMS

Sample programs include a variety of PKCS#11 applications. Unless specifically stated, the source code

provided with the ProtectToolkit C SDK product may be modified or incorporated into other programs.

C Samples

Compiling the Sample Programs
The sample programs mentioned above will need to be compiled prior to use.

NOTE: A third-party C software compiler, such as Microsoft Visual C++, must be installed before

performing these steps.

To compile under Windows:

1. Set the CPROVDIR environment variable to point to your installation.
C:\> set CPROVDIR=C:\program files\safenet\cprov sdk

2. Use the nmake program to compile the examples.
C:\Program files\safenet\Cprov SDK\samples\demo> nmake

To compile under UNIX:

1. Create a temporary compile directory.

% mkdir SafeNet

2. Copy the sample program and Makefile into that directory.
% cp /opt/safenet/protecttoolkit5/ptk/src/demo/* SafeNet

3. Modify the Makefile to point to your installation directory.

CFLAGS=-I/opt/safenet/protecttoolkit5/ptk/include -

I/opt/safenet/protecttoolkit5/ptk/src/include

LDFLAGS=-L/opt/safenet/protecttoolkit5/ptk/lib

4. Use the make program to build the demo.

% make

CTDEMO
This program sets up a 4-token key profile that may be used for an electronic commerce trading application.

The token profiles include a sample customer, merchant, bank and certifying authority. The application

exchanges public keys between each of the tokens and, where CA mechanism extensions are supported,

ProtectToolkit C generates certificates for the public keys.

ProtectToolkit C must be configured to have at least 4 slots/tokens for this demonstration program to operate

correctly.

ProtectToolkit C Programming Guide

87

CTDEMO is a console application that takes the following arguments:

ctdemo -s<slotID> -m<modulus size> -q -f –x

where:

-q Quick. Does not prompt for values but uses defaults.

-f Force. Does not warn about overwriting token contents.

-m Specify modulus size.

-s First slot number to use.

-x Extended. Creates more keys.

Defaults:

Security Officer (SO) PIN = 9999

Slot Token Label PIN

0 Alice 0000

1 NAB 1111

2 Meyer 2222

3 SAFENET 3333

NOTE: This will overwrite the contents of all of the above tokens.

FCRYPT
FCRYPT is a file encryption program that takes a recipient's public key and sender's private key and uses

these to encrypt and sign the contents of a file. Random transport keys for triple DES are generated for the

bulk file content encryption. Alternately the Password Based Encryption (PBE) variant can be used so that

only the password needs to be shared and no public keys/certificates need to be exchanged.

FCRYPT is a console application that takes the following arguments:

Usage

fcrypt [-d] [-t] [-o<outfile>] -p<password> infile

fcrypt [-d] [-t] [-o<outfile>] -s<key> -r<key> infile

NOTE: Correct usage is to either to provide a pbe-password, or to provide a sender and recipient key.

Options

-h View help

-d Decrypt instead of encrypt

-o Output file name

-p PBE password

-r Recipient key name

-s Sender key name

-t Report timing info

Key Naming Syntax:

<token name>(<user pin>)/<key name>

 for example, -s"Alice(0000)/Sign"

NOTE: The FCRYPT program is also provided as an example tutorial in Chapter 8.

ProtectToolkit C Programming Guide

88

Additional C Sample Programs
There are also a number of additional C sample programs provided. For further information about the

functionality of these programs refer to the description provided at the top of the source file for each of

them.

Java Samples

Compiling and Running the Sample Programs
The binaries for the sample programs are included in jcprovsamples.jar file. However, in order to use the

sources provided, you must compile them first.

NOTE: The JDK 1.2.2 or newer is required to compile these samples.

For best results, ensure that jcprov.jar is in your CLASSPATH environment variable before compiling the

applications. Since all the applications are registered under the name space “SafeNet_tech.jcprov.samples”, a

path that allows this namespace to be used must also be added to the CLASSPATH. If the samples are

compiled in their installed locations, the path leading to the “samples” directory in the installation location

will allow them to be executed as documented below.

For compiling and running under Windows NT:

 Set the CLASSPATH environment variable to point to jcprov.jar and sample programs’ root path.
C:\> set “CLASSPATH=C:\program

files\safenet\cprovsdk\bin\jcprov.jar; C:\program

files\safenet\cprovsdk\samples”

 Use javac program to compile the examples.
C:\Program

Files\Safenet\CprovSDK\samples\SafeNet_tech\jcprov\samples> javac

GetInfo.java

 Use java program to run samples.
C:\Program

files\safenet\CprovSDK\samples\SafeNet_tech\jcprov\samples>

javaSafeNet_tech.jcprov.samples.GetInfo -info

For compiling and running under UNIX:

 Create a temporary compile directory.
% mkdir –p SafeNet_tech/jcprov/samples

 Copy the sample program and Makefile into that directory.
% cp

/opt/safenet/protecttoolkit5/ptk/src/SafeNet_tech/jcprov/samples/*

SafeNet_tech/jcprov/samples

 Set the CLASSPATH environment variable to point to jcprov.jar and sample programs’ root

path.
% export

CLASSPATH=/opt/safenet/protecttoolkit5/ptk/lib/jcprov.jar:`pwd`

 Change directory to sample programs’ path.
% cd SafeNet_tech/jcprov/samples

 Use javac program to compile the examples.

% javac GetInfo.java

 Use java program to run samples.
% java SafeNet_tech.jcprov.samples.GetInfo -info

ProtectToolkit C Programming Guide

89

The Java Classes

DeleteKey

This class demonstrates the deletion of keys.

Usage
java SafeNet_tech.jcprov.samples.DeleteKey -keyType <keytype> -keyName

<keyname> [-slot <slotId>] [-password <password>]

Options

keytype One of (des, des2, des3, rsa). The types of keys supported are:

 des — single DES key

 des2 — double length Triple DES key

 des3 — triple length Triple DES key

 rsa — RSA Key Pair

keyname The name (label) of the key to delete.

slotId The slot containing the token to delete the key from. The default is (0).

password The user password of the slot. If specified, a private key is deleted.

EccDemo

This class demonstrates the generation of EC keys (prime192v1) and optionally performs sign/verify option

with generated keys

Usage
java SafeNet_tech.jcprov.samples.EccDemo [-g] -n<Key label>

Options

-g Generate Key Pair only (do not perform sign/verify)

-n Labels for key pair

EncDec

This class demonstrates the encryption and decryption operations.

Usage
java SafeNet_tech.jcprov.samples.EncDec -keyType <keytype> -keyName

<keyname> [-slot <slotId>] [-password <password>]

Options

keytype One of (des, des2, des3, rsa). The types of keys supported are:

 des — single DES key

 des2 — double length Triple DES key

 des3 — triple length Triple DES key

 rsa — RSA Key Pair

keyname The name (label) of the key to delete.

slotId The slot containing the token to delete the key from. The default is (0).

password The user password of the slot. If specified, a private key is used.

ProtectToolkit C Programming Guide

90

EnumAttributes

This class demonstrates the SafeNet extension to enumerate all attributes of an object.

Usage
java SafeNet_tech.jcprov.samples.EnumAttributes -name <objectname> [-

slot <slotId>] [password <password>]

Options

objectName The name (label) of the object to enumerate over.

slotId The slot containing the object. The default is (0).

password The user password of the slot. If specified, a private object is used.

GenerateKey

This class demonstrates the generation of keys.

Usage
java SafeNet_tech.jcprov.samples.GenerateKey -keyType <keytype> -keyName

<keyname> [-slot <slotId>] [-password <password>]

Options

keytype One of (des, des2, des3, rsa). The types of keys supported are:

 des — single DES key

 des2 — double length Triple DES key

 des3 — triple length Triple DES key

 rsa — RSA Key Pair

 ec — EC Key Pair

keyname The name (label) of the key to delete.

slotId The slot containing the token to delete the key from. The default is (0).

password The user password of the slot. If specified, a private key is created.

GetInfo

The class demonstrates the retrieval of Slot and Token Information.

Usage
java SafeNet_tech.jcprov.samples.GetInfo (-info, -slot, -token)

[<slotId>]

Options

info Retrieve the General information.

slot Retrieve the Slot Information of the specified slot.

token Retrieve the Token Information of the token in the specified slot.

slotId
The related slot ID of the slot or token information to retrieve. The default

is (all).

ProtectToolkit C Programming Guide

91

ListObjects

This class demonstrates the listing of Token objects.

Usage
java SafeNet_tech.jcprov.samples.ListObjects [-slot <slotId>] [-password

<password>]

Options

slotId The slot containing the token objects to list. The default is (0).

password The user password of the slot. If specified, private objects are also listed.

ReEncrypt

This class demonstrates re-encryption of variable length data.

Re-encryption is where cipher text (encrypted key or data) is decrypted with one key, and then the resulting

plain text is encrypted with another key. Typically you want this operation to occur in such a way as to avoid

having the intermediate plain text leaving the security of the adapter.

This is achieved in PKCS#11 via the C_UnwrapKey and C_WrapKey functions. By specifying the

intermediate plain text data as a GENERIC_SECRET, SENSITIVE, Session object, you can keep variable

length data securely in the adapter. This program assumes that slot 0 exists. All objects generated during

program execution are session objects, and as such the contents of the token in slot 0 are not modified.

Usage
java SafeNet_tech.jcprov.samples.ReEncrypt

Threading
Sample program to show use of different ways to handle multi-threading.

This program initializes the Cryptoki library according to the specified locking model. Then a shared handle

to the specified key is created. The specified number of threads is started, where each thread opens a session

and then enters a loop which does a triple DES encryption operation using the shared key handle.

It is assumed that the key exists in slot 0, and is a Public Token object.

Usage
java ...Threading -numThreads <numthreads> -keyName <keyname> -locking

<lockingmodel> [-v]

Options

numthreads The number of threads to start.

keyname The name of the Triple DES key to use for encryption operation.

lockingmodel The locking model, one of :

 None — No locking performed. Some of the threads should

report failures.

 OS — Use native OS mechanisms to perform locking.

 Functions — Use Java functions to perform locking.

ProtectToolkit C Programming Guide

92

C H A P T E R 6

BEST PRACTICE GUIDELINES

Overview
ProtectToolkit C can be used to add cryptographic services in a standardized way to any application that

requires such services. Cryptographic services are required where security policy exists and must be

enforced to the full extent possible by state of the art existing technology. Currently cryptographic methods

are the only way to assure authenticity, confidentiality and integrity to levels that can be mathematically

shown to resist all known attacks for the foreseeable future.

Simplicity is another essential goal since complex systems are extremely difficult to analyze to an extent

where all weakness can be found or shown not to exist to a level that is practicable. ProtectToolkit C is a

simple and low-level key management and cryptographic service provider and its simplicity should allow it

to be used easily to provide the necessary level of cryptographic service.

There are many independent, and sometimes conflicting, goals in the life cycle of developing secure

products so this document shall outline the best approach to the use of ProtectToolkit C, always keeping

these goals in mind. Above all the developer should always strive to keep implementation simple.

The remainder of this document assumes a basic level of understanding of the ProtectToolkit C product and

the PKCS#11 (Cryptoki) system. It refers to the PKCS#11 device as a security module and this may be a

stand-alone appliance, or adapter based PKCS#11 security module.

Introduction
The best place to start building a ProtectToolkit C application is with the sample applications that

demonstrate how the ProtectToolkit C system should be initialized and used to perform various

cryptographic operations. The samples vary quite significantly in complexity. However they are all real

working ProtectToolkit C utilities and cover all ProtectToolkit C services.

Security of a system derives mainly from the following areas, confidentiality, authentication, and access

control.

Confidentiality
Confidentiality is where there is data that must exist or be transferred through an environment where it may

be subject to inspection by an unauthorized person and damages to the owner of the data may result from

such inspection. The way to protect confidential data from inspection by unauthorized viewers is simply to

encrypt it. Examples of confidential information include corporate or personal data, and cryptographic keys.

Integrity / Authentication
Integrity is the term that applies to the quality of data that it has not been modified since it was last in control

of an authorized person. Integrity does not mean that no one should see the data (confidentiality), rather that

no unauthorized person should be able to change it without detection. Integrity can be assured by the use of

message authentication codes (MAC) that are a cryptographic digest of the message and rely on the

knowledge of a secret key.

Access Control
Access control is the method of associating access to certain objects to reliable people who will not misuse

those objects, or where misuse can be detected and dealt with by a higher authority. Access control brings

accountability for actions to those people that perform those actions. Access control requires authenticating

users before the access is granted and there are many methods to do user authentication.

NOTE: It is not necessary to know the value of a secret key to use it to encrypt or sign (MAC) something.

ProtectToolkit C Programming Guide

93

Getting to Know ProtectToolkit C
To become proficient at ProtectToolkit C development it is necessary to understand PKCS#11 and basic

security and cryptographic fundamentals. The entire PKCS (Public Key Cryptographic Standard) suite of

standards has relevance since PKCS#11 is an API that uses elements of most of the other PKCS standards.

The PKCS#11 interface is described in the PKCS#11 definition that is published by RSA Laboratories and is

downloadable from their web site. A copy is also included in the ProtectToolkit C SDK package.

You should also refer to Chapter 10, which details some of the many differences between the PKCS#11

standard and the SafeNet ProtectToolkit C implementation.

Another excellent starting point for getting to know ProtectToolkit C is sample PKCS#11 application code,

included in the SDK installation, which may be compiled and inspected, or used directly to derive

commercial PKCS#11 applications.

Application Implementation Goals
The goals and guidelines listed below are an attempt to relate application development goals to

ProtectToolkit C design and implementation strategies. These have been formulated from many years of

development experience in using ProtectToolkit C to solve real world application security problems.

Application Security
ProtectToolkit C applications must concern themselves with access control and confidentiality with respect

to any keys used by the application. Access control, to limit cryptographic services to those people

authorized to perform them and confidentiality to prevent unauthorized disclosure of the keying material.

NOTE: In PKCS#11 there are three classes of users, the public, the token user, and the token security

officer (SO). Please refer to the PKCS#11 reference manual and this document for more information

regarding the definition of these user classes and their roles and responsibilities.

ProtectToolkit C Security

1. Use one token per application. The tokens are all separately access controlled and should be used to

collect all keys that are related to the one application and will normally be used simultaneously within

that application. The application should login to the token with the appropriate PIN, use the keys, then

logout before terminating. This approach provides a completely separate logical security boundary for

each application, ensuring that no cross-application leakage can occur.

2. Use one key for one purpose only. That means that each key in a system should have a clearly defined

purpose and not be overloaded with many usages. This limits the damage done by any key that may be

exposed and makes misuse of a key less likely.

3. Always mask the input of secret values typed in on a keyboard such as PINs and clear keys. The

ProtectToolkit C KMU uses this approach for user PINs and clear key components.

4. Set appropriate access control for keys. This will prevent keys from being used by unauthorized

personnel even if the value of the key is safe from exposure. For example, a signature generation key

(CKA_SIGN = TRUE) should not be usable for encryption (CKA_ENCRYPT = TRUE). Most keys

should be “user” keys (CKA_PRIVATE = TRUE), which means that they are accessible only after a

C_Loginhas been performed.

Keys can be randomly generated with attributes such that they can never be known or extracted outside

the token. More often however, keys are backed up shortly after they are generated, then locked into the

token with attributes that forbid their extraction. This is often achieved using clearly specified

procedures; however the application should assist where possible in enforcing these processes.

5. Use the Key Management Utility (KMU) for key backup and restore purposes.

6. Use the FIPS compliant mode of the device.

ProtectToolkit C Programming Guide

94

ProtectToolkit C Security Caveats

1. CKA_SENSITIVE = FALSE. This attribute setting allows key values to be extracted from the security

module using C_GetAttributeValue. Set to TRUE to prevent this form of key value extraction.

2. CKA_EXTRACTABLE = TRUE. This attribute setting allows keys to be wrapped (encrypted) by

another key which, if the key is known externally, can be decrypted to obtain the original key value.

This is particularly easy because a wrapping key (CKA_WRAP=TRUE) may be created at any time to

wrap extractable keys. To prevent this use CKA_EXPORTABLE = TRUE because keys with

CKA_EXPORT can be created only by the security officer (SO).

3. Short PINs can be determined by exhaustive search. To prevent this it is advised to use PINs with more

than just numeric characters and longer than 6 characters.

4. Any key that has the CKA_MODIFIABLE = TRUE can have most other attributes, particularly key

usage attributes, changed. It is best to have persistent keys with this attribute set to FALSE where

possible.

5. Once a session is logged on then all sessions of the same application are also logged on and can access

all user keys on the token.

6. FIPS operation may be slower and have some interoperability problems for some existing PKCS#11

applications.

7. The PKCS#11 library is a dynamic library that the application attaches to, DLL under Win32 and shared

object under UNIX. The library is not separately authenticated by library signing techniques used by

other architectures, e.g., JCE and CryptoAPI. Instead the application should rely on the security of the

operating system to assure that substitution or tampering with the library has not occurred. It is

reasonable to expect modern operating systems to be capable of protecting system files in this way.

Application Usability
It is extremely important to keep usability in mind; otherwise the security requirements become more of an

imposition than users are willing to accept and they are more inclined to work around the security. This

effect can be seen when users forced to change their passwords too often tend to write them down, or choose

simple derivatives of the same password over and over again. Secure systems simply don’t work if they are

not usable.

ProtectToolkit C Application Usability

1. ProtectToolkit C allows PINs to be non-numeric and can be quite long (up to 32 characters). In fact full

8-bit binary data can be used with the ProtectToolkit C API for PINs but applications tend to use

printable characters.

2. When naming keys use the CKA_LABEL attribute and name the key according to both its usage, and

origin (or scope), e.g. “KEK - Database” for a key-encrypting-key for use with an applications database.

This will make the intent of the key more obvious to both trained and untrained users who may be able

to “see” the key but not normally need to use it.

3. Use the token label where possible to find key sets that belong to a particular application rather than slot

numbers. It is advisable to use separate tokens in separate slots for separate applications.

4. For server type applications it may not be possible to perform a login every time the system is re-started.

This means that keys may be forced to be made non-private so that they are accessible without logging

in or the application will have to obtain the login password from some static location – either hard coded

or in some environment variable etc depending on the platform.

5. Learn and use the ProtectToolkit C additional libraries (CTEXTRA and CTUTIL) which have been

provided to implement common PKCS#11 application features.

ProtectToolkit C Programming Guide

95

ProtectToolkit C Usability Caveats

1. The ProtectToolkit C token browser is a developer’s tool and is therefore very low level and can be

tricky to use if the user is not familiar with it or with PKCS#11.

2. Watch out for embedded and trailing spaces in token and object label names. Some PKCS#11

implementations do exact matches and will not regard labels with and without the NULL termination as

equal.

3. Too many applications only work on slot 0 making interoperability between them on the same platform

impossible.

Performance
The product should not perform poorly with security enabled otherwise this will create an incentive to

switch it off to meet performance criteria.

ProtectToolkit C Performance

1. In tight loops it is best to remove as much invariant code as possible. This goes for ProtectToolkit C

session startup, login, key generation / find, and even the cipher initialization. That way only the code

that does the cryptographic operation is in the inner loop.

2. Use session keys if possible since they can be created and destroyed much quicker than token keys.

Watch out for object leaks when using session objects however, since they can be very difficult to find

because they will not be visible to anything but the application that creates them.

3. Avoid having too many objects on a token, since object lookups are performed by traversing all objects

until the correct one is found. Once an object is found it should not need to be searched for again.

4. Multiple adapters (an adapter cluster) can be combined to increase overall throughput where

independent streams of cryptographic operations can be allocated to different devices. Key replication is

required if cryptographic operations need to be performed by any adapter in the cluster.

ProtectToolkit C Performance Caveats

1. Some operations are limited by some slow operation inside the security module and RSA key generation

is a good example of such a slow operation. Other operations may be limited by the speed that data can

cross the application – security module interface.

2. Performance figures quoted by some PKCS#11 device vendors may be difficult to obtain in a real world

application. Cprov includes a PKCS#11 utility that will measure performance by using only the standard

ProtectToolkit C API that any normal application would use. I.e. there is no use of undocumented calls

to obtain these performance figures and any application developer should expect to obtain them from

any well-written PKCS#11 application.

3. Performance is often not relevant for operations that are not performed in time critical or repetitive

situations.

4. FIPS compliant operation may be slower.

Capacity
Tokens have memory that is of two kinds, persistent (token) memory, and session memory. Keys and other

objects may be created and managed in either and each has their respective advantages and capacity.

PTK C does not implement a fixed limit on the number of Tokens or the number of objects in one token.

Tokens and objects may be created until the persistent memory is fully consumed. However the HSM

performance will reduce as the number of slots and objects increases. For all practical purposes the

performance will be unacceptably low before the memory is fully consumed.

As a guideline the developer should not design a system that requires more than 50 Tokens or more than 100

objects in any one token.

ProtectToolkit C Programming Guide

96

ProtectToolkit C Capacity Improvement

1. Use externally stored keys encrypted under a key-encrypting-key. That way only the master key-

encrypting-key needs to be resident on the device and all working keys are unwrapped (C_UnwrapKey)

prior to use and destroyed afterwards.

NOTE: They can usually be unwrapped as session keys. This technique is common for managing a large

set of terminals (EFTPOS or other) that have randomly generated terminal master keys.

2. Use derived keys from a master key stored on the security module. The working key is derived by

encrypting some application-supplied data with the master key and using the cipher text data to create a

key value. This technique is common for managing a large set of terminals (EFTPOS or other) that have

terminal master keys derived from their terminal identifiers. The terminal identifier is usually used as

the application supplied data.

3. Backup and restore keys rather than leaving old key sets on-line. This is a simple case of not leaving old

key sets, after a key rollover, online for any longer than necessary.

4. Multiple adapters may be used to spread keys across the separate key storages of each device.

Cryptographic requests will have to be directed to the adapter that contains the necessary key however.

ProtectToolkit C Capacity Caveats

1. Keys and other objects take up room in proportion to the number and individual sizes of the attributes

that make them up. The number of attributes may change for different versions of PKCS#11 also.

2. Memory leaks may happen in both token (persistent) memory and session memory. Detecting and

plugging the leaks can be quite difficult. Some development tools (CTCONF) are provided that allow

memory usage snapshots to be taken that can help track them down.

3. Low memory conditions may make the device fail in unexpected ways.

Setup / Configuration
An application may take on the task of initialization of the token and key sets or it may presume that they

have already been set up for the application to run. The latter is normally the case and ProtectToolkit C

includes initialization applications to perform this function.

The ProtectServer configuration and management strategy is based on the Administrator token that is

automatically created on all adapters. Please refer to the respective adapter administrator guides for more

details.

ProtectToolkit C Setup / Configuration

1. Decide the most appropriate ProtectToolkit C product based on performance, security, price selection

criteria. There are many options to choose from here with the ProtectToolkit C product suite and related

products so consult brochures and Sales representatives for details.

2. Decide how many tokens should be created for the adapter. Make this decision early since changing the

number of tokens / slots is a significant change. One token per application is the normal rule but there

may be exceptions.

3. Decide what security settings to enable remembering the FIPS mode is reached by enabling a collection

of security settings (see the Administration Manual for details). Some of these settings will impact on

performance so will require some consideration before enabling.

4. Decide how to manage the user and security officer (SO) PINs for each token. The PINs protect

different services and it is important to note that, when in non-FIPS mode, both keys and cryptographic

services can be used when no PIN has been provided.

ProtectToolkit C Programming Guide

97

5. Plan for backup / restore operations to disk or smart card on working key sets. This will influence what

key attributes to set for various keys and may require the existence of backup / restore master keys.

Refer to the KMU user documentation to obtain more information regarding what backup options are

available and how to implement them.

6. Use the KMU for manually setting up key sets, or the CTKMU console application to set them up from

a batch file. It is also quite common to write a simple custom application to set up a key set for an

application since both KMU and CTKMU use PKCS#11 functions that any application can also call.

ProtectToolkit C Setup/Configuration Caveats

1. The administrator token in ProtectToolkit C V3.x may cause confusion since it looks like and in most

respects is a standard PKCS#11 token. There are special objects on this token however and they should

not be accessed by any applications other than the ProtectToolkit C supplied tools.

2. Server applications may have to be able to be brought up and running from a re-boot without any

assistance, or input (including PINs) from a human operator. This may impact on how PINs are

presented to the token for logging in to it.

Maintainability
Security systems must be maintainable so that they can change with changing demand relating to security

policy. New algorithms are introduced and others are phased out, for example DES is now giving way to

increased use of triple DES. AES shall also start becoming in more common usage.

Many changes in security applications also relate to the increased use of PKI systems with the demands of

public key certification and new cryptographic demands related to that.

ProtectToolkit C Maintenance

1. Give keys meaningful names (CKA_LABEL) that relate to the usage as well as their origin.

2. Use supplied PKCS#11 helper functions from CTUTIL library since these are provided to do most

common PKCS#11 operations and have been thoroughly tested.

3. Use appropriate key sizes and cryptographic algorithms and allow for key sizes to increase.

4. Write portable code. ProtectToolkit C is available on many platforms from Win32 to UNIX and the best

applications are most likely to be ported.

ProtectToolkit C Maintenance Caveats

1. Watch out for spaces and NULL (‘\0’) characters in ProtectToolkit C token and object labels.

2. Attribute template handling code can become very messy and there is a tendency to use global variables.

Local variables are better and can be made ‘static’ to avoid stack based initialization compiler warnings.

ProtectToolkit C Programming Guide

98

Debugging
Various development and debugging assistance tools are provided in the ProtectToolkit C SDK including a

full software emulation variant of the PKCS#11 library. One other such tool is the ProtectToolkit C logger

which is a Cryptoki library replacement that intercepts all ProtectToolkit C calls and reports the call with its

arguments to a log file, then completes the call to the real Cryptoki library and reports the call results, return

code and arguments to the same log file, before returning to the application.

ProtectToolkit C Debugging Techniques

1. Use the ProtectToolkit C token browser to inspect tokens and keys, and to set them up initially. The

token browser can also be used to verify cryptographic operations by hand since just about any

ProtectToolkit C function may be called using the browser.

2. Use the software only emulation of PKCS#11 to avoid any issues related to hardware problems

including installation difficulties. This also allows effective PKCS#11 development and debugging to be

done on a laptop with no PCI bus for expansion cards.

3. Use the ProtectToolkit C logger to obtain PKCS#11 activity traces. This is useful to report problems

back to the support staff.

4. Make all keys token keys (CKA_TOKEN = TRUE) rather than session keys. This can help track down

object leaks.

5. Make all keys CKA_SENSITIVE=FALSE so that they can be inspected with the token browser at any

time.

6. Use the Key Verification Codes (KVC) to check a key’s value without having to see the key’s value.

7. Give every key a CKA_LABEL whether the applications uses it or not. If there is an object leak where

many key objects are being managed then the label may be the only way of tracking it down to the

source code that created it.

ProtectToolkit C Debugging Caveats

Remember to switch off all debugging support code once the application is working since some debugging

techniques require disabling normal security options. e.g. CKA_SENSITIVE=FALSE. This is bad if it gets

through to a production system.

Interoperability
PKCS#11 is a standard security module interface defined specifically for removable tokens like smart cards,

but also applicable to non-removable devices. Many vendors have adopted this interface so the possibility of

any particular application being required to interoperate with more than one PKCS#11 type device is quite

high and beneficial to the application developer.

ProtectToolkit C Interoperability

1. Look for PKCS#11 security modules that have high interoperability with standard PKCS#11

applications. Common PKCS#11 applications include Netscape, Entrust, Identrus etc.

2. Test with multiple devices. It is impossible to know for sure that an application is interoperable unless

interoperability testing is actually performed.

ProtectToolkit C Interoperability Caveats

1. PKCS#11 is notorious for many implementations that have low interoperability. This is a result of not

having a central compliance-testing lab for generic PKCS#11 implementations. There are various

application specific compliance test suites that have been used instead.

2. Vendor defined extensions will be present on one vendors implementation but not on all. These should

be used only where vendor independence is not an issue, or used where there is no alternative.

ProtectToolkit C Programming Guide

99

Programming in FIPS Mode
When the device is placed into the FIPS compliant mode (see the ProtectToolkit C Administration Manual)

each Security Mode flag that is set for FIPS mode, changes the behavior of PKCS#11 and may require the

programmer to consider these restrictions when designing their application.

No Public Crypto
This flag is TRUE and each token will have the CKF_LOGIN_REQUIRED flag set and all the

cryptographic C_xxxInit functions and key operation functions: C_GenerateKey, C_GenerateKeyPair,

C_WrapKey, C_UnwrapKey, C_DeriveKey, C_DigestKey will fail unless the session state is in a User mode

(that is, either the USER or SO must be logged in).

If the session state is not in a User mode, any attempt to write to a token will fail (that is, using the functions

C_CreateObject, C_DestroyObject and C_SetAttributeValue).

No Clear PINS
This flag is TRUE and the device will not allow clear-text authentication data to pass through the host data

port.

When this flag is enabled the C_InitToken function will fail with the error result CKR_ACCESS_DENIED.

In order to initialize tokens it is necessary to use the SafeNet extension function CT_InitToken. The SafeNet

tools ctconf and gctadmin are aware of this restriction and will automatically use the appropriate function.

The other functions which supply pins to the adapter, namely C_InitPin, C_Login , C_SetPin and

CT_InitToken will encrypt the pins before supplying the request to the adapter. The C_CreateObject,

C_GenerateKey, C_SeedRandom functions will also be encrypted as they may contain sensitive values. The

encryption and decryption is performed by the Secure Messaging System (SMS) and any application will see

the request AFTER it has been verified and decrypted by the SMS.

Because the SMS automatically encrypts the PINs there is no impact on the application.

Finally with this flag enabled secret key and private key objects will always have their CKA_SENSITIVE

attribute set to true. Any attempt to create a non-sensitive key (that is, set CKA_SENSITIVE=FALSE) or

specify CKA_SENSITIVE=FALSE for any object on the device will fail.

An application will fail if it attempts to create, derive or unwrap keys with

CKA_SENSITIVE=FALSE.

Authentication Protection
This flag is TRUE and all requests coming from an authenticated user (i.e. a request from a logged in user)

must be cryptographically signed.

The signature verification is performed by the SMS and any application will see the request AFTER it has

been verified by the SMS. This flag does not impact on an application.

Security Mode Locked
This flag is TRUE and means the settings of the other flags in this mode structure may not be changed (they

are Read Only).

This flag may be set to TRUE when FALSE but never FALSE when TRUE. The only way to set this flag to

FALSE once it has been set to TRUE is to tamper the device.

Tamper Before Upgrade
This flag is TRUE and all keys, objects and PINs stored in the device’s Secure Memory will automatically

be erased during any OS Firmware Upgrade, FM Upgrade or FM Disable operation.

Designers should consider their key backup and recovery plans when using FIPS mode.

Only FIPS Approved Algorithms
This flag is TRUE and restricts the PKCS#11 mechanisms available to only the FIPS approved mechanisms.

Some algorithms will have their key sizes limited when this flag is true.

Refer to Table 41 for the list of FIPS approved mechanisms.

ProtectToolkit C Programming Guide

100

Key Management
Key management is critical to successful deployment of a secure application. It is important to use the right

tools and follow standard techniques wherever possible.

Backup and Restore
The KMU provides key backup and restore facilities for keys that were created with attributes that allow

backup operations to be performed on them.

The recommended procedure for key backup is to use the CKA_EXPORT and CKA_EXPORTABLE

attributes for the key-encrypting-key and working keys respectively. This is preferred rather than the

CKA_WRAP and CKA_EXTRACTABLE attributes that have a security weakness (see above

ProtectToolkit C security section) because there is no control on setting the CKA_WRAP attribute. The

CKA_EXPORT attribute can be set to TRUE only on a key when the security officer (SO) is logged in to the

token. This prevents working key exposures by introducing a known key-encrypting-key to the device. In

other words the SO controls the existence of export keys while the user is able to use them but not to create

them.

Only keys that have the CKA_EXPORTABLE set to TRUE can be exported by keys that have the

CKA_EXPORT attribute set to TRUE. This allows the existence of keys that can never, or no longer be

exported from the device.

NOTE: The backup/restore master key-encrypting-key will need to be managed in clear components for

split key entry or will have to be backed up with redundancy separately to either disk or smart cards. The

redundancy is a defense against one of the master key sets being physically damaged of one of the

custodians being unable or unwilling to participate in the restore operation. This is normal in any key-

encrypting-key hierarchy for the highest-level keys to be managed by a semi-manual process in control of

highly trusted personnel. These highest-level keys are critical to the restore operation and their loss would

make restore operations impossible.

Key Replication
Key replication is done for one of two reasons normally:

 Fault tolerant redundancy

 Load balancing

NOTE: The normal key backup with a restore per replication is all that is required to do this job. There is

no special key replication procedure. The backup/restore key will need to be present in all devices that the

key-set shall be replicated to. For root level keys a semi-manual procedure is required as in key restorations.

That is, clear components or Smart Card key injection.

Operator Authentication
Protect toolkit C provides several methods to authenticate the operator.

 The conventional C_Login allows the user Pin to be presented directly to the Token.

 The Pin Challenge feature provides the operator the ability to authenticate to a token by first

requesting and then responding to a random challenge. This is a form of bi-directional

authentication protocol. The main advantage of this authentication system over the normal

PKCS#11 C_Login command is that the clear PIN value never leaves the proximity of the operator.

It is particularly useful in the situation where the operator is physically remote from the HSM

 Temporary Pins are an authentication technique that gives the ability to a process to pass user

authentication to another process without having to hold a long term sensitive authentication data

(such as the PIN) or repeatedly require the operator to authenticate.

A new CKO_HW_FEATURE object called CKH_VD_USER is provided by the firmware to allow the

application to obtain the random challenge for either the User Password or SO Password.

The Object has an attribute that an application can read to generate and obtain a random challenge.

A new challenge value will generated each time the attribute is read. A separate Challenge is held for each

registered application. The same challenge can be used for User or SO authentication. See

CT_GetAuthChallenge function description.

ProtectToolkit C Programming Guide

101

The calling application converts the challenge into a Response by using the following algorithm:

Response = SHA-256(challenge | PVC)

Where PVC = LEFT64BIT(SHA1(password | userTypeByte)

A host side static library function CT_Gen_Auth_Response is provided in the SDK to assist developers in

using this scheme.

The CKH_VD_USER has an attribute that an application can read to generate and obtain a Temporary Pin.

Only one SO and one User Temporary pin may exist at any one time in any single Token. Each read from

this attribute will generate a new Temporary Pin. See CT_GetTmpPin function description.

Any Temporary Pins in a Token are automatically destroyed when the generating process logs off or is

terminated or the HSM has reset – whichever comes first.

Under Cryptoki all authentication of users to the HSM is valid for the calling process only. Each application

must authenticate separately. Once a process has authenticated is granted appropriate access to the services

of the token.

With PTK C - if a process forks a new process then the new process must authenticate itself - it can not

inherit the authentication of the parent.

The Temporary Pin feature is a method where a parent process can pass on its authentication to a child

process without having to pass the sensitive pin value.

The Response and Temporary Pin are passed to the HSM using the C_Login function. The Function will be

extended such that unused bits in the userType parameter will be set to indicate that a Response value or

Temporary PIN is being used instead of the normal password.

The following bits are added to the userType parameter of the C_Login Function to specify the type of

authentication required.

#define CKF_AUTH_RESPONSE 0x00000100

#define CKF_AUTH_TEMP_PIN 0x00001000

Operator Authentication Use Cases

Setup

User sets the User and SO pins in the normal manner (using ctkmu or ctconf tools or other

applications)

Programmatic Challenge Response Activation

 Remote client initiates activation by sending a message to the server

 Server Process registers itself to HSMs using C_Initialise

 Server Process opens a session to a Token

 Server Process obtains a Random challenge by calling CT_GetAuthChallenge

 Server Process sends challenge to Remote client

 Client computes the response value using CT_Gen_Auth_Response and returns it to the

Server

 Server Process supplies response as PIN value to the C_Login function using a special

userType parameter value

ProtectToolkit C Programming Guide

102

Pass Authentication to a New Process

 Server Primary Process authenticates using Programmatic Challenge Response Activation

 Server Primary Process obtains a temporary pin by calling CT_GetTmpPin

 For each spawned process, the Primary Process passes the temporary PIN to it using an appropriate inter

process communication method (or by forking).

 New Process registers itself to HSMs using C_Initialise

 New Process opens a session to the Required Token

 New Process authenticates to Token with C_Login function and the temporary pin using a special

userType parameter value

Key Usage Limits
Each private key object on a token may have usage limits applied to them by the use of START_DATE,

END_DATE, DESTROY_ON_COPY, USAGE_COUNT and USAGE_LIMIT plus the

CKA_ADMIN_CERT attributes.

The START_DATE and END_DATE attributes enforce limits on the use of a key based on the date.

The USAGE_COUNT and USAGE_LIMIT attributes enforce limits on the use of a key based on the

number of operations of that key. The USAGE_COUNT attribute increases with each use of the key until

USAGE_LIMIT is reached. If USAGE_COUNT equals or is greater than USAGE_LIMIT then the key is

locked and cannot be used.

In order to stop abuse of the USAGE_COUNT/USAGE_LIMIT controls any Object with a non-empty

CKA_USAGE_LIMIT attribute will be automatically deleted after a successful Copy operation.

Without this rule a key and its attributes may be copied and therefore the number of operation remaining is

automatically doubled.

The START_DATE, END_DATE, USAGE_COUNT and USAGE_LIMIT attributes can be supplied in the

template when a key is created or generated or imported. The C_SetAttributeValue command can be used to

add these attributes to a key if the object is modifiable. But the C_SetAttributeValue command cannot be

used to modify these attributes.

The CKM_SET ATTRIBUTES ticket mechanism is a mechanism which will change the START_DATE,

END_DATE, USAGE_COUNT and USAGE_LIMIT attributes of a specified object is used with the

CT_PresentTicket function.

Programmatic Use Cases for a Developer

Create Usage Limited Key Object

 Developer uses C_GenerateKeyPair to create a new Key pair. The private key template should include

limitation attributes and specify CKA_MODIFIABLE=False.

Set Usage Limits of an Object Directly

 Developer uses CT_SetLimitsAttributes() to set usage limitation attributes. Note the key must have

CKA_MODIFIABLE=True.

 Developer sets CKA_MODIFIABLE=False by calling CT_MakeObjectNonModifiable().

ProtectToolkit C Programming Guide

103

Update Usage Limits of an Object Indirectly

 Developer calls CT_GetObjectDigest on the remote machine (Recommend use of SHA-256

algorithm).

 Developer sends Object Digest to the Master machine.

 Optionally - on Master machine Developer locates signing key and reads its CKA_SUBJECT_STR and

CKA_USAGE_COUNT attributes. The CKA_SUBJECT_STR value can be used as the issuerRDN

value to identify the signing key in the certificate. The CKA_USAGE_COUNT attribute can be used as

the certificate serial number.

 Developer uses CT_Create_Set_Attributes_Ticket_Info() to create a ticketInfo data block. The

CT_SetCKDateStrFromTime() function can help to construct CKA_START_DATE and

CKA_END_DATE values.

 Developer uses the signing key to create a signature of the ticketInfo data block. For RSA signing key

the CKM_SHA256_RSA_PKCS mechanism is recommended.

 Developer uses CT_Create_Set_Attributes_Ticket() to construct the Ticket data block.

 Developer arranges that the Ticket data block is sent to the remote server machine.

 Developer uses CT_PresentTicket() with CKM_SET_ATTRIBUTES mechanism on remote machine to

change limits attributes on target key.

ProtectToolkit C Programming Guide

104

C H A P T E R 7

CTBROWSE – TOKEN BROWSER

Overview
The CTBROWSE utility is a Win32 GUI application. The utility enables you to create tokens and objects

that perform simple operations, such as encrypt, decrypt, sign and verify a signature based on the

mechanisms provided by the token.

This utility enables you to create/browse a key pair and certificates. By selecting an object you can view its

properties. If a certificate object is selected, you can view the structure (ASN.1 format) of the certificate and

encode it to various formats such as Base64, DER.

With CTBROWSE you can create and verify a signature based on the signing mechanism.

CTBROWSE is part of the ProtectToolkit C SDK and is installed as part of that product. See the

ProtectToolkit C Installation Guide for further information.

Compliance
This application expects PKCS#11 V 2.10 compliant implementation and will use SafeNet extensions (see

the next section) if they are available.

PKCS#11 Extensions Used
SafeNet's PKCS#11 implementation provides additional services beyond the standard definition of

PKCS#11, particularly in the area of Certificate services. For example:

 Uses non-standard Attribute enumeration extension although this version will fall back to standard

methods to enumerate attributes where this extension is not available.

 PKCS#10 and X.509 creation from public key (see Drag and Drop on page 109).

 ASN.1 decoder/dumper (see Attribute Editing).

 Allows use of additional vendor defined mechanisms and extensions to PKCS#11.

See Mechanisms for a table of SafeNet vendor-defined mechanisms and extensions to PKCS#11.

ProtectToolkit C Programming Guide

105

Operation

User Interface
When started, CTBROWSE displays a window with left and right panels (Figure 7). The left panel shows a

representation of slots and tokens; the right panel has service buttons.

Figure 7 - Token Browser Window

The left panel initially shows only one item, representing the PKCS#11 implementation that CTBROWSE

has linked to. This item represents a tree control (Figure 8). Double-clicking on the tree will show the

available slots. New slot items may be double-clicked to show tokens in slots.

NOTE: More than one slot containing a token may be available. All slots can be opened and browsed

independently.

The left panel shows a typical CTBROWSE session, where the first token has been opened to show all its

objects and mechanisms. The numbers in square brackets [] show the numeric identifiers (slot identifiers)

used to address these items.

The browser can show more than one slot and can be combined with other ProtectToolkit C products, such

as the remote client/server, ProtectToolkit C ProtectServer (PCI adapter) and ProtectToolkit C ProtectHost,

to allow it to show slots from other PKCS#11 devices including foreign (non-SafeNet) PKCS#11 devices.

Tree View
The next figure shows the hierarchy of the tree. Tree items are identified by labeled icons. The * indicates

more than one item at that level of the tree.

Figure 8 – Tree Hierarchy

ProtectToolkit C Programming Guide

106

Token Management Services
Token management operations on particular tree items are invoked by clicking the right-mouse button while

the mouse cursor is over the desired tree item. This action causes a context menu to popup over the selected

item.

The next table lists the services available from the popup context menu.

Tree Item Service Description

CRYPTOKI Get info Shows CRYPTOKI version, manufacturer and description.

Slot Create token Allows a token to be created. Note that this uses a non-

standard extension to PKCS#11.

 Get info Shows slot type, manufacturer and description

Token Init token Initializes a token and sets the security officer PIN. Note

this will erase all the token’s contents.

 Open Session Opens a session to the token.

 Close all Sessions Closes all open sessions for the token.

 Get info Shows token type, manufacturer etc.

Session Close session Closes the session. Note the session that closes is the one

under the mouse when you perform the right click.

 Login Logs into the token.

 Logout Logs out from the token.

 Init user PIN Initializes the user PIN. Note the security officer must be

logged in to perform this operation.

 Set PIN Set the PIN of the current user. This may be the security

officer or normal user.

 Get info Shows the session status and flags.

Objects Create Object Allows a new object to be created.

 Create Secret Key Create a secret key. The key value is entered via the

keyboard.

 Unwrap Unwraps a previously wrapped key.

 Generate Key Generate a secret key. The key value is randomly generated.

 Generate Key Pair Generate an asymmetric key pair. The key value is

randomly generated.

Object Destroy Deletes an object.

 Copy Makes a copy of an object.

 Set attribute Sets an attribute for an object.

 Wrap Wraps a key value.

 Derive key Derives a shared secret key using Diffie Hellmann. Derives

a certificate request, or X.509 certificate.

 Show KVC Calculates and displays the KVC of the object

 Get info Shows object size and object handle number.

Attribute Edit Allows an attribute’s value to be changed, imported or

exported. Note that some attributes are defined by PKCS#11

to be unchangeable after being initially set. Attributes can

be edited in ASCII or HEX and can also be viewed in Base-

64 or decoded ASN.1 syntax for encoded values.

Mechanism Get info Shows mechanism info.

ProtectToolkit C Programming Guide

107

Example Service - Generate Key Pair
Generating a key pair is one of the management services available. The Generate Key Pair dialog is opened

by right-clicking on an objects tree item in the Token Browser window and choosing Generate Key Pair

from the popup context menu.

Figure 9 and Figure 10 show how the labels and fields of the Generate Key Pair dialog box typically change

according to the mechanism selected for key pair generation.

NOTE: The check boxes are enabled and disabled according to the selected Mechanism.

Figure 9 - Generate Key Pair dialog – when RSA mechanism selected

Figure 10 – Generate Key-pair Dialog – Elliptic Curves Selected

Cryptographic Services
The service push-buttons in the right-hand panel of the Token Browser window allow the use of key objects

for cryptographic operations such as encryption and digital signatures. To use these services, select the key

item from the tree and then click the required button.

Clicking a button opens the associated dialog to guide the user through the operation of that service.

The next figure shows a typical dialog for Encrypt/decrypt and sign/verify services.

ProtectToolkit C Programming Guide

108

Figure 11 – Encryption Dialog

The key field is taken from the most recently selected key from the tree and the mechanism list shows

mechanisms valid for the chosen key. A parameter for the mechanism should be entered if required.

The parameter, input and result fields all allow display of the field in either hexadecimal or ASCII (text)

format. The hexadecimal display is useful for the input, or display, of binary data that cannot normally be

displayed. Use the [Hex]/[Asc] pushbuttons to select between the two display options.

NOTE: These entry fields support cut-and-paste for easier input.

Operation
Operation of the service requires:

1. Entry of a parameter (if required by the mechanism).

2. Pressing the Init button.

3. Entry of an input value.

4. Pressing the Encrypt button.

This causes the encryption result to be displayed in the result field.

Drag and Drop
Objects such as key values can be dragged from one token and dropped on to another token, to copy the

object.

NOTE: The object must have the CKA_EXTRACTABLE attribute set to TRUE to allow this operation to

succeed.

Dropping a public key object onto a private key object will create an X.509 certificate request (PKCS #10

format). This is used to encode a public key together with a subject name (the owner of the key) for

distribution to a Certification Authority (CA).

The public key used is from the object being dragged. The subject's name is taken from the

CKA_SUBJECT or CKA_SUBJECT_STR attributes of that public key. These attributes were supplied when

the key was generated.

NOTE: Certificate Requests should be signed with the private key that matches the public key inside the

certificate request. The certificate request is created as an object on the token from where the public key was

taken.

ProtectToolkit C Programming Guide

109

The secret key, used to sign the PKCS#10 encoding, may be from another token but should be the secret key

that matches the public key being encoded.

Dropping a PKCS#10 certificate request object onto a private key object will create an X.509 certificate.

X.509 certificates are the standard way to securely bind a public key together with a subject name (the owner

of the key) for public distribution. X.509 certificates are normally signed by a trusted Certification

Authority (CA), also known as the certificate's "issuer". The public key and subject name is extracted from

the PKCS#10 object (the one being dragged) and the issuer's name is taken from the CKA_SUBJECT or

CKA_SUBJECT_STR attributes of the private key that that is used to sign the certificate (the target of the

drag).

X.509 certificates also have a serial number that is taken from the CKA_USAGE_COUNT attribute that

must also be present on the signing key. The certificate is created as an object on the token from where the

certificate was requested. The secret key used to sign the X.509 encoding may be from another token and is

normally a highly trusted (CA) signing key.

Using CTBROWSE With Protect Toolkit J
Protect Toolkit J is SafeNet’s Java Cryptography Architecture (JCA) and Java Cryptography Extension

provider (JCE) software.

CTBROWSE may be used to set up tokens and keys for use with Protect Toolkit J. The tokens and keys that

are managed with CTBROWSE are fully compatible and may be utilized by Protect Toolkit J. CTBROWSE

may also be used to see and manipulate keys that have been created by Protect Toolkit J. For more

information consult the Key Management section in the Protect Toolkit J Reference Manual.

Please contact SafeNet for further details on its Protect Toolkit J products.

ProtectToolkit C Programming Guide

110

C H A P T E R 8

API TUTORIAL: DEVELOPMENT OF A SAMPLE APPLICATION

This tutorial deals with one of the sample applications that are provided with ProtectToolkit C, namely

FCrypt.

The FCrypt application enables files to be encrypted for a given recipient and then decrypted by that

recipient. Since the encrypted file contains a Message Authentication Code (MAC), the recipient of a

document will also be able to verify that the encrypted file was not modified.

In order to follow this example effectively, the reader is strongly encouraged to open or print the source of

the application as a reference. The source code for fcrypt can be found in the file “fcrypt.c” within your

chosen install directory.

Required Header Files
You will note in the initial code segments that, apart from the standard header files, we include the

ProtectToolkit C set of required library files.

#include "cryptoki.h"

#include "ctextra.h"

#include "ctutil.h"

#include "chkret.h"

Whereas “cryptoki.h” is the required PKCS#11 header, the remainder implement some of the advanced or

extended features of the ProtectToolkit C implementation, such as error feedback.

Runtime Switches
We want to develop FCrypt to be able to take a series of command line inputs to allow us to decrypt a

message, use password-based encryption (pbe) or to display time information for a cipher operation. With

that in mind, the following flags are defined appropriately.

static int dflag = 0;

/* 1 - decrypt */static int tflag = 0;

/* 1 - time */static int pflag = 0;

/* 1 - use pbe */

Encrypt Functions
For our file encryption and subsequent decryption we define the following two functions.

int encryptFile(char * sender, char * recipient, char *ifile,char *

ofile);

int decryptFile(char * sender, char * recipient, char *ifile,char *

ofile);

We want the encrypt function to take the public key of the receiving party (recipient), encrypt the data (ifile)

with the given key and sign the encrypted data with the senders private key (sender), before outputting and

encoding the file to the output file (ofile).

For error handling purposes we define the function as follows:

#undef FN

#define FN "encryptFile:"

int encryptFile(char * sender, char * recipient,char * ifile, char *

ofile)

ProtectToolkit C Programming Guide

111

We now need to define the required PKCS#11 data types pertaining to the session, slot identification and

object handles that we will use for the sender and recipient keys.

/* sender slot key session handles */

CK_SLOT_ID hsSlot;

CK_OBJECT_HANDLE hsKey = 0;

CK_SESSION_HANDLE hsSession;

/* recipient slot key session handles */

CK_SLOT_ID hrSlot;

CK_OBJECT_HANDLE hrKey;

CK_SESSION_HANDLE hrSession;

In the same manner it is also required that we allocate variables which are used to define the type of

mechanism, digest and key information during encryption.

CK_RV rv; /* Return Value for PKCS#11 function */

CK_MECHANISM mech; /* Structure for cipher mechanism

*/

CK_BYTE iv[8]; /* Init. Vector used with CBC

encryption */

CK_BYTE digest[80];

CK_SIZE len;

CK_OBJECT_HANDLE hKey; /* random encrypting key */

CK_BYTE wrappedKey[2 * 1024];

CK_SIZE wrappedKeyLen;

CK_BYTE signature[2 * 1024];

unsigned long fileSize;

unsigned long encodedSize;

Earlier we said that we wanted to be able to perform password-based encryption via a runtime switch, so

accordingly this is the first instance that we check for with our pflag variable.

Our next step is to then define our secret key that we will use to encrypt the data with. The key type to be

used is double-length DES. The CK_BBOOL refers to a byte sized Boolean flag that we have defined as

either TRUEor FALSE for easier reference.

CK_ATTRIBUTE is a structure that includes the type, value, and length of an attribute. Since every

PKCS#11 key object is required to be assigned certain attributes, this structure is later used during our key

derivation and generation to assign those attributes to the key.

if (pflag) {

/* use PBE to do the encryption */

static CK_OBJECT_CLASS at_class = CKO_SECRET_KEY;

static CK_KEY_TYPE kt = CKK_DES2;

static const CK_BBOOL True = TRUE;

static const CK_BBOOL False = FALSE;

CK_ATTRIBUTE attr[] = {

{CKA_CLASS, &at_class, sizeof(at_class)},{CKA_KEY_TYPE, &kt,

sizeof(at_class)},{CKA_EXTRACTABLE, (void*)&True,

sizeof(True)},{CKA_SENSITIVE, (void*)&False, sizeof(False)},{CKA_DERIVE,

(void*)&True, sizeof(True)}};

ProtectToolkit C Programming Guide

112

The params variable is defined using the PKCS#11 definition CK_PBE_PARAMS which is a structure

that provides all of the necessary information required by the PKCS#11 password based encryption

mechanisms.

CK_BYTE iv[8];

CK_PBE_PARAMS params;

memset(¶ms, 0x0, sizeof(CK_PBE_PARAMS));

params.pInitVector = iv;

params.pPassword = sender;

params.passwordLen = strlen(sender);

params.pSalt = NULL;

params.saltLen = 0;

params.iteration = 1;

PKCS#11 also uses a structure for defining the mechanism. Within CK_MECHANISMwe need to specify the

mechanism type, a pointer to the parameters we defined earlier and the size of the parameters. The

mechanism type we will use is CKM_PBE_SHA1_DES2_EDE_CBC that is used for generating a 2-key

triple-DES secret key and IV from a password and a salt value by using the SHA-1 digest algorithm and an

iteration count.

memset(&mech, 0x0, sizeof(CK_MECHANISM));

mech.mechanism = CKM_PBE_SHA1_DES2_EDE_CBC;

mech.pParameter = ¶ms;

mech.parameterLen = sizeof(CK_PBE_PARAMS);

We have now set up our required structures and the next logical step is to open a session between the

application and a token in a particular slot using the PKCS#11 call C_OpenSession. This call requires the

slot ID flags which indicate the type of session, an application-defined pointer to be passed to the

notification callback; an address of the notification callback function and a pointer to the location that

receives the handle for the new session.

rv = C_OpenSession(0, CKF_RW_SESSION|CKF_SERIAL_SESSION,NULL,NULL,

&hsSession);

if (rv) return 1;

hrSession = hsSession;

Once we have successfully opened a session with the token, we now want to generate the key that we will

use to encrypt our input file. The C_GenerateKey function will generate a secret key and thereby create a

new key object. This function call requires the session’s handle, a pointer to the key generation mechanism,

a pointer to the template for the new key, the number of attributes in the template and a pointer to the

location that receives the handle of the new key.

The CHECK_RV() function call is part of the ProtectToolkit C extended capability for better error feedback

and handling.

rv = C_GenerateKey(hsSession, &mech, attr, NUMITEMS(attr),&hKey);

CHECK_RV(FN "C_GenerateKey:CKM_PBE_SHA1_DES2_EDE_CBC", rv);if (rv)

return 1;

If we are not using the password based encryption switch at program execution, the desired reaction is to

perform file encryption using RSA, and hence we will need to generate the secret key value for the

operation.

ProtectToolkit C Programming Guide

113

The function FindKeyFromName is part of the ProtectToolkit C CTUTIL library to provide extended

functionality. It is used here to locate the keys which are passed into FCRYPTat the command line and

return the slot ID, session handle and object handle of those keys.

else {

/* use RSA to encrypt the file */

/* locate encrypting key */

rv = FindKeyFromName(sender, CKO_PRIVATE_KEY,

&hsSlot, &hsSession, &hsKey);if (rv) {fprintf(stderr, "Unable to

access sender (%s)key\n",

sender);CHECK_RV(FN "FindKeyFromName", rv);if (rv) return 1;

}

/* locate signing key */

rv = FindKeyFromName(recipient, CKO_CERTIFICATE,

&hrSlot, &hrSession, &hrKey);if (rv) {rv = FindKeyFromName(recipient,

CKO_PUBLIC_KEY,

 &hrSlot, &hrSession, &hrKey);

}

if (rv) {

fprintf(stderr, "Unable to access recipient (%s)

key\n", recipient);CHECK_RV(FN "FindKeyFromName", rv);if (rv) return

1;}

To achieve acceptable performance during file encryption and decryption we need to use a symmetric key

cipher such as DES. The DES key we generate for this purpose is to be wrapped with the recipient’s RSA

key so it can later be unwrapped and used for decryption without the value of the key ever being know.

Rather than simply using the same key for each file encryption, we will generate a random DES key for each

encryption of the input file. The mechanism used here is CKM_DES2_KEY_GEN that is used for generating

double-length DES keys.

The key wrapping is performed with the C_WrapKey function that encrypts (wraps) a private or secret key.

The function requires the session handle, the wrapping mechanism, the handle of the wrapping key, the

handle of the key to be wrapped, a pointer to the location that receives the wrapped key and a pointer to the

location that receives the length of the wrapped key.

For the wrapping mechanism we will choose CKM_RSA_PKCS that is a multi-purpose mechanism based on

the RSA public-key cryptosystem and the block formats defined in PKCS #1. It supports single-part

encryption and decryption, single-part signatures and verification with and without message recovery, key

wrapping and key unwrapping.

/* create a random des key for the encryption */

memset(&mech,0,sizeof(mech));

mech.mechanism = CKM_DES2_KEY_GEN;

/* generate the key */

rv = C_GenerateKey(hrSession, &mech,

wrappedKeyTemp, NUMITEMS(wrappedKeyTemp), &hKey);

CHECK_RV(FN "C_GenerateKey", rv);

if (rv) return 1;

/* wrap the encryption key with the recipients public key */

memset(&mech,0,sizeof(mech));

mech.mechanism = CKM_RSA_PKCS;

ProtectToolkit C Programming Guide

114

memset(wrappedKey,0,sizeof(wrappedKey));

wrappedKeyLen = sizeof(wrappedKey);

rv = C_WrapKey(hrSession, &mech, hrKey, hKey,

wrappedKey, &wrappedKeyLen);

CHECK_RV(FN "C_WrapKey", rv);

if (rv) return 1;

Now that we have a random secret key to perform the encryption with, we will need to set the required

mechanism and parameters prior to encrypting the input file. As a mechanism for the encryption we will

choose CKM_DES3_CBC_PAD which is using triple-DES in Cipher Block Chaining mode and PKCS#1

padding.

An application cannot call C_Encrypt in a session without having called C_EncryptInit first to

activate an encryption operation. C_EncryptInitrequires the session’s handle, a pointer to the

encryption mechanism and the handle of the encryption key.

In the same manner as we initialized and set up, our digest operation is to be the signature verification to

send along to the recipient with the encrypted data. The mechanism used for our digest is SHA-1 that is

defined in PKCS#11 terms as CKM_SHA_1.

/* set up the encryption operation using the random key */

memset(&mech, 0, sizeof(CK_MECHANISM));

mech.mechanism = CKM_DES3_CBC_PAD;

memset(iv, 0, sizeof(iv));

mech.pParameter = iv;

mech.parameterLen = sizeof(iv);

rv = C_EncryptInit(hrSession, &mech, hKey);

CHECK_RV(FN"C_EncryptInit", rv);

if (rv) return 1;

/* Set up the digest operation */

memset(&mech, 0, sizeof(CK_MECHANISM));

mech.mechanism = CKM_SHA_1;

rv = C_DigestInit(hrSession, &mech);

CHECK_RV(FN "C_DigestInit", rv);

if (rv) return 1;

We are now ready to process our input file by encrypting the data, generating the message digest and writing

the output to file.

/*

** Process the file.

*/

{

FILE * ifp; /* input */

FILE * ofp; /* output */

 CK_SIZE curLen;

 CK_SIZE slen;

unsigned char buffer[10 * 1024];

unsigned char encbuffer[10 * 1024];

unsigned int br; /* bytes read */

unsigned int totbw; /* total bytes written */

/* open input and output file pointers */

ifp = fopen(ifile, "rb");

if (ifp == NULL) {

fprintf(stderr, "Cannot open %s for input\n",ifile);

ProtectToolkit C Programming Guide

115

return -1;

}

ofp = fopen(ofile, "wb");

if (ofp == NULL) {

fprintf(stderr, "Cannot open %s for input\n",ofile); return -1; }

If the password based encryption switch wasn’t set, the first instance we write to file is the DES secret key

wrapped by the recipient’s public key.

if (! pflag) {/* write the encrypted key to the output file

*/encodedSize = htonl((unsigned long) wrappedKeyLen);br =

fwrite(&encodedSize, 1, sizeof(encodedSize), ofp);br =

fwrite(wrappedKey, 1, (int)wrappedKeyLen, ofp);

}

/* get the file length */

{

struct _stat buf;

 int result;

result = _fstat(_fileno(ifp), &buf);

if(result != 0) {

fprintf(stderr, "Cannot get file size for

%s\n",

ofile);

return -1;

}

fileSize = buf.st_size;

/*

fileSize = _filelength(_fileno(ifp));

*/

}

fileSize = (fileSize + 8) & ~7; /* round up for padding */

/* write file size to output file */

encodedSize = htonl(fileSize); /* big endian */

br = fwrite(&encodedSize, 1, sizeof(encodedSize), ofp);

Since our mode of encryption is cipher block chaining (CBC) we need to perform our output using four

definitive looping steps until our data is processed.

For the digest we use the PKCS#11 function C_Digest_Updatewhich continues a multiple-part message-

digesting operation, processing another data part. The function requires the session handle, a pointer to the

data part and the length of the data part.

For the encryption we use C_EncryptUpdate which continues a multiple-part encryption operation,

processing another data part. The function requires the session handle, a pointer to the data part; the length

of the data part; a pointer to the location that receives the encrypted data part and a pointer to the location

that holds the length in bytes of the encrypted data part.

/* read, encrypt, digest and write the cipher text in chunks

*/ totbw = 0;

for (;;) {

br = fread(buffer, 1, sizeof(buffer), ifp);

if (br == 0)

ProtectToolkit C Programming Guide

116

break;

/* digest */

rv = C_DigestUpdate(hrSession, buffer, (CK_SIZE)br); CHECK_RV(FN

"C_DigestUpdate", rv);

if (rv) return 1;

/* encrypt */

curLen = sizeof(encbuffer);

rv = C_EncryptUpdate(hrSession, buffer, (CK_SIZE)br, encbuffer,

&curLen);

CHECK_RV(FN "C_EncryptUpdate", rv);

if (rv) return 1;

/* write cipher text */

br = fwrite(encbuffer, 1, (int)curLen, ofp);

totbw += br;}

Once all the data has been processed, we need to finalize the encryption and digest operation. To finish the

encryption we use the C_EncryptFinal call that finishes a multiple-part encryption operation. The function

requires the session handle, a pointer to the location that receives the last encrypted data part, if any, and a

pointer to the location that holds the length of the last encrypted data part.

For finalizing the digest we call C_DigestFinal which finishes a multiple-part message-digesting operation,

returning the message digest. The function requires the session’s handle, a pointer to the location that

receives the message digest and a pointer to the location that holds the length of the message digest.

/* finish off the encryption */

curLen = sizeof(encbuffer);

rv = C_EncryptFinal(hrSession, encbuffer, &curLen);

CHECK_RV(FN "C_EncryptFinal", rv);

if (rv) return 1;

if (curLen) {

br = fwrite(encbuffer, 1, (int)curLen, ofp);

totbw += br;}

if (totbw != fileSize) {

fprintf(stderr, "size prediction incorrect %ld,

%ld\n", totbw, fileSize);}

/* finish off the digest */

len = sizeof(digest);

rv = C_DigestFinal(hrSession, digest, &len);

CHECK_RV(FN "C_DigestFinal", rv);

if (rv) return 1;

If the password based encryption flag was set, we use the digest created in the above process as our

signature, since there is no recipient key to sign the data with. For our DES encryption we will sign the

digest with our recipient’s public key.

The function C_SignInit is our first call and initializes a signature operation, where the signature is an

appendix to the data. The function requires the session’s handle, a pointer to the signature mechanism and

the handle of the signature key.

ProtectToolkit C Programming Guide

117

We also need to specify a mechanism to use for our signature operation, in this case CKM_RSA_PKCS,

which is an RSA PKCS #1 mechanism.

The signature generation is performed with the call to C_Sign that signs data in a single part, where the

signature is an appendix to the data. The function requires the session’s handle, a pointer to the data, the

length of the data, a pointer to the location that receives the signature, and a pointer to the location that holds

the length of the signature.

if (pflag) {

slen = len;

memcpy(signature, digest, slen);

}

else {/* Set up the signature operation */memset(&mech, 0,

sizeof(CK_MECHANISM));mech.mechanism = CKM_RSA_PKCS;rv =

C_SignInit(hsSession, &mech, hsKey);CHECK_RV(FN "C_SignInit", rv);if (

rv) return 1;slen = sizeof(signature);rv = C_Sign(hsSession, digest,

len, signature, &slen);CHECK_RV(FN "C_SignInit", rv);if (rv) return 1;

}

/* write the signature to the file */

encodedSize = htonl((unsigned long) slen);

br = fwrite(&encodedSize, 1, sizeof(encodedSize), ofp);

br = fwrite(signature, 1, (int)slen, ofp);

/* clean up */

fclose(ifp);

fclose(ofp);

}

C_CloseSession(hrSession);

C_CloseSession(hsSession);

return 0;

}

Decrypt Function
For our decryption we want to basically reverse the processes that were covered previously in the encryption

section.

Following the initial function setup, we firstly check for our input and output files. Once file existence is

established, we test for our password based encryption runtime switch. It can be seen that once again we

generate the same secret key from the input password that we will need for the decryption. Since this was a

secret key cipher we use the same key for encryption as well as decryption.

#undef FN

#define FN "decryptFile:"

int decryptFile(char * sender, char * recipient,char * ifile, char *

ofile)

{

 CK_SLOT_ID hsSlot;

 CK_OBJECT_HANDLE hsKey;

 CK_SESSION_HANDLE hsSession;

 CK_SLOT_ID hrSlot;

 CK_OBJECT_HANDLE hrKey;

 CK_SESSION_HANDLE hrSession;

 CK_RV rv;

 CK_MECHANISM mech;

 CK_BYTE digest[80];

ProtectToolkit C Programming Guide

118

 CK_SIZE len;

 CK_OBJECT_HANDLE hKey;

CK_BYTE wrappedKey[2 * 1024];

 CK_SIZE wrappedKeyLen;

CK_BYTE signature[2 * 1024];

 CK_BYTE iv[8];

unsigned long encodedSize;

FILE * ifp;

FILE * ofp;

 int br;

ifp = fopen(ifile, "rb");if (ifp == NULL) {fprintf(stderr, "Cannot

open %s for input\n",ifile);

return -1;

}

ofp = fopen(ofile, "wb");

if (ofp == NULL) {

fprintf(stderr, "Cannot open %s for input\n",ofile); return -1; }

if (pflag) {/* use PBE to do the encryption */static CK_OBJECT_CLASS

at_class = CKO_SECRET_KEY;static CK_KEY_TYPE kt = CKK_DES2; static const

CK_BBOOL True = TRUE;static const CK_BBOOL False = FALSE;CK_ATTRIBUTE

attr[] = {

 {CKA_CLASS, &at_class, sizeof(at_class)}, {CKA_KEY_TYPE, &kt,

sizeof(at_class)}, {CKA_EXTRACTABLE, (void*)&True,

sizeof(True)},

 {CKA_SENSITIVE, (void*)&False,

sizeof(False)},

 {CKA_DERIVE, (void*)&True, sizeof(True)} };CK_BYTE iv[8];

CK_PBE_PARAMS params; memset(¶ms, 0x0,

sizeof(CK_PBE_PARAMS));params.pInitVector = iv;params.pPassword =

sender;params.passwordLen = strlen(sender);params.pSalt =

NULL;params.saltLen = 0;params.iteration = 1;

memset(&mech, 0x0, sizeof(CK_MECHANISM));mech.mechanism =

CKM_PBE_SHA1_DES2_EDE_CBC;mech.pParameter = ¶ms;mech.parameterLen =

sizeof(CK_PBE_PARAMS);

rv = C_OpenSession(0,

CKF_RW_SESSION|CKF_SERIAL_SESSION, NULL,

NULL, &hsSession);

if (rv) return 1;

hrSession = hsSession;

rv = C_GenerateKey(hsSession, &mech, attr,

NUMITEMS(attr),

&hKey);CHECK_RV(FN "C_GenerateKey:CKM_PBE_SHA1_DES2_EDE_CBC", rv);if (

rv) return 1;

memset(&mech, 0x0, sizeof(CK_MECHANISM));mech.mechanism =

CKM_SHA1_KEY_DERIVATION;

rv = C_DeriveKey(hsSession, &mech, hKey,

attr,NUMITEMS(attr),&hrKey);CHECK_RV(FN

"C_DeriveKey:CKM_SHA1_KEY_DERIVATION", rv); if (rv) return 1;}

ProtectToolkit C Programming Guide

119

For our public key cipher, we will use the recipient’s private RSA key to unwrap the secret DES key

contained in the input file. The DES key will then be used to decrypt the file.

The PKCS#11 function C_UnwrapKey is used to decrypt (unwrap) a wrapped key, creating a new private

key or secret key object. This function requires the session handle, a pointer to the unwrapping mechanism,

the handle of the unwrapping key, a pointer to the wrapped key, the length of the wrapped key, a pointer to

the template for the new key, the number of attributes in the template, and a pointer to the location that

receives the handle of the recovered key.

else {

/* decrypting */

rv = FindKeyFromName(sender, CKO_CERTIFICATE,

&hsSlot, &hsSession, &hsKey);if (rv) {rv = FindKeyFromName(sender,

CKO_PUBLIC_KEY,

 &hsSlot, &hsSession, &hsKey);

}

if (rv) {

fprintf(stderr, "Unable to access sender (%s)key\n",

sender);CHECK_RV(FN "FindKeyFromName", rv);if (rv) return 1;

}rv = FindKeyFromName(recipient, CKO_PRIVATE_KEY,&hrSlot, &hrSession,

&hrKey);if (rv) {fprintf(stderr, "Unable to access recipient (%s)

key\n", recipient);CHECK_RV(FN "FindKeyFromName", rv);if (rv) return

1;}

/* read the encrypted key to the file */br = fread(&encodedSize, 1,

sizeof(encodedSize), ifp);wrappedKeyLen = (CK_SIZE) ntohl((unsigned

long)

encodedSize);br = fread(wrappedKey, 1, (int)wrappedKeyLen, ifp);

/* unwrap decryption key with the recipients private key

*/

memset(&mech,0,sizeof(mech));

mech.mechanism = CKM_RSA_PKCS;

rv = C_UnwrapKey(hrSession, &mech, hrKey,

 wrappedKey, wrappedKeyLen, wrappedKeyTemp, NUMITEMS(wrappedKeyTemp),

&hKey);

CHECK_RV(FN "C_UnwrapKey", rv);

if (rv) return 1;

}

ProtectToolkit C Programming Guide

120

Now that we have recovered the decryption key, we perform our initialization in exactly the same manner as

for our encryption, but using the function C_DecryptInit. The digest is calculated in the same manner

used for the encryption.

For the file decryption we are using the functions C_DecryptUpdateand C_DecryptFinal which take

the same parameters as their encrypt counterparts.

/* set up the decryption operation using the random key */

memset(&mech, 0, sizeof(CK_MECHANISM));

mech.mechanism = CKM_DES3_CBC_PAD;

memset(iv, 0, sizeof(iv));

mech.pParameter = iv;

mech.parameterLen = sizeof(iv);

rv = C_DecryptInit(hrSession, &mech, hKey);

CHECK_RV(FN"C_EncryptInit", rv);

if (rv) return 1;

/* Set up the digest operation */

memset(&mech, 0, sizeof(CK_MECHANISM));

mech.mechanism = CKM_SHA_1;

rv = C_DigestInit(hrSession, &mech);

CHECK_RV(FN "C_DigestInit", rv);

if (rv) return 1;

{

 CK_SIZE curLen;

 CK_SIZE slen;

unsigned char buffer[10 * 1024];

unsigned char decbuffer[10 * 1024];

unsigned int br;

br = fread(&encodedSize, 1, sizeof(encodedSize), ifp);

encodedSize = htonl(encodedSize);

for (;encodedSize > 0;) {

br = sizeof(buffer);

if (encodedSize < br)

br = (unsigned int)encodedSize;br = fread(buffer, 1, br,

ifp);encodedSize -= br;if (br) {

 curLen = sizeof(decbuffer); rv = C_DecryptUpdate(hrSession,

buffer,(CK_SIZE) br,

 decbuffer, &curLen); CHECK_RV(FN "C_DecryptUpdate", rv); if (rv)

return 1;rv = C_DigestUpdate(hrSession, decbuffer,

curLen); CHECK_RV(FN "C_DigestUpdate", rv); if (rv) return 1;br =

fwrite(decbuffer, 1, (unsigned

int)curLen,

ofp);

}}curLen = sizeof(decbuffer);rv = C_DecryptFinal(hrSession, decbuffer,

&curLen);CHECK_RV(FN "C_DecryptFinal", rv);

if (rv) return 1;if (curLen) {br = fwrite(decbuffer, 1, (unsigned

int)curLen,

ofp); rv = C_DigestUpdate(hrSession, decbuffer, curLen);CHECK_RV(FN

"C_DigestUpdate", rv);

}

len = sizeof(digest);

ProtectToolkit C Programming Guide

121

rv = C_DigestFinal(hrSession, digest, &len);

CHECK_RV(FN "C_DigestFinal", rv);

if (rv) return 1;

The final act to perform is to verify the signature contained in the data file. Since the signature is identical to

the digest when using the password based encryption option, it is a simple matter of comparing the two. For

our DES encryption on the other hand, we need to verify the signature against the sender’s public key.

To perform this we start by calling C_VerifyInit that initializes a verification operation, where the signature

is an appendix to the data. This function requires the session’s handle, a pointer to the structure that

specifies the verification mechanism and the handle of the verification key.

/* read the signature from the file */br = fread(&encodedSize, 1,

sizeof(encodedSize), ifp);slen = (CK_SIZE) ntohl((unsigned long)

encodedSize);br = fread(signature, 1, (unsigned int)slen, ifp);

if (pflag) {

if (memcmp(digest, signature, len)) {fprintf(stderr, "Verify

failed\n");return 1;

}

}

else {

/* Set up the signature verify operation */

memset(&mech, 0, sizeof(CK_MECHANISM));

mech.mechanism = CKM_RSA_PKCS;

rv = C_VerifyInit(hsSession, &mech, hsKey);

CHECK_RV(FN "C_VerifyInit", rv);

if (rv) return 1;

rv = C_Verify(hsSession, digest, len, signature, slen);

if (rv) {

C_ErrorString(rv,ErrorString,sizeof(ErrorString));fprintf(stderr,

"Verify failed 0x%x, %s\n", rv, ErrorString); }}

/* clean up */

fclose(ifp);

fclose(ofp);

}

C_CloseSession(hrSession);

C_CloseSession(hsSession);

return (int)rv;

}

ProtectToolkit C Programming Guide

122

FCRYPT Usage
When no command line inputs are received by the application, it can be useful to show the required inputs

on screen in a help context.

void usage(void){ printf("usage fcrypt -d [-s<sender>] [-r<recipient>]

[-o<output file>] <input file>\n");printf(" or\n");printf("usage

fcrypt -d [-p<password>] [-o<outputfile>]

<input file>\n");printf(" -d decrypt\n");printf(" -p PBE password\n"

);printf(" -s Sender name\n");printf(" -r Recipient name\n");printf(

" -o output file name\n");printf(" -t Report timing info\n");printf(

"\nKey naming syntax :\n");printf(" <token name>(<user pin>)/<key

name>\n");printf(" for example, -sAlice(0000)/Sign\n");}

Wrapped Encryption Key Template
The DES encryption key that we wrap with the user RSA key will need to have its attributes specified within

a template as follows.

/* Wrapped encryption key template */static char True = TRUE;static

CK_OBJECT_CLASS Class = CKO_SECRET_KEY;static CK_KEY_TYPE Kt =

CKK_DES2;static CK_ATTRIBUTE wrappedKeyTemp[] = {

{CKA_CLASS, &Class, sizeof(Class)},{CKA_KEY_TYPE, &Kt,

sizeof(Kt)},{CKA_EXTRACTABLE, &True, 1},{CKA_ENCRYPT, &True, 1},};

Assembling the Application
Now bring all the required components for the FCRYPT application together in the main application body.

#undef FN

#define FN "main:"

int main(int argc, char ** argv)

{ CK_RV rv; int err = 0;char * arg;char * sender = NULL; /* provides

signing key */char * recipient = NULL; /* provides encryption key */char

* ofile = "file.enc"; /* default output file name

*/ printf("Cryptoki File Encryption $Revision: 1.1 $\n");printf(

"Copyright (c) SafeNet, Inc 1999-2006\n");

The first call within a PKCS#11 application must be C_Initialize which initializes the PKCS#11 library. The

function takes as an argument either value NULL_PTR or points to a CK_C_INITIALIZE_ARGS structure

containing information on how the library should deal with multi-threaded access – for the ProtectToolkit C

product no threading information is required so a NULL_PTR is used as the argument.

The function call to CT_ErrorString is part of the ProtectToolkit C extended capability within CTUTIL.H

and converts a PKCS#11 error code into a printable string.

/* This must be the first PKCS#11 call made */

rv = C_Initialize(NULL_PTR);

if (rv) {

C_ErrorString(rv,ErrorString,sizeof(ErrorString));fprintf(stderr,

"C_Initialize error %x, %s\n", rv,ErrorString);}

ProtectToolkit C Programming Guide

123

Since two versions of PKCS#11 are supported by SafeNet that are incompatible to one another, the

CheckCryptokiVersion function is called to ensure that an application compiled for V1.0 compliance

is not going to fail if it links against a V 2 compliant DLL and vice-versa. This function is part of the

extended ProtectToolkit C functionality within CTUTIL.H and ensures that the version of PKCS#11 is

correct.

/* Check PKCS#11 version */

rv = CheckCryptokiVersion();

if (rv) {printf("Incompatible PKCS#11 version (0x%x)\n", rv); return

-1;

}

/* process command line arguments */

for (argv++; (arg = *argv) != NULL; argv++) {

if (arg[0] == '-' || arg[0] == '/') {

switch(arg[1]) {

case 'd':

dflag = 1;break;

case 't':

 tflag = 1;

break;

case 'o':

 ofile = arg+2;

break;

case 's':

 sender = arg+2;

break;

case 'r':

 recipient = arg+2;

break;

case 'p': recipient = sender = arg+2; pflag = 1; break;

default:

usage();

 return 1;

}

}

 else {

time_t now, t1, t2; /* we will time the operation */

if (sender == NULL || recipient == NULL) {usage(); return 2;

}

if (tflag) {/* Mark the time now */for (t1 = now = time(NULL); now ==

t1;)

 t1 = time(NULL);

}

ProtectToolkit C Programming Guide

124

/* process the file */if (dflag)err = decryptFile(sender, recipient,

arg,ofile);else err = encryptFile(sender, recipient, arg,ofile);

/* report error or timing */if (err) {fprintf(stderr, "Error

%scrypting file

 %s\n", dflag?"de":"en", arg); }else if (tflag) {

 t2 = time(NULL);

 printf("%d seconds\n", t2-t1);

}

}

}

/* shut down PKCS#11 operations */

When the application is done using PKCS#11, it calls the PKCS#11 function C_Finalize and ceases to

be a PKCS#11 application. It should be the last PKCS#11 call made by an application. The parameter is

reserved for future versions and should be set to NULL_PTR.

rv = C_Finalize(NULL_PTR);

if (rv)

{C_ErrorString(rv,ErrorString,sizeof(ErrorString));fprintf(stderr,

"C_Finalize error %x, %s\n", rv,

ErrorString);

}

return err;

ProtectToolkit C Programming Guide

125

THIS PAGE INTENTIONALLY LEFT BLANK

ProtectToolkit C Programming Guide

126

C H A P T E R 9

PKCS#11 LOGGER LIBRARY

Overview
The logger library produces a log of all PKCS#11 function calls called by an application. It is a useful tool

for debugging applications that are developed using the ProtectToolkit C API.

This library can be used with ProtectToolkit C in any of the three operating modes; hardware, client/server

or software only.

Logger Architecture and Functionality

Figure 12 – PKCS#11 Logger Architecture Model

The logger is interposed between the application and the ProtectToolkit C host library. There, it intercepts

PKCS#11 function calls and responses. Details are logged to the log file before the messages are passed

through to their intended destination.

For each PKCS#11 call, the logger creates an entry in the log file. By default, these entries contain the

following details:

 the calling process ID (PID)

 the thread ID (TID)

 the date and time of the call

 all numeric data

 buffer addresses

 contents of buffer addresses at the input and output of functions (excluding PIN values)

Optionally, the logger may be configured to:

 return the PIN values used to login to tokens that are provided to the C_Login function

 remove any or all of the following from the output:

 the calling process ID (PID)

 the thread ID (TID)

 the date and time of the call

 contents of buffer addresses at the input and output of functions

ProtectToolkit C Programming Guide

127

Logger Setup
As discussed above, the logger logs information passing between an application and the ProtectToolkit C

host library to a log file. So that this will occur, the following configuration steps must be carried out before

starting the application.

1. Activate logging by setting up redirection of ProtectToolkit C host library calls sent from the application

so that they are instead delivered to the logger.

2. Store the name of the ProtectToolkit C host library file and the path to it for use by the logger when

forwarding the redirected calls that it receives on to their intended destination.

In addition, you may, if required:

3. Change the name and location of the log file used by the logger to record information, from the default

values that will otherwise apply.

4. Change the amount of detail that is recorded by the logger, from the default settings.

Each of these steps is covered in detail in the sections that follow. Once they have been carried out, the

logger is active whenever the application is running. To deactivate the logger see the Deactivating Logger

Operation section below.

Activating Logging
Logging is activated by setting up redirection of ProtectToolkit C host library calls sent from the application

so that they are instead delivered to the logger. The method for doing this differs between Windows and

UNIX systems. To activate logging consult the section below that covers your operating system.

Windows Systems
To activate logging on a Windows based system ProtectToolkit C host library calls are redirected to the

logger by replacing the path to the ProtectToolkit C host library (Cryptoki provider) that was added to the

Path environment variable during installation, with the path to the logger. The ProtectToolkit C host library

and the logger are both named cryptoki.dll so the application does not detect any difference and is unaffected

by this change.

The path to the logger that must replace the host library path is:

<installation directory>\bin\logger

For example, if the installation path is:

C:\Program files\Safenet\ProtectToolkit C SDK\bin\hsm

Replace it with:

C:\Program Files\Safenet\ProtectToolkit C SDK\bin\logger

To access the Path environment variable for editing, follow standard procedure for your system. Typically,

the following steps are followed:

1. Right click My Computer on the desktop and select Properties.

2. In the System Properties dialog box select the Advanced tab and then select the Environment

Variables button.

3. In the Environment Variables dialog box, locate and select the Path variable under System Variables

and select the Edit button.

4. In the Edit System Variable dialog box, make the change as outlined above to the Variable Value and

click the OK button to action this change and close the dialog box. Close all other dialog boxes to

complete the operation.

ProtectToolkit C Programming Guide

128

UNIX Systems
To activate logging on a UNIX based system, ProtectToolkit C host library calls are redirected to the logger

by:

 re-assigning the libcryptoki.so (libcryptoki.sl for HP-UX on PA-RISC, libcryptoki.a for AIX)

symbolic link from the ProtectToolkit C host library (Cryptoki provider) that was set up during

installation to the logger shared library liblogger.so (liblogger.sl for HP-UX on PA-RISC, liblogger.a

for AIX).

 including the logger library in the LD_LIBRARY_PATH (SHLIB_PATH for HP-UX on PA-RISC,

LIBPATH on AIX) environment variable.

The application does not detect any difference and is unaffected by this change.

For example, use the following commands to re-assign the libcryptoki.so symbolic link: # cd

/opt/safenet/protecttoolkit5/ptk/lib # ln –sf liblogger.so libcryptoki.so

Storing ProtectToolkit C Host Library File Details
To store the name of the ProtectToolkit C host library file and the path to it for use by the logger when

forwarding redirected calls, create the configuration item:

ET_PTKC_LOGGER_PKCS11LIB

and set its value to that of the full path required. For example: "C:\Program Files\Safenet\ProtectToolkit C

SDK\bin\hsm\cryptoki.dll" should be added for Windows Systems.

This change can be made at the temporary, user or system levels on both UNIX and Windows platforms.

Refer to the Configuration Items section in the ProtectToolkit C Administration Manual for further details on

how to go about this if required.

NOTE: There are no default values for this item so this step must be completed, otherwise calls cannot be

forwarded and the system will fail.

Storing Log File Details
By default log entries are written to a text file named ctlog.log. The full path is:

 \ctlog.log on Windows systems or

 $HOME/ctlog.log on UNIX systems

To change the file name and or location to something other than the default, create the configuration item,

ET_PTKC_LOGGER_FILE, and set its value to that of the full path required.

This change can be made at the temporary, user or system levels on both UNIX and Windows platforms.

Refer to the Configuration Items section in the ProtectToolkit C Administration Manual for further details on

how to go about this if required.

Changing Detail Recorded by the Logger
The table below lists the configuration items which can be used to control the level of detail recorded by the

logger when active. In the table, the meaning of each configuration item is given along with the default

values that apply in the absence of each particular configuration item.

To change the level of detail recorded, override any of the default values shown. To do this, create the

corresponding configuration item and set its value to either TRUE or FALSE as required.

ProtectToolkit C Programming Guide

129

The changes can be made at the temporary, user or system levels on both UNIX and Windows platforms.

Refer to the Configuration Items section in the ProtectToolkit C Administration Manual for further details on

how to go about this if required.

Configuration Item Meaning

ET_PTKC_LOGGER_LOGPID If TRUE, the calling process ID (PID) is included in log

messages. Default=TRUE

ET_PTKC_LOGGER_LOGTID If TRUE, the thread ID (TID) is included in log

messages. Default=TRUE

ET_PTKC_LOGGER_LOGTIME If TRUE, the date and time of each message is included

in the log. Default=TRUE

ET_PTKC_LOGGER_LOGMEM If TRUE, all numeric data, buffer addresses and the

contents of buffer addresses at the input and output of

functions (excluding PIN values)is included in log

messages. If FALSE then the contents of buffer addresses

at the input and output of functions is omitted. Numeric

data and buffer addresses are retained. Default=TRUE

ET_PTKC_LOGGER_LOGPIN If TRUE, the PIN values passed to C_Login, that are used

to login to tokens, are included in log messages.

Default=FALSE

Deactivating Logger Operation
To deactivate the logger the steps taken under Activating Logging must be reversed. For more information

consult the section below for your operating system.

Windows Systems
The path to the logger added to the PATH environment variable must be replaced by the path to the

ProtectToolkit C host library required.

For example, if ProtectToolkit C is being used in hardware mode in conjunction with a ProtectServer adapter

and the path to the logger is:

C:\Program Files\Safenet\ProtectToolkit C SDK\bin\logger In the PATH

replace: C:\Program Files\Safenet\ProtectToolkit C SDK\bin\logger

with:

C:\Program Files\Safenet\ProtectToolkit C SDK\bin\hsm

UNIX Systems
The symbolic link libcryptoki.so (libcryptoki.sl for HP-UX on PA-RISC,

libcryptoki.a for AIX) must be re-assigned to the ProtectToolkit C host library required.

For example, if ProtectToolkit C is being used in hardware or client/server mode, the commands to use

would be:

cd /opt/safenet/protecttoolkit5/ptk/lib# ln –sf liblogger.so

libcthsm.so

In software-only mode, use the following commands:

cd /opt/safenet/protecttoolkit5/ptk/lib# ln –sf liblogger.so

libctsw.so



ProtectToolkit C Programming Guide

130

THIS PAGE INTENTIONALLY LEFT BLANK

ProtectToolkit C Programming Guide

131

C H A P T E R 1 0

PKCS#11 COMMAND REFERENCE

General Purpose Functions

C_Initialize

Synopsis

C_Initialize(

CK_VOID_PTR pInitArgs);

Description

C_INITIALIZE initializes the Cryptoki library.

The pInitArgs either has the value NULL_PTR or points to a CK_C_INITIALIZE_ARGS structure

containing information on how the library should deal with multi-threaded access.

If the system is currently uninitialized this function will perform a full initialization. This means that any

configuration changes since the last full initialization will now take effect. If the system is already

initialized this function will simply prepare it for the new application.

Operation in WLD Mode

When ProtectToolkit is configured to operate in WLD mode and C_INITIALIZE () is invoked, the user slots

that are associated with WLD slots are interrogated to assess their availability. User slots are defined as

associated with a WLD slot when they contain a token with a token label that matches that of the WLD slot.

If, for every WLD slot, there are no associated user slots available, the error

CKR_TOKEN_NOT_PRESENT is returned. If, however, at least one associated user slot is available for at

least one WLD slot the error CKR_TOKEN_NOT_PRESENT will not be returned.

NOTE: The token labels for WLD slots are defined in the WLD environment variables

ET_PTKC_WLD_SLOT_n. Refer to the ProtectToolkit C Administration Manual for details regarding the

configuration of WLD environment variables.

C_Finalize

Synopsis

C_Finalize(

CK_VOID_PTR pReserved);

Description

This function behaves as specified in PKCS#11 but with the following additional features –

If there are no other active applications, ProtectToolkit C will free all allocated resources. The next call to

C_INITIALIZE will therefore perform a full initialization of the system updating for any configuration

changes.

ProtectToolkit C Programming Guide

132

C_GetInfo

Synopsis

C_GetInfo(

CK_INFO_PTR pInfo

);

Description

This function behaves as specified in PKCS#11.

The cryptokiVersion value is 2.11.

The manufacturerId is "SafeNet, Inc.”

The flags are all zero.

The libraryDescription is “ProtectServer ”, “CSA8000”, “CSA7000” or “Software Only” as appropriate.*

The libraryVersion represents the current version release number

C_GetFunctionList

Synopsis

C_GetFunctionList(CK_FUNCTION_LIST_PTR_PTR_PTR ppFunctionList);

Description

This function behaves as specified in PKCS #11.

Slot and Token Management Functions

C_GetSlotList

Synopsis

C_GetSlotList(

CK_BBOOL tokenPresent,

CK_SLOT_ID_PTR pSlotList,

CK_ULONG_PTR pulCount

);

Description

This function operates as specified in PKCS#11.

Note however that when multiple devices are installed in a single machine they will appear as a set of

consecutive slots. For example, for two devices using their default configuration, 4 slots are visible. The

first and third slots are normal user slots, the second and fourth slots are the Admin slots for their respective

adapters.

ProtectToolkit C Programming Guide

133

Operation in WLD Mode

When ProtectToolkit is configured to operate in WLD mode, this function returns the list of slots specified in the

WLD configuration. Specifically:

 When tokenPresent is FALSE, and pSlotList is NULL_PTR, the value *pulcount is set to hold the

number of WLD Slots.

 When tokenPresent is FALSE, and pSlotList is not NULL_PTR, the value *pulcount is set to hold the

number of WLD Slots and pSlotList contains the list of WLD Slots.

 When tokenPresent is TRUE, and pSlotList is NULL_PTR, the value *pulcount is set to hold the

number of WLD Slots that have available HSM Tokens.

 When tokenPresent is TRUE, and pSlotList is not NULL_PTR, the value *pulcount is set to hold the

number of WLD Slots that have available HSM Tokens and pSlotList contains the list of WLD Slots

that have available HSM Tokens.

C_GetSlotInfo

Synopsis

C_GetSlotInfo(

CK_SLOT_ID slotID,

CK_SLOT_INFO_PTR pInfo

);

Description

This function operates as specified in PKCS#11.

The information returned will vary depending on the ProtectToolkit C runtime in use as well as the actual

slot type, for example, if it is a ProtectToolkit C user slot or a Smart Card slot.

This information is returned in the CK_SLOT_INFO structure.

SlotDescription “ProtectServer :xxxx, “Safenet Software Only.” or smart

card reader type.*

WHERE XXXX IS THE SLOT SERIALNUMBER

ManufacturerID "SafeNet, Inc.” or smart card reader manufacturer.

Flags CKF_HW_SLOT (hardware only),

CKF_REMOVABLE_DEVICE (smart card slots only).

HardwareVersion Current hardware revision or 0.0 for software only.

FirmwareVersion Current firmware version or 0.0 for software only.

ProtectToolkit C Programming Guide

134

Operation in WLD Mode

When ProtectToolkit is configured to operate in WLD mode, a random slot from the HSM Token List for the

provided slot ID is chosen, so as not to overload a particular device and the command is forwarded to that

slot. The following WLD specific information is returned in the CK_SLOT_INFO structure:

SlotDescription The slot description specified for the virtual WLD Slot in

environment variables ET_PTKC_WLD_SLOT_n.

Refer to ProtectToolkit C Administration Manual for

details.

Flags The CKF_WLD_SLOT bit is set to indicate that it is a

WLD Slot.

If there are no HSM Tokens available for the particular

slot, then the CKF_TOKEN_PRESENT bit in is set to 0.1

1
 This breaks PKCS#11 compliance, as this bit should be set to 0 if and only if

CKF_REMOVABLE_DEVICE is set. The CKF_REMOVABLE_DEVICE bit is set only for Smart card

Slots in the SafeNet implementation.

C_GetTokenInfo

Synopsis

C_GetTokenInfo(

CK_SLOT_ID slotID,

CK_TOKEN_INFO_PTR pInfo

);

Description

This function operates as specified in PKCS#11. The information returned will vary depending on the type

of slot specified by the slotID parameter. This information is returned in the CK_TOKEN_INFO structure.

Label This is the string specified by the user during the C_InitToken command,

unless the token is the administration token, in which case the value is:

AdminToken(ssss)

Where ssss is the HSM serial number.

ManufacturerID "SafeNet, Inc.”

Model “PSI-E2:PLxxx”

Where xxx is the performance level or smartcard manufacturer.

SerialNumber “xxxx-xxxx”

Where the first field is the HSM serial number and the second field is a

randomly assigned token serial number or the smartcard serial number.

Flags CKF_RNG (for non-smart card slots only) + CKF_CLOCK_ON_TOKEN

(if the module’s clock has been set) +

CKF_DUAL_CRYPTO_OPERATIONS + Other flags based on the

current state of the slot. CKF_LOGIN_REQUIRED flag is set if the

security mode specifies “no public crypto”. Admin slot have

CKF_ADMIN_TOKEN and CKF_LOGIN_REQUIRED set.

ulMaxSessionCount The value of that CKA_MAX_SESSIONS for the associated slot object.

ProtectToolkit C Programming Guide

135

ulSessionCount Determined at run time – this is the total number of session to this Token

by all applications.

ulMaxRwSessionCount The value of that CKA_MAX_SESSIONS for the associated slot object.

ulRwSessionCount Determined at run time – this is the number of RW sessions the calling

application has to the Token.

ulMaxPinLen CK_MAX_PIN_LEN = 32.

UlMinPinLength This is the value specified in the configuration as shown by the

CKA_MIN_PIN attribute of the slot object.

UlTotalPublicMemory Determined at run time.

ulFreePublicMemory Determined at run time.

ulTotalPrivateMemory Determined at run time.

ulFreePrivateMemory Determined at run time.

hardwareVersion ‘G’.0 (or later)

FirmwareVersion 1.0 (or later)

UtcTime Current time is returned if the modules clock has been set (else ASCII

zeros are returned).

Operation in WLD Mode

When ProtectToolkit is configured to operate in WLD mode, a random slot from the HSM Token List for the

provided slot ID is chosen, so as not to overload a particular device and the command is forwarded to that

slot. The following WLD specific information is returned in the CK_TOKEN_INFO structure:

SerialNumber The serial number specified for the virtual WLD Slot in environment

variables ET_PTKC_WLD_SLOT_n. Refer to ProtectToolkit C

Administration Manual for details.

Flags The CKF_WLD_TOKEN bit is set to indicate that it is a WLD Token.

C_WaitForSlotEvent

Synopsis

C_WaitForSlotEvent(

CK_FLAGS flags,

CK_SLOT_ID_PTR pSlot,

CK_VOID_PTR pReserved

);

Description

This function operates as specified in PKCS#11 except –

The library cannot block while waiting for an event therefore the CKF_DONT_BLOCK must always be set.

If CKF_DONT_BLOCK is not set and there is no event pending on any slot then

CKR_FUNCTION_FAILED is returned.

Slot Events supported -

There are no events supported by this library.

ProtectToolkit C Programming Guide

136

C_GetMechanismList

Synopsis

C_GetMechanismList(

CK_SLOT_ID slotID,

CK_MECHANISM_TYPE_PTR pMechanismList,

CK_ULONG_PTR pulCount

);

Description

This function operates as specified in PKCS#11.

See the section Mechanisms for a description of the mechanisms supported by this module.

Please note the list of mechanisms may vary at run time depending on Mode settings and other configuration

values. For example the smart card slots do not support any mechanisms.

Operation in WLD Mode

When ProtectToolkit is configured to operate in WLD mode, a random slot from the HSM Token List for the

provided slot ID is chosen, so as not to overload a particular device and the command is forwarded to that

slot.

C_GetMechanismInfo

Synopsis

C_GetMechanismInfo(

CK_SLOT_ID slotID,

CK_MECHANISM_TYPE type,

CK_MECHANISM_INFO_PTR pInfo

);

Description

This function operates as specified in PKCS#11 with the following exception. Normally ProtectToolkit C

will return CKR_MECHANISM_INVALID if the mechanism type is not recognized, however, if the

EntrustReady Mode is set, the structure pointed to by pInfo is cleared and CKR_OK is returned.

See the section Mechanisms for a description of the mechanisms supported by this module.

Operation in WLD Mode

When ProtectToolkit is configured to operate in WLD mode, a random slot from the HSM Token List for the

provided slot ID is chosen, so as not to overload a particular device and the command is forwarded to that

slot.

C_InitToken

Synopsis

C_InitToken(

CK_SLOT_ID slotID,

CK_CHAR_PTR pPin,

CK_ULONG ulPinLen,

CK_CHAR_PTR pLabel

);

ProtectToolkit C Programming Guide

137

Description

This function operates as specified in PKCS#11 but with these following extensions. This function is

disabled if the NoClearPINs flag is set in the Mode register. Any attempt to call this function in this mode

will result in a result in the CKR_ACCESS_DENIEDerror being returned. The Administrator must use the

CT_ResetTokenfunction instead.

The “protected authentication path” is not applicable to this module.

The module will detect if a session is active on the token and, if so, return

CKR_SESSION_EXISTS.

If the token has been already initialized and the module is not in Entrust-ready modes then the supplied pin

is checked against the current SO pin. If the pin is correct, the token is wiped and the label is set (the SO pin

is not changed).

If the token is currently uninitialized, or the module is in Entrust-ready mode, the token is wiped, and the

new label and SO pin are set.

The Admin token may not be re-initialized, this function will return

CKR_SLOT_ID_INVALID if the specified slot id is the admin token.

Operation in WLD Mode

When ProtectToolkit is configured to operate in WLD mode, this function is not supported and will return

the error CKR_FUNCTION_NOT_SUPPORTED.

CT_InitToken

Synopsis

CT_InitToken(

CK_SESSION_HANDLE hSession,

CK_SLOT_ID slotID,

CK_CHAR_PTR pPin,

CK_ULONG ulPinLen,

CK_CHAR_PTR pLabel

);

Description

This function is a SafeNet extension to PKCS#11, it allows the Administrator to initialize a new Token.

It initializes the token indicated by slotId with the SO pin (pPin and ulPinLen) and pLabel.

The session hSession, must be a session to the Admin Token of the adapter and be in RW User Mode for this

function to succeed otherwise CKR_SESSION_HANDLE_INVALID is returned.

The slotId value must refer to a valid slot where the token in the slot must be in an un-initialized state,

otherwise CKR_SLOT_ID_INVALID is returned. If the slotID is valid but the token is not present then

CKR_TOKEN_NOT_PRESENT is returned.

Operation in WLD Mode

When ProtectToolkit is configured to operate in WLD mode, this function is not supported and will return

the error CKR_FUNCTION_NOT_SUPPORTED.

ProtectToolkit C Programming Guide

138

CT_ResetToken

Synopsis

CT_ResetToken(

CK_SESSION_HANDLE hSession,

CK_CHAR_PTR pPin,

CK_ULONG ulPinLen,

CK_CHAR_PTR pLabel

);

Description

This function is a SafeNet extension to PKCS#11, it will erase (reset) the token which the session is

connected to.

The session must be in RW SO Mode for this function to succeed otherwise

CKR_USER_NOT_LOGGED_IN is returned.

This function allows Token Security Officers to reset a Token. The module will detect if other sessions are

active on the token and, if so, return CKR_SESSION_EXISTS.

This function will erase all objects it can from the token – depending on the token type some objects will no

be erased. The token is left in an initialized state where the SO pin and label are set as specified by the pPin

and pLabel parameters.

NOTE: pPin becomes the new SO pin and need not match the old SO pin value. The session is

automatically terminated by this call.

Operation in WLD Mode

When ProtectToolkit is configured to operate in WLD mode, this function is not supported and returns the

error CKR_FUNCTION_NOT_SUPPORTED.

C_InitPIN

Synopsis

C_InitPIN(

CK_SESSION_HANDLE hSession,

CK_CHAR_PTR pPin,

CK_ULONG ulPinLen

);

Description

This function operates as specified in PKCS#11 with the following extensions. When the module is in the

NoClearPins mode, the host library protection system will encrypt the sensitive material before presenting it

to the adapter.

The function returns an error if the Token has already had the user pin specified, that is, the SO does not

have the rights to replace a user pin, only initialize it.

Operation in WLD Mode

When ProtectToolkit is configured to operate in WLD mode, this function is not supported and will return

the error CKR_FUNCTION_NOT_SUPPORTED.

ProtectToolkit C Programming Guide

139

C_SetPIN

Synopsis

C_SetPIN(

CK_SESSION_HANDLE hSession,

CK_CHAR_PTR pOldPin,

CK_ULONG ulOldLen,

CK_CHAR_PTR pNewPin,

CK_ULONG ulNewLen

);

Description

This function operates as specified in PKCS#11.

When the module is in the NoClearPINs mode the host library protection system will encrypt the sensitive

material before presenting it to the adapter.

Operation in WLD Mode

When ProtectToolkit is configured to operate in WLD mode, this function is not supported and will return

the error CKR_FUNCTION_NOT_SUPPORTED.

Session Management Functions
NOTE: ProtectToolkit C allows an application to have concurrent sessions with more than one token. It is

also possible for a token to have concurrent sessions with more than one application.

C_OpenSession

Synopsis

C_OpenSession(

CK_SLOT_ID slotID,

CK_FLAGS flags,

CK_VOID_PTR pApplication,

CK_NOTIFY Notify,

CK_SESSION_HANDLE_PTR phSession

);

Description

This function operates as specified in PKCS#11 with the following exceptions:

 The Notify parameter is ignored.

 The CKF_SERIAL_SESSIONflag is ignored.

 PKCS#11 states “If the application calling C_OpenSession already has a R/W SO session open

with the token, then any attempt to open a R/O session with the token fails with error code

CKR_SESSION_READ_WRITE_SO_EXISTS” this is not enforced with ProtectToolkit C.

ProtectToolkit C Programming Guide

140

Operation in WLD Mode
When ProtectToolkit is configured to operate in WLD mode, the first C_OpenSession() call selects a random

token from the list of available WLD tokens to open the session with. Subsequent C_OpenSession() calls,

randomly select a token from those with the least number of sessions.

If successful, a WLD session handle is returned. The WLD session handle is internally mapped to the

appropriate HSM token and session handle.

If unsuccessful, for ANY reason, another token is chosen and ProtectToolkit C retries to open a session

utilizing this token. This is repeated until either a session is opened successfully or no more tokens are

available.

If the HSM token used did not result in a session opening successfully for one of the following error

conditions, the token will no longer be considered for WLD for the life of the application:

 CKR_GENERAL_ERROR

 CKR_DEVICE_ERROR

 CKR_MESSAGE_ERROR number space (SafeNet vendor defined)

NOTE: When the any of the above error conditions are detected C_OpenSession() will not return the

associated error code as ProtectToolkit C will retry to open a session using another token until all tokens are

exhausted. If there are no tokens available the error CKR_TOKEN_NOT_PRESENT are returned.

C_CloseSession

Synopsis

C_CloseSession(

CK_SESSION_HANDLE hSession

);

Description

This function operates as specified in PKCS#11 with the following exception

 ProtectToolkit C has no capability to “eject” the token from its reader.

C_CloseAllSessions

Synopsis

C_CloseAllSessions(

CK_SLOT_ID slotID

);

Description

This function operates as specified in PKCS#11 with the following exception

 ProtectToolkit C has no capability to “eject” the token from its reader. Further, this function will

perform a “logout” on each token if necessary.

ProtectToolkit C Programming Guide

141

C_GetSessionInfo

Synopsis

C_GetSessionInfo(

CK_SESSION_HANDLE hSession,

CK_SESSION_INFO_PTR pInfo

);

Description

This function operates as specified in PKCS#11 with the following exception

 Any non-zero ulDeviceError value is cleared by this operation.

Operation in WLD Mode

When ProtectToolkit is configured to operate in WLD mode, the following WLD specific information is

returned in the CK_SESSION_INFO structure:

SlotID The Slot Number specified for the virtual WLD Slot in environment

variables ET_PTKC_WLD_SLOT_n. Refer to the ProtectToolkit C

Administration Manual.

Flags The CKF_WLD_SESSION bit is set to indicate that it is a WLD Session.

C_GetOperationState

Synopsis

C_GetOperationState(

CK_SESSION_HANDLE hSession,

CK_BYTE_PTR pOperationState,

CK_ULONG_PTR pulOperationStateLen

);

Description

C_GetOperationState obtains a copy of the cryptographic Operation State for a session, encoded as a

string of Bytes. hSession is the session’s handle; pOperationState points to the location that receives the

state; pulOperationStateLen points to the location that receives the length in bytes of the state.

ProtectToolkit C implements a subset of the full PKCS#11 specification – only the current Message Digest

state and object attribute search state may be saved and restored. This means that the current encryption,

decryption, signing and verification states are not saved by this function.

The state need not have been obtained from the same session (the “source session”) as it is being restored to

(the “destination session”). However, the source session and destination session should have a common

session state (e.g., CKS_RW_USER_FUNCTIONS), and should be with a common token. Message

digest operation states may be carried across logins but not across different Cryptoki implementations.

Operation in WLD Mode

When ProtectToolkit is configured to operate in WLD mode, this function is not supported and will return

the error CKR_FUNCTION_NOT_SUPPORTED.

ProtectToolkit C Programming Guide

142

C_SetOperationState

Synopsis

C_SetOperationState(

CK_SESSION_HANDLE hSession,

CK_BYTE_PTR pOperationState,

CK_ULONG ulOperationStateLen,

CK_OBJECT_HANDLE hEncryptionKey,

CK_OBJECT_HANDLE hAuthenticationKey

);

Description

C_SetOperationState restores the cryptographic Operations State of a session from a string of bytes

obtained with C_GetOperationState. ProtectToolkit C implements a subset of the full PKCS#11

specification – only the current Message Digest state and object search state may be saved and restored.

hSession is the session’s handle; pOperationState points to the location holding the saved state;

ulOperationStateLen holds the length of the saved state; hEncryptionKey and hAuthenticationKey must be

zero.

The state need not have been obtained from the same session (the “source session”) as it is being restored to

(the “destination session”). However, the source session and destination session should have a common

session state (for example, CKS_RW_USER_FUNCTIONS), and should be with a common tokenMessage

digest operation states may be carried across logins but not across different Cryptoki implementations.

If C_SetOperationState is supplied with a saved cryptographic Operations State, which it determines

is not a valid saved State, it fails with the error CKR_SAVED_STATE_INVALID. Invalid States include

cryptographic Operations State from a session with a different session state and cryptographic Operations

State from a different token.

C_SetOperationState can successfully restore the message digest Operations State to a session, even

if that session has an active message digest or object search operation when C_SetOperationStateis

called. The ongoing operations are abruptly cancelled. However if the saved state did not contain an active

message digest operation and the current session does, then the C_SetOperationStatefunction will

have no effect on the current operation.

Operation in WLD Mode

When ProtectToolkit is configured to operate in WLD mode, this function is not supported and will return

the error CKR_FUNCTION_NOT_SUPPORTED.

C_Login

Synopsis

C_Login(

CK_SESSION_HANDLE hSession,

CK_USER_TYPE userType,

CK_CHAR_PTR pPin,

CK_ULONG ulPinLen

);

ProtectToolkit C Programming Guide

143

Description

This function operates as specified in PKCS#11 with the following exceptions

 If the security mode NoClearPINs is enabled, then the pin value is encrypted by the host library

before it is supplied to the module.

 To negate a brute force attack on the PIN, after the third failed attempt, a delay is imposed delay

(incrementing in multiples of 5 seconds) until the next presented PIN is checked.

For example, after the third failed attempt, the device imposes a delay of 1*5 seconds, after the fourth

the delay is 2*5=10 seconds, after the fifth, the delay is 3*5=15 seconds, and so on.

If a PIN presentation occurs before the delay period has expired, the attempt fails with

CKR_PIN_LOCKED.

Operation in WLD Mode

When ProtectToolkit is configured to operate in WLD mode, the login state is replicated across all tokens in

user slots associated with the same WLD slot. For example, if an application has 3 sessions, across 3 HSMs,

with one session on each HSM then any change in the login state in one session, will result in the session on

the other 2 HSMs being changed to the same session state.

Temporary Pin Login

Under Cryptoki all authentication of users to the HSM is valid for the calling process only. Each application

must authenticate separately. Once a process has authenticated is granted appropriate access to the services

of the token.

With PTK C - if a process forks a new process then the new process must authenticate itself - it can not

inherit the authentication of the parent.

The Temporary Pin feature in this spec describes a new applications authentication method where a parent

process can pass on its authentication to a child process without having to pass the sensitive pin value.

Challenge Response Login

A new type of User Authentication is provided. Instead of having to present the Pin value directly to the

HSM the user will request a random challenge, for a specified password, from the HSM and then present a

response computed from the challenge and password using a One Way Function.

The HSM will authenticate the user by verifying the response with the specified password and the most

recently issued random challenge.

A new CKO_HW_FEATURE object called CKH_VD_USER is provided by the firmware to allow the

application to obtain the random challenge for either the User Password or SO Password.

The Object has an attribute that an application can read to generate and obtain a random challenge.

A new challenge value will generated each time the attribute is read. A separate Challenge is held for each

registered application. The same challenge can be used for User or SO authentication.

The calling application converts the challenge into a Response by using the following algorithm:-

Response = SHA-256(challenge | PVC)

Where PVC = LEFT64BIT(SHA1(password | userTypeByte)

A host side static library function CT_Gen_Auth_Response is provided in the SDK to assist developers in

using this scheme.

The CKH_VD_USER has an attribute that an application can read to generate and obtain a Temporary Pin.

Only one SO and one User Temporary pin may exist at any one time in any single Token. Each read from

this attribute will generate a new Temporary Pin.

Any Temporary Pins in a Token are automatically destroyed when the generating process logs off or is

terminated or the HSM has reset – whichever comes first.

ProtectToolkit C Programming Guide

144

The Response and Temporary Pin are passed to the HSM using the C_Login function. The Function will be

extended such that unused bits in the userType parameter will be set to indicate that a Response value or

Temporary PIN is being used instead of the normal password.

The following bits are added to the userType parameter of the C_Login Function to specify the type of

authentication required.

#define CKF_AUTH_RESPONSE 0x00000100

#define CKF_AUTH_TEMP_PIN 0x00001000

C_Logout

Synopsis

C_Logout(

CK_SESSION_HANDLE hSession

);

Description

This function operates as specified in PKCS #11.

Operation in WLD Mode

When ProtectToolkit is configured to operate in WLD mode, the login state is replicated across all tokens in

user slots associated with the same WLD slot. For example, if an application has 3 sessions, across 3 HSMs,

with one session on each HSM then any change in the login state in one session, will result in the session on

the other 2 HSMs being changed to the same session state.

Object Management Functions

C_CreateObject

Synopsis

C_CreateObject(

CK_SESSION_HANDLE hSession,

CK_ATTRIBUTE_PTR pTemplate,

CK_ULONG ulCount,

CK_OBJECT_HANDLE_PTR phObject

);

Description

This function operates as specified in PKCS#11 with the following exceptions. If the security mode

NoClearPINs is enabled then the host library version of the function will encrypt the template before

submitting it to the module and the module function will verify the data was encrypted.

If the object is of type CKO_PUBLIC_KEY, CKO_PRIVATE_KEY, CKO_CERTIFICATEor

CKO_CERTIFICATE_REQUEST and the key type is CKK_RSAor CKK_DSA then the key is checked for

validity.

ProtectToolkit C Programming Guide

145

C_CopyObject

Synopsis

C_CopyObject(

CK_SESSION_HANDLE hSession,

CK_OBJECT_HANDLE hObject,

CK_ATTRIBUTE_PTR pTemplate,

CK_ULONG ulCount,

CK_OBJECT_HANDLE_PTR phNewObject

);

Description

This function operates as specified in PKCS#11. except that if the base object has a valid

CKA_USAGE_LIMIT attribute then the base object is deleted after a successful copy.

NOTE: If the “Increased Security” flag is set as part of the security policy, then C_CopyObject does not

allow changing the CKA_MODIFIABLE flag from FALSE to TRUE.

Operation in WLD Mode

When ProtectToolkit is configured to operate in WLD mode, this function is not supported and will return

the error CKR_FUNCTION_NOT_SUPPORTED.

CT_CopyObject

Synopsis

CT_CopyObject(

CK_SESSION_HANDLE hDestSession,

CK_SESSION_HANDLE hSourceSession,

CK_OBJECT_HANDLE hObject,

CK_ATTRIBUTE_PTR pTemplate,

CK_ULONG ulCount,

CK_OBJECT_HANDLE_PTR phNewObject

);

Description

This function is a SafeNet extension to PKCS #11. It is identical to the C_CopyObject function with the

exception that it is capable of copying objects from one token to another token where the two tokens belong

to the same adapter.

This function copies an object from one session to another session, creating a new object for the copy.

hSession is the source session’s handle; hObject is the destination’s session handle; hObject is the object’s

handle; pTemplate points to the template for the new object; ulCount is the number of attributes in the

template; phNewObject points to the location that receives the handle for the copy of the object.

If the base object has a valid CKA_USAGE_LIMIT attribute then the base object is deleted after a

successful copy.

The template may specify new values for any attributes of the object that can ordinarily be modified (e.g., in

the course of copying a secret key, a key’s CKA_EXTRACTABLE attribute may be changed from TRUE to

FALSE, but not the other way around. If this change is made, the new key’s

CKA_NEVER_EXTRACTABLE attribute will have the value FALSE.

ProtectToolkit C Programming Guide

146

Similarly, the template may specify that the new key’s CKA_SENSITIVE attribute be TRUE; the new key

will have the same value for its CKA_ALWAYS_SENSITIVE attribute as the original key). It may also

specify new values of the CKA_TOKEN and CKA_PRIVATE attributes (e.g., to copy a session object to a

token object).

If the template specifies a value of an attribute which is incompatible with other existing attributes of the

object, the call fails with the return code CKR_TEMPLATE_INCONSISTENT.

If a call to CT_CopyObject cannot support the precise template supplied to it, it will fail and return without

creating any object.

Only session objects can be created during a read-only session. Only public objects can be created unless

the normal user is logged in.

NOTE: If the “Increased Security” flag is set as part of the security policy, then C_CopyObject does not

allow changing the CKA_MODIFIABLE flag from FALSE to TRUE.

C_DestroyObject

Synopsis

C_DestroyObject(

CK_SESSION_HANDLE hSession,

CK_OBJECT_HANDLE hObject

);

Description

This function operates as specified in PKCS#11.

If the object has the optional attribute CKA_DELETABLEset to FALSE the object cannot be deleted with this

function and CKR_OBJECT_READ_ONLY is returned.

C_GetObjectSize

Synopsis

C_GetObjectSize(

CK_SESSION_HANDLE hSession,

CK_OBJECT_HANDLE hObject,

CK_ULONG_PTR pulSize

);

Description

This function operates as specified in PKCS#11.

ProtectToolkit C interprets the object size to be the amount of memory guaranteed to be sufficient to encode

the object’s attributes.

ProtectToolkit C Programming Guide

147

C_GetAttributeValue

Synopsis

C_GetAttributeValue(

CK_SESSION_HANDLE hSession,

CK_OBJECT_HANDLE hObject,

CK_ATTRIBUTE_PTR pTemplate,

CK_ULONG ulCount

);

Description

This function operates as specified in PKCS#11 with the following extensions. With ProtectToolkit C it is

possible to enumerate through all attributes for a given object. This extension is supported as follows.

The first call C_GetAttributeValue operates as follows to initialize the enumeration.

CK_ATTRIBUTE at;

rv = C_GetAttributeValue(hSession, hObject, &at, 0);

then to get all the attributes loop as follows

for (;;) {

at.type = CKA_ENUM_ATTRIBUTE;

at.pValue = 0;

rv = C_GetAttributeValue(hSession, hObject, &at, 1);

if (rv == CKR_ATTRIBUTE_TYPE_INVALID)

break; /* got all the attributes */

}

Sensitive attributes are returned with the type and length information but an empty value, and also return a

result value of CKR_ATTRIBUTE_SENSITIVE. On implementations where this extension is not supported,

the calls to C_GetAttributeType are likely to fail with the CKR_ATTRIBUTE_TYPE_INVALIDerror code.

With a result code of CKR_OKor CKR_ATTRIBUTE_SENSITIVE the CK_ATTRIBUTE structure has the

type and valueLen fields set appropriately for the next attribute, however the pValuefield will be

NULL_PTR. To retrieve the actual value of the attribute it is necessary to allocate the required room for the

value and then make a second call to C_GetAttributeValue.

In addition special processing or access checks may be made if the object is a Hardware Feature. See the

section Hardware Feature Objects for more details on hardware features.

C_SetAttributeValue

Synopsis

C_SetAttributeValue(

CK_SESSION_HANDLE hSession,

CK_OBJECT_HANDLE hObject,

CK_ATTRIBUTE_PTR pTemplate,

CK_ULONG ulCount

);

Description

This function operates as specified in PKCS#11.

In addition special processing or access checks may be made if the object is a Hardware Feature. See the

section Hardware Feature Objects for more details on hardware features.

ProtectToolkit C Programming Guide

148

C_FindObjectsInit

Synopsis

C_FindObjectsInit(

CK_SESSION_HANDLE hSession,

CK_ATTRIBUTE_PTR pTemplate,

CK_ULONG ulCount

);

Description

This function operates as specified in PKCS#11 with the following exception:

PKCS#11 states that to match CKO_HW_FEATURE objects this class must be specified in the supplied

template. ProtectToolkit C does not enforce this requirement.

C_FindObjects

Synopsis

C_FindObjects(CK_SESSION_HANDLE hSession,CK_OBJECT_HANDLE_PTR

phObject,CK_ULONG ulMaxObjectCount,CK_ULONG_PTR pulObjectCount

);

Description

This function operates as specified in PKCS#11.

C_FindObjectsFinal

Synopsis

C_FindObjectsFinal(CK_SESSION_HANDLE hSession);

Description

This function operates as specified in PKCS#11.

ProtectToolkit C Programming Guide

149

Encryption Functions

C_EncryptInit

Synopsis

C_EncryptInit(

CK_SESSION_HANDLE hSession,

CK_MECHANISM_PTR pMechanism,

CK_OBJECT_HANDLE hKey

);

Description

This function operates as specified in PKCS#11.

The session will retain its initialized state even when a C_Encryptor C_EncryptFinal operation has

occurred.

If the CKF_LOGIN_REQUIRED flag is set for the Token associated with the provided session the session

state must be either CKS_RW_USER_FUNCTIONS, or CKS_RO_USER_FUNCTIONSotherwise the error

result CKR_USER_NOT_LOGGED_IN is returned.

If the hKey parameter refers to a certificate object this function will perform the same certificate verification

as specified in the C_VerifyInit function.

If the object referenced by the hKey parameter has the CKA_USAGE_COUNTattribute its value is

incremented by this function.

C_Encrypt

Synopsis

C_Encrypt(

CK_SESSION_HANDLE hSession,

CK_BYTE_PTR pData,

CK_ULONG ulDataLen,

CK_BYTE_PTR pEncryptedData,

CK_ULONG_PTR pulEncryptedDataLen

);

Description

This function operates as specified in PKCS#11 except for the following:

 Symmetric cipher operations are terminated by this function.

 C_Encrypt can be used to terminate a multi-part operation.

ProtectToolkit C Programming Guide

150

 Although this function will terminate the current encryption operation, the session’s encryption state

will not be cleared.

NOTE: If the mechanism in use is a multi-part mechanism and the data supplied exceeds a single

block, that portion of the data is processed regardless of the result returned by the call. For example if

12 bytes are passed to a DES ECB operation, 8 bytes are processed even though an error result (due

to the padding requirements not being met) is returned.

 Cryptoki specifies that a successful return from one of these functions (when not used for length

prediction) should result in the cipher state of that session being reset (e.g. to the uninitialized state).

ProtectToolkit C however leaves the state initialized so that another operation (using the same key)

may be preformed without calling the appropriate C_xxxInit function.

C_EncryptUpdate

Synopsis

C_EncryptUpdate(CK_SESSION_HANDLE hSession,CK_BYTE_PTR pPart,CK_ULONG

ulPartLen,CK_BYTE_PTR pEncryptedPart,CK_ULONG_PTR pulEncryptedPartLen

);

Description

This function operates as specified in PKCS#11.

C_EncryptFinal

Synopsis

C_EncryptFinal(

CK_SESSION_HANDLE hSession,

CK_BYTE_PTR pLastEncryptedPart,

CK_ULONG_PTR pulLastEncryptedPartLen

);

Description

This function operates as specified in PKCS#11.

Although this function will terminate the current encryption operation the session’s encryption state will not

be cleared.

NOTE: Cryptoki specifies that a successful return from one of these functions (when not used for length

prediction) should result in the cipher state of that session being reset (e.g. to the uninitialized state).

ProtectToolkit C however leaves the state initialized so that another operation (using the same key) may be

preformed without calling the appropriate C_xxxInit function.

ProtectToolkit C Programming Guide

151

Decryption Functions

C_DecryptInit

Synopsis

C_DecryptInit(

CK_SESSION_HANDLE hSession,

CK_MECHANISM_PTR pMechanism,

CK_OBJECT_HANDLE hKey

);

Description

This function operates as specified in PKCS#11.

The session will retain its initialized state even when a C_Decryptor C_DecryptFinal operation has

occurred.

If the CKF_LOGIN_REQUIRED flag is set for the Token associated with the provided session the session

state must be either CKS_RW_USER_FUNCTIONSor CKS_RO_USER_FUNCTIONS,otherwise the error

result CKR_USER_NOT_LOGGED_IN is returned.

If the object referenced by the hKey parameter has the CKA_USAGE_COUNTattribute its value is

incremented by this function.

C_Decrypt

Synopsis

C_Decrypt(

CK_SESSION_HANDLE hSession,

CK_BYTE_PTR pEncryptedData,

CK_ULONG ulEncryptedDataLen,

CK_BYTE_PTR pData,

CK_ULONG_PTR pulDataLen

);

Description

This function operates as specified in PKCS#11 except for the following:

Symmetric cipher operations are terminated by this function. Although this function terminates the

current decryption operation the session’s decryption state is not cleared.

NOTE: If the mechanism in use is a multi-part mechanism and the data supplied exceeds a single block,

that portion of the data is processed regardless of the result returned by the call. For example if 12 bytes are

passed to a DES ECB operation, 8 bytes are processed even though an error result (due to the padding

requirements not being met) is returned.

Cryptoki specifies that a successful return from one of these functions (when not used for length prediction)

should result in the cipher state of that session being reset (e.g. to the uninitialized state). ProtectToolkit C

however leaves the state initialized so that another operation (using the same key) may be preformed without

calling the appropriate C_xxxInit function.

ProtectToolkit C Programming Guide

152

C_DecryptUpdate

Synopsis

C_DecryptUpdate(CK_SESSION_HANDLE hSession,CK_BYTE_PTR

pEncryptedPart,CK_ULONG ulEncryptedPartLen,CK_BYTE_PTR

pPart,CK_ULONG_PTR pulPartLen

);

Description

This function operates as specified in PKCS#11.

C_DecryptFinal

Synopsis

C_DecryptFinal(

CK_SESSION_HANDLE hSession,

CK_BYTE_PTR pLastPart,

CK_ULONG_PTR pulLastPartLen

);

Description

This function operates as specified in PKCS#11.

Although this function will terminate the current encryption operation the session’s decryption state will not

be cleared.

NOTE: Cryptoki specifies that a successful return from one of these functions (when not used for length

prediction) should result in the cipher state of that session being reset (e.g. to the uninitialized state).

ProtectToolkit C however leaves the state initialized so that another operation (using the same key) may be

preformed without calling the appropriate C_xxxInit function.

ProtectToolkit C Programming Guide

153

Message Digesting Functions

C_DigestInit

Synopsis

C_DigestInit(

CK_SESSION_HANDLE hSession,

CK_MECHANISM_PTR pMechanism

);

Description

This function operates as specified in PKCS#11. Note that it is not required for the user to be logged in to

access this function.

C_Digest

Synopsis

C_Digest(CK_SESSION_HANDLE hSession,CK_BYTE_PTR pData,CK_ULONG

ulDataLen,CK_BYTE_PTR pDigest,CK_ULONG_PTR pulDigestLen

);

Description

This function operates as specified in PKCS#11.

C_DigestUpdate

Synopsis

C_DigestUpdate(CK_SESSION_HANDLE hSession,CK_BYTE_PTR pPart,CK_ULONG

ulPartLen

);

Description

This function operates as specified in PKCS#11.

C_DigestKey

Synopsis

C_DigestKey(

CK_SESSION_HANDLE hSession,

CK_OBJECT_HANDLE hKey

);

ProtectToolkit C Programming Guide

154

Description

This function operates as specified in PKCS#11, although it may be used on any PKCS#11 object.

If the CKF_LOGIN_REQUIRED flag is set for the Token associated with the provided session the session

state must be either CKS_RW_USER_FUNCTIONSor CKS_RO_USER_FUNCTIONS,otherwise the error

result CKR_USER_NOT_LOGGED_IN is returned.

C_DigestFinal

Synopsis

C_DigestFinal(CK_SESSION_HANDLE hSession,CK_BYTE_PTR pDigest,CK_ULONG_PTR

pulDigestLen

);

Description

This function operates as specified in PKCS#11.

Signing and MACing Functions

C_SignInit

Synopsis

C_SignInit(

CK_SESSION_HANDLE hSession,

CK_MECHANISM_PTR pMechanism,

CK_OBJECT_HANDLE hKey

);

Description

This function operates as specified in PKCS#11.

In addition it is required to specify the signing key and signing mechanism used to create X509 certificates

with the CKM_ENCODE_X_509, CKM_ENCODE_LOCAL_CERTand CKM_ENCODE_PKCS10 mechanisms.

If the CKF_LOGIN_REQUIRED flag is set for the Token associated with the provided session, the session

state must be either CKS_RW_USER_FUNCTIONS, or CKS_RO_USER_FUNCTIONSotherwise the error

result CKR_USER_NOT_LOGGED_IN is returned.

If the object referenced by the hKey parameter has the CKA_USAGE_COUNTattribute its value is

incremented by this function.

C_Sign

Synopsis

C_Sign(CK_SESSION_HANDLE hSession,CK_BYTE_PTR pData,CK_ULONG

ulDataLen,CK_BYTE_PTR pSignature,CK_ULONG_PTR pulSignatureLen

);

ProtectToolkit C Programming Guide

155

Description

This function operates as specified in PKCS#11.

C_SignUpdate

Synopsis

C_SignUpdate(CK_SESSION_HANDLE hSession,CK_BYTE_PTR pPart,CK_ULONG

ulPartLen

);

Description

This function operates as specified in PKCS#11.

C_SignFinal

Synopsis

C_SignFinal(CK_SESSION_HANDLE hSession,CK_BYTE_PTR pSignature,CK_ULONG_PTR

pulSignatureLen

);

Description

This function operates as specified in PKCS#11.

C_SignRecoverInit

Synopsis

C_SignRecoverInit(

CK_SESSION_HANDLE hSession,

CK_MECHANISM_PTR pMechanism,

CK_OBJECT_HANDLE hKey

);

Description

This function operates as specified in PKCS#11.

If the CKF_LOGIN_REQUIRED flag is set for the Token associated with the provided session the session

state must be either CKS_RW_USER_FUNCTIONS, or CKS_RO_USER_FUNCTIONSotherwise the error

result CKR_USER_NOT_LOGGED_IN is returned.

If the object referenced by the hKey parameter has the CKA_USAGE_COUNT attribute its value is incremented

by this function.

ProtectToolkit C Programming Guide

156

C_SignRecover

Synopsis

C_SignRecover(CK_SESSION_HANDLE hSession,CK_BYTE_PTR pData,CK_ULONG

ulDataLen,CK_BYTE_PTR pSignature,CK_ULONG_PTR pulSignatureLen

);

Description

This function operates as specified in PKCS#11.

Functions for Verifying Signatures and MACs

C_VerifyInit

Synopsis

C_VerifyInit(

CK_SESSION_HANDLE hSession,

CK_MECHANISM_PTR pMechanism,

CK_OBJECT_HANDLE hKey

);

Description

This function operates as specified in PKCS#11.

If the CKF_LOGIN_REQUIRED flag is set for the Token associated with the provided session the session

state must be either CKS_RW_USER_FUNCTIONSor CKS_RO_USER_FUNCTIONS,otherwise the error

CKR_USER_NOT_LOGGED_IN is returned.

If the object referenced by the hKey parameter has the CKA_USAGE_COUNTattribute its value is

incremented by this function.

ProtectToolkit C also allows that hKey may specify a certificate object in place of a public key. In this case

the certificate object is verified with the algorithm below. If this verification succeeds the session is

initialized using the public key stored in the certificate. If the verification fails CKR_INVALID_KEY is

returned and the session is not initialized. Further the certificate object’s CKA_TRUST_LEVEL is updated to

indicate that the verification has failed.

To perform the certificate verification the object’s CKA_TRUSTED is checked. If it has the value TRUE the

verification succeeds. If the attribute has the value FALSE the certificate is validated.

For self-signed certificates (that is, where the subject and the issuer are the same) the certificate is validated

if the CKA_TRUSTED is TRUE and the certificate’s signature is correct. If CKA_TRUSTED is FALSE for a

self-signed certificate then the validation fails with CKR_CERT_NOT_VALIDATED. If the certificate is not

self-signed, a search is made for the issuer’s certificate which is the certificate whose CKA_SUBJECT

matches the CKA_ISSUER of the current certificate. If the issuer’s certificate is not found, the verification

fails. If a matching issuer’s certificate is found the verification algorithm is performed on that certificate,

and if that succeeds the original certificate’s signature is verified. Issuer certificate validation will continue

recursively up the certificate chain until a trusted certificate (self signed or not) is reached or a certificate in

the chain fails validation for any reason including not being present.

ProtectToolkit C Programming Guide

157

NOTE: This function does not enforce certificate expiry or key usage flags store in the certificate. Rather it

relies on the standard Cryptoki attributes. This function will not always fail when an inappropriate key type

is supplied. For example, if a private key is supplied to the function, it may succeed. In this case, however,

the C_Verify will never return CKA_OK.

C_Verify

Synopsis

C_Verify(CK_SESSION_HANDLE hSession,CK_BYTE_PTR pData,CK_ULONG

ulDataLen,CK_BYTE_PTR pSignature,CK_ULONG ulSignatureLen

);

Description

This function operates as specified in PKCS#11.

C_VerifyUpdate

Synopsis

C_VerifyUpdate(CK_SESSION_HANDLE hSession,CK_BYTE_PTR pPart,CK_ULONG

ulPartLen

);

Description

This function operates as specified in PKCS#11.

C_VerifyFinal

Synopsis

C_VerifyFinal(CK_SESSION_HANDLE hSession,CK_BYTE_PTR pSignature,CK_ULONG

ulSignatureLen

);

Description

This function operates as specified in PKCS#11.

C_VerifyRecoverInit

Synopsis

C_VerifyRecoverInit(

CK_SESSION_HANDLE hSession,

CK_MECHANISM_PTR pMechanism,

CK_OBJECT_HANDLE hKey

);

ProtectToolkit C Programming Guide

158

Description

This function operates as specified in PKCS#11.

 If the CKF_LOGIN_REQUIRED flag is set for the Token associated with the provided session the

session state must be either CKS_RW_USER_FUNCTIONSor

CKS_RO_USER_FUNCTIONS,otherwise the error CKR_USER_NOT_LOGGED_IN is returned.

 If the object referenced by the hKey parameter has the CKA_USAGE_COUNTattribute its value is

incremented by this function.

 If the hKey parameter refers to a certificate object this function will perform the same certificate

verification as specified in the C_VerifyInit function.

C_VerifyRecover

Synopsis

C_VerifyRecover(CK_SESSION_HANDLE hSession,CK_BYTE_PTR pSignature,CK_ULONG

ulSignatureLen,CK_BYTE_PTR pData,CK_ULONG_PTR pulDataLen

);

Description

This function operates as specified in PKCS#11.

Dual-function Cryptographic Functions
NOTE: ProtectToolkit C provides the following functions to perform two cryptographic operations

“simultaneously” within a session. These functions are provided so as to avoid unnecessarily passing data

back and forth to and from a token.

C_DigestEncryptUpdate

Synopsis

C_DigestEncryptUpdate(

CK_SESSION_HANDLE hSession,

CK_BYTE_PTR pPart,

CK_ULONG ulPartLen,

CK_BYTE_PTR pEncryptedPart,

CK_ULONG_PTR pulEncryptedPartLen

);

Description

This function operates as specified in PKCS#11.

ProtectToolkit C Programming Guide

159

C_DecryptDigestUpdate

Synopsis

C_DecryptDigestUpdate(CK_SESSION_HANDLE hSession,CK_BYTE_PTR

pEncryptedPart,CK_ULONG ulEncryptedPartLen,CK_BYTE_PTR

pPart,CK_ULONG_PTR pulPartLen

);

Description

This function operates as specified in PKCS#11.

C_SignEncryptUpdate

Synopsis

C_SignEncryptUpdate(CK_SESSION_HANDLE hSession,CK_BYTE_PTR pPart,CK_ULONG

ulPartLen,CK_BYTE_PTR pEncryptedPart,CK_ULONG_PTR pulEncryptedPartLen

);

Description

This function operates as specified in PKCS#11.

C_DecryptVerifyUpdate

Synopsis

C_DecryptVerifyUpdate(CK_SESSION_HANDLE hSession,CK_BYTE_PTR

pEncryptedPart,CK_ULONG ulEncryptedPartLen,CK_BYTE_PTR

pPart,CK_ULONG_PTR pulPartLen

);

Description

This function operates as specified in PKCS#11.

ProtectToolkit C Programming Guide

160

Key Management Functions

C_GenerateKey

Synopsis

C_GenerateKey(

CK_SESSION_HANDLE hSession

CK_MECHANISM_PTR pMechanism,

CK_ATTRIBUTE_PTR pTemplate,

CK_ULONG ulCount,

CK_OBJECT_HANDLE_PTR phKey

);

Description

This function operates as specified in PKCS#11.

If the CKF_LOGIN_REQUIRED flag is set for the Token associated with the provided session the session

state must be either CKS_RW_USER_FUNCTIONSor CKS_RO_USER_FUNCTIONS,otherwise the error

CKR_USER_NOT_LOGGED_IN is returned.

C_GenerateKeyPair

Synopsis

C_GenerateKeyPair(

CK_SESSION_HANDLE hSession,

CK_MECHANISM_PTR pMechanism,

CK_ATTRIBUTE_PTR pPublicKeyTemplate,

CK_ULONG ulPublicKeyAttributeCount,

CK_ATTRIBUTE_PTR pPrivateKeyTemplate,

CK_ULONG ulPrivateKeyAttributeCount,

CK_OBJECT_HANDLE_PTR phPublicKey,

CK_OBJECT_HANDLE_PTR phPrivateKey

);

Description

This function operates as specified in PKCS#11.

If the CKF_LOGIN_REQUIRED flag is set for the Token associated with the provided session the session

state must be either CKS_RW_USER_FUNCTIONSor CKS_RO_USER_FUNCTIONS,otherwise the error

CKR_USER_NOT_LOGGED_IN is returned.

If CKA_ID is not specified in either template then the library sets default values for these that are

the same for both public and private object with a high likelihood of being unique. The value is a

SHA1 hash of the modulus.

ProtectToolkit C Programming Guide

161

C_WrapKey

Synopsis

C_WrapKey(

CK_SESSION_HANDLE hSession,

CK_MECHANISM_PTR pMechanism,

CK_OBJECT_HANDLE hWrappingKey,

CK_OBJECT_HANDLE hKey,

CK_BYTE_PTR pWrappedKey,

CK_ULONG_PTR pulWrappedKeyLen

);

Description

This function operates as specified in PKCS#11.

If the CKF_LOGIN_REQUIRED flag is set for the Token associated with the provided session the session

state must be either CKS_RW_USER_FUNCTIONSor CKS_RO_USER_FUNCTIONS,otherwise the error

CKR_USER_NOT_LOGGED_IN is returned.

C_UnwrapKey

Synopsis

C_UnwrapKey(

CK_SESSION_HANDLE hSession,

CK_MECHANISM_PTR pMechanism,

CK_OBJECT_HANDLE hUnwrappingKey,

CK_BYTE_PTR pWrappedKey,

CK_ULONG ulWrappedKeyLen,

CK_ATTRIBUTE_PTR pTemplate,

CK_ULONG ulAttributeCount,

CK_OBJECT_HANDLE_PTR phKey

);

Description

This function operates as specified in PKCS#11.

If the CKF_LOGIN_REQUIRED flag is set for the Token associated with the provided session the session

state must be either CKS_RW_USER_FUNCTIONSor CKS_RO_USER_FUNCTIONS,otherwise the error

CKR_USER_NOT_LOGGED_IN is returned.

C_DeriveKey

Synopsis

C_DeriveKey(

CK_SESSION_HANDLE hSession,

CK_MECHANISM_PTR pMechanism,

CK_OBJECT_HANDLE hBaseKey,

CK_ATTRIBUTE_PTR pTemplate,

CK_ULONG ulAttributeCount,

CK_OBJECT_HANDLE_PTR phKey

);

ProtectToolkit C Programming Guide

162

Description

This function operates as specified in PKCS#11.

If the CKF_LOGIN_REQUIRED flag is set for the Token associated with the provided session the session

state must be either CKS_RW_USER_FUNCTIONSor CKS_RO_USER_FUNCTIONS,otherwise the error

CKR_USER_NOT_LOGGED_IN is returned.

Simple derivation mechanisms are restricted to working on secret keys of type

CKK_GENERIC_SECRET.

Random Number Generation Functions

C_SeedRandom

Synopsis

C_SeedRandom(

CK_SESSION_HANDLE hSession,

CK_BYTE_PTR pSeed,

CK_ULONG ulSeedLen

);

Description

This function operates as specified in PKCS#11, however, it is not required to be called as the ProtectServer

adapter has a hardware random generation source.

Also note this function will only operate for those tokens with the CKF_RNG flag set in their

CK_TOKEN_INFO flags.

C_GenerateRandom

Synopsis

C_GenerateRandom(

CK_SESSION_HANDLE hSession,

CK_BYTE_PTR pRandomData,

CK_ULONG ulRandomLen

);

Description

This function operates as specified in PKCS#11.

Also note this function will only operate for those tokens with the CKF_RNGflag set in their

CK_TOKEN_INFOflags.

ProtectToolkit C Programming Guide

163

Parallel Function Management Functions
NOTE: ProtectToolkit C provides the following functions for managing parallel execution of cryptographic

functions. These functions exist only for backward compatibility.

C_GetFunctionStatus

Synopsis

C_GetFunctionStatus(

CK_SESSION_HANDLE hSession

);

Description

This function operates as specified in PKCS#11.

C_GetFunctionStatus is a legacy function, which will simply return

the value CKR_FUNCTION_NOT_PARALLEL.

C_CancelFunction

Synopsis

C_CancelFunction(

CK_SESSION_HANDLE hSession

);

Description

This function operates as specified in PKCS#11.

C_GetFunctionStatus is a legacy function, which will simply return the value

CKR_FUNCTION_NOT_PARALLEL.

ProtectToolkit C Programming Guide

164

Extra Functions

CT_PresentTicket
CK_DEFINE_FUNCTION(CK_RV, CT_PresentTicket)(

 CK_SESSION_HANDLE hSession,

 CK_OBJECT_HANDLE hObj,

 CK_MECHANISM_PTR pMechanism,

 CK_BYTE_PTR pTicket,

 CK_ULONG ulTicketLen

);

This function is a SafeNet extension to PKCS#11.

This function allows a process to present a security related cryptogram to the HSM. The cryptogram is

specified by pTicket and ulTicketLen.

When Secure Messaging System is in ‘No Clear Pins’ mode then this function will expect all request data to

be encrypted.

This function introduces a new category of mechanism of type CKF_TICKET which has value

(CKF_EXTENSION | 0x40000000).

The table below lists the Ticket Mechanisms:

Mechanism Description

CKM_SET_ATTRIBUTES A mechanism to specify attribute changes for an object. It is used to

extend the usage limit on a key.

http://dixie/cgi-bin/twiki/view/TSCGroup/PTKCFuncSpec?sortcol=0&table=1&up=0#sorted_table
http://dixie/cgi-bin/twiki/view/TSCGroup/PTKCFuncSpec?sortcol=1&table=1&up=0#sorted_table

ProtectToolkit C Programming Guide

165

CT_SetHsmDead

CK_DEFINE_FUNCTION(CK_RV, CT_SetHsmDead)(

 CK_ULONG hsmIDx,

 CK_BBOOL bDisable

);

This function can be used by an application to simulate the behavior of the WLD or HA system when an HSM

fails. See also CT_GetHSMId

Return Values:

CKR_OK: Successfull.

CKR_ARGUMENTS_BAD: The supplied hsmID is invalid.

CKR_FUNCTION_NOT_SUPPORTED: The library is not in WLD mode

This function is an SafeNet extension to PKCS #11.

CT_GetHSMId

CK_DEFINE_FUNCTION(CK_RV, CT_GetHSMId)(

CK_SESSION_HANDLE hSession,

CK_ULONG_PTR pHsmid

);

This function can be used to identify the HSM that a particular WLD or HA session has been assigned to.

Return Values:

CKR_OK: Successfull.

CKR_ARGUMENTS_BAD: The supplied pHsmID is NULL.

CKR_FUNCTION_NOT_SUPPORTED: The library is not in WLD mode

This function is an SafeNet extension to PKCS #11.

ProtectToolkit C Programming Guide

166

THIS PAGE INTENTIONALLY LEFT BLANK

ProtectToolkit C Programming Guide

167

C H A P T E R 1 1

CTUTIL.H FUNCTIONALITY REFERENCE

Overview
The ProtectToolkit C Software Development Kit offers a number of extended API libraries with

functionality that is extended to that of the standard PKCS#11 function set.

The following additional features do not form part of the standard PKCS#11 functionality, but are provided

by SafeNet as part of the ProtectToolkit C API within the CTLUTIL.H library.

BuildDhKeyPair

Synopsis

CK_RV BuildDhKeyPair(

CK_SESSION_HANDLE hSession,

char * txt,

int tok,

int priv,

CK_OBJECT_HANDLE * phPub,

CK_OBJECT_HANDLE * phPri,

char * prime,

char * base,

char * pub,

char * pri);

Description

Create a DH key pair given the required components.

Parameters

hSession Open session handle

txt Optional label

tok 1 for a Token object, 0 for Session object

priv 1 for Private object, 0 for Public object

phPub Reference to object handle to hold created public key

phPri Reference to object handle to hold created private key

prime Prime

base Base

pub Public key value

pri Private key value

ProtectToolkit C Programming Guide

168

On successful return

*phPub — handle to newly created public key

*phPri — handle to newly created private key

In addition to the Public key attributes set via the parameters, the following are set:

CKA_CLASS CKO_PUBLIC_KEY

CKA_KEY_TYPE CKK_DH

CKA_EXTRACTABLE TRUE

In addition to the Private key attributes set via the parameters, the following are set:

CKA_CLASS CKO_PRIVATE_KEY

CKA_KEY_TYPE CKK_DH

CKA_EXTRACTABLE TRUE

BuildDsaKeyPair

Synopsis

CK_RV BuildDsaKeyPair(

CK_SESSION_HANDLE hSession,

char * txt,

int tok,

int priv,

CK_OBJECT_HANDLE * phPub,

CK_OBJECT_HANDLE * phPri,

char * prime,

char * subprime,

char * base,

char * pub,

char * pri);

Description

Create DSA key pair given required components.

Parameters

hSession Open session handle

txt Optional label

tok 1 for a Token object, 0 for Session object

priv 1 for Private object, 0 for Public object

phPub Reference to object handle to hold created public key

phPri Reference to object handle to hold created private key

prime Prime

subprime SubPrime

base Base

pub Public key value

pri Private key value

ProtectToolkit C Programming Guide

169

On successful return

*phPub handle to newly created public key

*phPri handle to newly created private key

In addition to the Public key attributes set via the parameters, the following are set:

CKA_CLASS CKO_PUBLIC_KEY

CKA_KEY_TYPE CKK_DSA

CKA_EXTRACTABLE TRUE

In addition to the Private key attributes set via the parameters, the following are set:

CKA_CLASS CKO_PRIVATE_KEY

CKA_KEY_TYPE CKK_DSA

CKA_EXTRACTABLE TRUE

BuildRsaCrtKeyPair

Synopsis

CK_RV BuildRsaCrtKeyPair(

CK_SESSION_HANDLE hSession,

char * txt,

int tok,

int priv,

CK_OBJECT_HANDLE * phPub,

CK_OBJECT_HANDLE * phPri,

char * modulusStr,

char * pubExpStr,

char * priExpStr,

char * priPStr,

char * priQStr,

char * priE1Str,

char * priE2Str,

char * priUStr);

Description

Create an RSA key pair given the modulus and exponents, as well as the additional arguments used in

Chinese Remainder Theorem processing. If the values for P, Q, E1, E2 and U are not specified, a normal

RSA key pair is created.

Parameters

hSession Open session handle

txt Optional label

tok 1 for a Token object, 0 for Session object

priv 1 for Private object, 0 for Public object

phPub Reference to object handle to hold created public key

phPri Reference to object handle to hold created private key

modulusStr Key modulus

pubExpStr Public key exponent

priExpStr Private key exponent

ProtectToolkit C Programming Guide

170

On successful return

*phPub — handle to newly created public key

*phPri — handle to newly created private key

In addition to the Public key attributes set via the parameters, the following are set:

CKA_CLASS CKO_PUBLIC_KEY CKA_KEY_TYPE CKK_RSA CKA_VERIFY TRUE CKA_SIGN

FALSE CKA_DECRYPT FALSE CKA_ENCRYPT TRUE CKA_EXTRACTABLE TRUE CKA_WRAP

FALSE

In addition to the Private key attributes set via the parameters, the following are set:

CKA_CLASS CKO_PRIVATE_KEY CKA_KEY_TYPE CKK_RSA CKA_VERIFY FALSE CKA_SIGN

TRUE CKA_DECRYPT TRUE CKA_ENCRYPT FALSE CKA_EXTRACTABLE TRUE CKA_WRAP

FALSE

BuildRsaKeyPair

Synopsis

CK_RV BuildRsaKeyPair(

CK_SESSION_HANDLE hSession,

char * txt,

int tok,

int priv,

CK_OBJECT_HANDLE * phPub,

CK_OBJECT_HANDLE * phPri,

char * modulusStr,

char * pubExponentStr,

char * priExponentStr);

Description

Create an RSA key pair given the modulus and exponents.

Parameters

priPStr Optional Private key Prime1

priQStr Optional (optionality set by priPStr) Private key Prime2

priE1Str Optional (optionality set by priPStr) Private key Exponent1

priE2Str Optional (optionality set by priPStr) Private key Exponent2

priUStr Optional (optionality set by priPStr) Private key Coefficient

hSession Open session handle

txt Optional label

tok 1 for a Token object, 0 for Session object

priv 1 for Private object, 0 for Public object

phPub Reference to object handle to hold created public key

phPri Reference to object handle to hold created private key

modulusStr Key modulus

pubExponentStr Public key exponent

priExponentStr Private key exponent

ProtectToolkit C Programming Guide

171

On successful return

*phPub — handle to newly created public key

*phPri — handle to newly created private key

In addition to the Public key attributes set via the parameters, the following are set:

CKA_CLASS CKO_PUBLIC_KEY CKA_KEY_TYPE CKK_RSA CKA_VERIFY TRUE CKA_SIGN

FALSE CKA_DECRYPT FALSE CKA_ENCRYPT TRUE CKA_EXTRACTABLE TRUE CKA_WRAP

FALSE

In addition to the Private key attributes set via the parameters, the following are set:

CKA_CLASS CKO_PRIVATE_KEY CKA_KEY_TYPE CKK_RSA CKA_VERIFY FALSE CKA_SIGN

TRUE CKA_DECRYPT TRUE CKA_ENCRYPT FALSE CKA_EXTRACTABLE TRUE CKA_WRAP

FALSE

calcKvc

Synopsis

CK_RV calcKvc(

CK_SESSION_HANDLE hSession,

CK_OBJECT_HANDLE hKey,

unsigned char * kvc,

int kvclen,

int * pkvclen);

Description

Calculate and return an AS2805 KVC for a key. The key must be capable of doing an encryption operation

using the mechanism determined from the key type (see mechFromKt) for this to succeed. Note that

mechanism parameters are set to NULL.

NOTE: The CKA_CHECK_VALUE attribute can be used to get the KVC of a key that does not support the

encryption operation.

Parameters

On successful return

kvc — holds the encryption result

*pkvclen — number of bytes copied into kvc

If kvclen is smaller than the encryption result, then only kvclen bytes are copied into kvc.

hSession Open session handle

hKey Handle to the key to use for the encryption

kvc Buffer to hold the encryption result

kvclen Total number of bytes referenced by kvc

pkvclen Reference to int to hold number of bytes copied into kvc

ProtectToolkit C Programming Guide

172

calcKvcMech

Synopsis

CK_RV calcKvcMech(

CK_SESSION_HANDLE hSession,

CK_OBJECT_HANDLE hKey,

CK_MECHANISM_TYPE mt,

unsigned char * kvc,

int kvclen,

int * pkvclen);

Description

Calculate and return an AS2805 KVC for a key. The key must be capable of doing an encryption operation

using the supplied mechanism for this to succeed. Note that mechanism parameters are set to NULL.

NOTE: the CKA_CHECK_VALUE attribute can be used to get the KVC of a key that does not support the

encryption operation.

Parameters

On successful return

kvc — holds the encryption result

*pkvclen — number of bytes copied into kvc

If kvclen is smaller than the encryption result, then only kvclen bytes are copied into kvc.

cDump

Synopsis

int cDump(char * title,unsigned char * buf,unsigned int len);

Description

Dump buf contents in hex via printf.

Parameters

title Heading

buf Bytes to dump

len Number of bytes to dump

hSession Open session handle

hKey Handle to the key to use for the encryption

mt Encryption mechanism to use

kvc Buffer to hold the encryption result

kvclen Total number of bytes referenced by kvc

pkvclen Reference to int to hold number of bytes copied into kvc

ProtectToolkit C Programming Guide

173

CreateDesKey

Synopsis

CK_RV CreateDesKey(

CK_SESSION_HANDLE hSession,

char * txt,

int tok,

int priv,

CK_BYTE * keyValue,

int len,

CK_OBJECT_HANDLE * phKey);

Description

Create a secret key object, and set the key type to CKK_DES, CKK_DES2or CKK_DES3 (based on len).

Parameters

hSession Open session handle

txt Optional label

tok 1 for a Token object, 0 for Session object

priv 1 for private object, 0 for public object

keyValue Key value

len Length of key value

phKey Reference to object handle to hold created key

On successful return

*phKey — handle to newly created key

In addition to the key attributes set via the parameters, the following are set:

CKA_CLASS CKO_SECRET_KEY

CKA_KEY_TYE CKK_DES, CKK_DES2 OR CKK_DES3

CKA_ID “ID”

CKA_DERIVE TRUE

CKA_EXTRACTABLE TRUE

CKA_UNWRAP TRUE

CKA_WRAP FALSE

CreateSecretKey

Synopsis

CK_RV CreateSecretKey(

CK_SESSION_HANDLE hSession,

char * txt,

int tok,

int priv,

CK_KEY_TYPE kt,

CK_BYTE * keyValue,

int len,

CK_OBJECT_HANDLE * phKey);

ProtectToolkit C Programming Guide

174

Description

Create a secret key object.

Parameters

hSession Open session handle

txt Optional label

tok 1 for a Token object, 0 for Session object

priv 1 for private object, 0 for public object

kt Key type

keyValue Key value

len Length of key value

phKey Reference to object handle to hold created key

On successful return

*phKey — handle to newly created key

In addition to the key attributes set via the parameters, the following are set:

CKA_CLASS CKO_SECRET_KEY

CKA_ID “ID”

CKA_DERIVE TRUE

CKA_EXTRACTABLE TRUE

CKA_UNWRAP TRUE

CKA_WRAP FALSE

CT_AttrToString

Synopsis

CK_RV CT_AttrToString(CK_ATTRIBUTE_PTR pAttr,char* pStringVal,CK_SIZE*

pStringValLen);

Description

Get the value of the given attribute as a printable string

Parameters

param pAttr pointer to the attribute whose value is to be stringified

pStringVal location to hold the value as a string (if NULL, the length required to hold the

string is still copied into pStringValLen)

pStringValLen location to store the length of the value as a string (if pStringVal was supplied, this

contains the number of bytes copied into the buffer or, if pStringVal is NULL, this

contains the required size of the buffer to hold the value as a string).

 On successful return

* pStringVal — pointer to the returned string value

* pStringValLen — length of the string

ProtectToolkit C Programming Guide

175

CT_CreateObject

Synopsis

CK_RV CT_CreateObject(

CK_SESSION_HANDLE hSession,

CK_OBJECT_CLASS cl,

char * name,

CK_OBJECT_HANDLE * phObj);

Description

Create a private token object of the specified class with the defined label.

Parameters

hSession Open session on the slot to create the object in

cl Class of the object

name Label of the object

phObj Reference to object handle to hold created object

On successful return

*phObj — handle to the newly created object

CT_CreatePublicObject

Synopsis

CK_RV CT_CreatePublicObject(

CK_SESSION_HANDLE hSession,

CK_OBJECT_CLASS cl,

char * name,

CK_OBJECT_HANDLE * phObj);

Description

Create a public token object of the specified class with the defined label.

Parameters

hSession Open session on the slot to create the object in

cl Class of the object

name Label of the object

phObj Reference to object handle to hold created object

On successful return

*phObj — handle to the newly created object

ProtectToolkit C Programming Guide

176

CT_Create_Set_Attributes_Ticket_Info()

Synopsis

CK_RV CT_Create_Set_Attributes_Ticket_Info(

 /* specify the target */

 CK_MECHANISM_TYPE objectDigestAlg, /* digest alg */

 unsigned char * objectDigest, /* digest of target object */

 unsigned int objectDigestLen,

 /* specify issuer */

 char * issuerRDN, /* may be NULL or

 * DER of DistName or

 * Common Name string or

 * RDN Seq string (CN=Fred+C=USA) */

 unsigned int issuerRDNLen,

 /* ticket details */

 CK_MECHANISM_TYPE signatureAlg, /* signature alg */

 unsigned long sno, /* Attrib Cert serial number */

 char * notBefore, /* YYYYMMDD string */

 char * notAfter, /* YYYYMMDD string */

 /* attributes on key to modify */

 unsigned long * limit, /* NULL if no CKA_USAGE_LIMIT */

 char * start, /* NULL if no CKA_START_DATE */

 char * end, /* NULL if no CKA_END_DATE */

 char * cert, /* NULL if no CKA_ADMIN_CERT */

 unsigned int certLen,

 /* output */

 void * pTicketInfo, /* OUT new unsigned ticket returned here */

 unsigned int* puiTicketLen; /* IN/OUT pTicketInfo buffer length */

);

Description

The function creates an unsigned CKM_SET_ATTRIBUTES ticket.

The function supports length prediction.

See CT_Create_Set_Attributes_Ticket.

CT_Create_Set_Attributes_Ticket()

Synopsis

CK_RV CT_Create_Set_Attributes_Ticket(

void * pTicketInfo, /* IN unsigned ticket */

 unsigned int uiTicketInfoLen; /* IN pTicketInfo buffer length */

 CK_MECHANISM_TYPE signatureAlg, /* signature alg */

 unsigned char * pSignature, /* signature of pTicketData */

 unsigned int uiSigLen; /* IN pSignature buffer length */

 void * pTicketData, /* OUT new unsigned ticket returned here

*/

 unsigned int * puiTicketLen; /* IN/OUT pTicketData buffer length */

);

ProtectToolkit C Programming Guide

177

Description

The function combines the AttributeCertificateInfo DER encoding returned from the

CT_Create_Set_Attributes_Ticket_Info function with a digital signature to form the DER encoded

AttributeCertificate that may be passed to a CT_PresentTicket function using the

CKM_SET_ATTRIBUTES mechanism.

CT_DerEncodeNamedCurve

Synopsis

CK_RV CT_DerEncodeNamedCurve(

CK_BYTE_PTR buf,

CK_SIZE_PTR len,

const char *name);

Description

Helper function to provide the DER encoding of a supported named curve. This function is typically used to

populate the CKA_EC_PARAMS attribute of the template used during EC key pair generation.

Supported curve names are:

Name OID

c2tnb191v1 { iso(1) member-body(2) US(840) x9-62(10045) curves(3)

characteristicTwo(0) c2tnb191v1(5) }

P-192 (also known as

“prime192v1 ” “secp192r1”)

{ iso(1) member-body(2) US(840) x9-62(10045) curves(3) prime(1)

prime192v1(1) }

P-224 (also known as

“secp224r1”)

{ iso(1) identified-organization(3) Certicom(132)

certicom_ellipticCurve(0) secp224r1(33) }

P-256 (also known as

(“prime256v1 ” “secp256r1”)

{ iso(1) member-body(2) US(840) x9-62(10045) curves(3) prime(1)

prime256v1(7) }

P-384 (also known as

“secp384r1”)

{ iso(1) identified-organization(3) Certicom(132)

certicom_ellipticCurve(0) secp384r1(34) }

P-521 (also known as

“secp521r1”)

{ iso(1) identified-organization(3) Certicom(132)

certicom_ellipticCurve(0) secp521r1(35) }

c2tnb191v1e (Non FIPS

curve)

{ iso(1) member-body(2) US(840) x9-62(10045) curves(3)

characteristicTwo(0) c2tnb191v1e (15) }

Parameters

buf Buffer to hold the DER encoding

len *len is total number of bytes referenced by buf

name String name of the curve to get the encoding for

On successful return

buf — contains a string.

Example: “hh:mm:ss DD/MM/YYYY“ *len Number of bytes copied to buf

To determine the encoding length, pass in NULL for buf and check the resulting value of *len.

ProtectToolkit C Programming Guide

178

CT_GetAuthChallenge

Synopsis

CK_DEFINE_FUNCTION(CK_RV, CT_GetAuthChallenge)(

 CK_SESSION_HANDLE hSession,

 CK_BYTE_PTR pChallenge,

 CK_ULONG_PTR pulChallengeLen

);

Description

This function is a PTK C extension to PKCS#11provided with the PTK C SDK as a host side library

function.

The function requests the HSM to generate a random 16 byte challenge value and to return the challenge to

the calling application. The function uses the CKH_VD_USER object to fetch the Challenge.

The Application can use authentication data (pin) to create a Response from the challenge. See description of

CT_Gen_AUTH_ResponseError! Reference source not found. for more details.

The Response can be used with the C_Login function to authenticate the user to the Token. See description

of C_Login for more details.

CT_GetObjectDigest

Synopsis

CK_RV CT_GetObjectDigest(

 CK_SESSION_HANDLE hSession, /* IN */

 CK_OBJECT_HANDLE hObject, /* IN */

 CK_MECHANISM_PTR pDigestMech,/* IN */

 CK_BYTE_PTR * ppDigest, /* OUT returned buffer must be freed */

 CK_ULONG * pulDigest /* OUT length of returned buffer */

);

Description

Compute the object digest as used by SET Attributes Ticket to identify the target object.

CT_GetECCDomainParameters
#include “ctutil.h”

 Windows UNIX

Library ctutil.lib Libctutil.a

CK_RV CT_GetECCDomainParameters(

CK_SESSION_HANDLE hSession,

CK_ATTRIBUTE_PTR attr,

const char *name)

ProtectToolkit C Programming Guide

179

Description

This function returns the DER encoded Domain Parameters for a curve specified by name.

First the CT_DerEncodeNamedCurve function is used to see if the curve is known to the HSM. If not, then

this function looks up the appropriate Domain Parameter object in the token indicated by hSession.

Parameters

param hSession Session where Domain Parameter object can be found

param attr ptr to attribute structure to hold encoding of domain parameters (length

prediction supported)

param name Label of Domain Parameter object or known named curve

return Cryptoki error returned, CKR_OK if successful

CT_GetObjectDigestFromParts

Synopsis

CK_RV CT_GetObjectDigestFromParts(

 CK_SESSION_HANDLE hSession, /* IN */

 CK_MECHANISM_PTR pDigestMech,/* IN */

 char * tokenSerialNumber, /* IN */

 char * tokenLabel, /* IN */

 char * objLabel, /* IN */

 CK_BYTE_PTR objID, /* IN */

 CK_ULONG objIDlen, /* IN */

 CK_BYTE_PTR * ppDigest, /* OUT returned buffer

(must be freed by caller) */

 CK_ULONG * pulDigest /* OUT length of returned buffer */

);

Description

Compute the object digest as used by SET Attributes Ticket to identify the target object by using parts.

See also CT_GetObjectDigest.

CT_GetTmpPin

Synopsis

CK_DEFINE_FUNCTION(CK_RV, CT_GetTmpPin)(

 CK_SESSION_HANDLE hSession,

 CK_BYTE_PTR pPin,

 CK_ULONG_PTR pulPinLen

);

ProtectToolkit C Programming Guide

180

Description

This function is a PTK C extension to PKCS#11provided with the PTK C SDK as a host side library

function.

The function requests the HSM to generate a random Temporary Pin value and to return the pin to the

calling application. The function uses the CKH_VD_USER object to fetch the Pin.

A User or SO must be already logged on or this function will fail with error

CKR_USER_NOT_LOGGED_ON.

The Application can pass this Temporary Pin to another process which can then use it to authenticate to the

HSM (as the same user type only).

The Temporary Pin can be passed to the C_Login function to authenticate the user to the Token. See

description of C_Login for more details.

CT_ErrorString

Synopsis

CK_RV C_ErrorString(

CK_RV ret,

char * errstr,

unsigned int len);

Description

Get a printable string representation of a Cryptoki error code.

Parameters

ret Cryptoki error code

errstr buffer to hold the printable string

len number of characters referenced by errstr

On successful return

errstr — contains the printable string, or as much as will fit

CT_GetECKeySize

Synopsis

CK_RV CT_GetECKeySize(const CK_ATTRIBUTE_PTR ecParam,CK_SIZE_PTR size);

Description

Helper function to return key size (in bits) for a given EC parameter

Parameters

ecParam handle that points to EC parameter

size returned key size

On successful return

size — pointer to the value of key size

ProtectToolkit C Programming Guide

181

CT_MakeObjectNonModifiable

Synopsis

CK_RV CT_MakeObjectNonModifiable(

 CK_SESSION_HANDLE hSession, /* IN */

 CK_OBJECT_HANDLE hObj, /* IN */

 CK_OBJECT_HANDLE *phObj /* OUT (may be NULL) */

);

Description

Change an object CKA_MODIFIABLE attribute from true to False.

This involves copying the object - so the handle of the object will change.

The original object is deleted.

CT_OpenObject

Synopsis

CK_RV CT_OpenObject(

CK_SESSION_HANDLE hSession,

CK_OBJECT_CLASS cl,

char * name,

CK_OBJECT_HANDLE * phObj);

Description

Get a handle to an object with the specified class and label. This function returns the first object satisfying

the criteria.

Parameters

hSession open session on the slot containing the object

cl class of the object

name label of the object

phObj reference to object handle to hold opened object

On successful return

*phObj — handle to the opened object

CT_ReadObject

Synopsis

CK_RV CT_ReadObject(

CK_SESSION_HANDLE hSession,

CK_OBJECT_HANDLE hObj,

unsigned char * buf,

unsigned int len,

unsigned int * pbr);

Description

Get the value of an object.

ProtectToolkit C Programming Guide

182

Parameters

hSession open session on the slot containing the object

hObj object whose value is to be returned

buf buffer to hold the object value

len total number of bytes referenced by buf

pbr reference to int to hold number of bytes copied into buf

On successful return

buf — contains the object value

*pbr — number of bytes copied into buf

If buf is too small to hold the attribute value (that is, len is < attribute value length), then

CKR_ATTRIBUTE_TYPE_INVALID is returned.

To determine the attribute value length, pass in 0 for len, and check the resulting value of *pbr.

CT_RenameObject

Synopsis

CK_RV CT_RenameObject(

CK_SESSION_HANDLE hSession,

CK_OBJECT_CLASS cl,

char * oldName,

char * newName);

Description

Change the label of the object with the specified class and label.

Parameters

hSession open session on the slot containing the object

cl class of the object

oldName current label of the object

newName new label for the object

CT_SetCKDateStrFromTime

Synopsis

void CT_SetCKDateStrFromTime(

 char pd[9], /* OUT - pointer to a buffer at least 9 bytes*/

 time_t *t); /* IN - time value to convert */

Description

convert time_t structure to the DATE format used by CT_SetLimitsAttributes and

CT_Create_Set_Attributes_Ticket_Info

ProtectToolkit C Programming Guide

183

CT_Structure_To_Armor

Synopsis

CK_RV CT_Structure_To_Armor(

 char * pLabel, /* IN Armor label (string) */

 char * pComment, /* optional comment string */

 CK_VOID_PTR pData, /* IN data to armor */

 CK_ULONG ulDataLen /* IN length of data */

 CK_BYTE_PTR * pArmor, /* OUT Armored structure created

(free after use) */

 CK_ULONG_PTR pulArmorLen /* IN/OUT pArmor buffer length */

);

Description

Armoring is the term used in PGP and MIME to describe the formatting of binary data such that it can be

unambiguously embedded in a printable document such as an email.

The Base 64 encoding method is used to make binary data printable and the encoding is clearly marked with

BEGIN and END statements.

The function formats an arbitary structure – such as a ticket - into an Armored (printable format).

The result is returned as a buffer that the caller must free after use.

Example:

If Armoring the binary data 01h 23h 45h 67h 89h abh cdh efh with the label “SETATTRIBUTE TICKET”

and the comment “This is a trial certificate\n”.

You get:

This is a trial certificate

-----BEGIN SETATTRIBUTE TICKET-----

ASNFZ4mrze8=

-----END SETATTRIBUTE TICKET-----

CT_Structure_From_Armor

Synopsis

CK_RV CT_Structure_From_Armor (

 Char * pLabel, /* IN Armor label (string) */

 CK_BYTE_PTR pArmor, /* IN Armored structure */

 CK_ULONG ulArmorLen /* IN pArmor buffer length */

 CK_VOID_PTR * pData, /* OUT extracted structure */

 CK_ULONG_PTR pulDataLen /* OUT *pData buffer length */

);

ProtectToolkit C Programming Guide

184

Description

Armoring is the term used in PGP and MIME to describe the formatting of binary data such that it can be

unambiguously embedded in a printable document such as an email.

The function extracts a data structure from an Armored (printable format) buffer.

The result is returned as a buffer that the caller must free after use.

CT_SetLimitsAttributes

Synopsis

CK_RV CT_SetLimitsAttributes(

 CK_SESSION_HANDLE hSession, /* IN */

 CK_OBJECT_HANDLE hObj, /* IN */

 CK_VOID_PTR pCertData, /* IN - optional CKA_ADMIN_CERT value */

 CK_ULONG ulCertDataLen, /* IN - length of pCertData */

 CK_ULONG * usage_limit, /* IN - optional CKA_USAGE_LIMIT */

 CK_ULONG * usage_count, /* IN - optional CKA_USAGE_COUNT */

 char * start_date, /* IN - optional CKA_START_DATE */

 char * end_date /* IN - optional CKA_END_DATE */

);

Description

Apply limit attributes to an object. The optional inputs maybe set to NULL to indicte that that Attributes

should not be set.

NOTE: Object should have CKA_MODIFIABLE-false for this function to work.

CT_WriteObject

Synopsis

CK_RV CT_WriteObject(

CK_SESSION_HANDLE hSession,

CK_OBJECT_HANDLE hObj,

const unsigned char * buf,

unsigned int len,

unsigned int * pbr);

Description

Set the value of an object.

Parameters

hSession Open session on the slot containing the object

hObj Object whose value is to be set

buf Value of the object to set

len :ength of buf

pbr Reference to int to hold number of bytes copied from buf

On successful return

*pbr — set to equal len

ProtectToolkit C Programming Guide

185

DateConvertGmtToLocal

Synopsis

DateConvertGmtToLocal(char * fmt,const char * ts);

Description

Converts a GMT date string of the format YYYYMMDDhhmmssxx into the Local Time format

"DD/MM/YYYY hh:mm:ss (TimeZone)".

Parameters

fmt pointer to the buffer that holds the converted value

ts GMT date string

On Successful Return

*fmt — pointer to the buffer that holds the converted value

DateConvert

Synopsis

void DateConvert(

char * fmt,

const char * ts);

Description

Convert “YYYYMMDDhhmmss00” to “hh:mm:ss DD/MM/YYYY“.

Parameters

fmt Destination string

ts Source string

On Successful Return

fmt — contains a string like “hh:mm:ss DD/MM/YYYY“

DumpAttributes

Synopsis

void DumpAttributes(CK_ATTRIBUTE * na,CK_COUNT attrCount);

Description

Dumps attribute details via logtrace.

Parameters

na Array of attributes to dump

attrCount Number of attributes in na

ProtectToolkit C Programming Guide

186

DumpDHKeyPair

Synopsis

CK_RV DumpDHKeyPair(

int cStyle,

CK_SESSION_HANDLE hSession,

CK_OBJECT_HANDLE hPub,

CK_OBJECT_HANDLE hPri);

Description

Dump DH key pair details via printf.

Parameters

cStyle 1 for a form which can be included in C code, 0 for standard dump

hSession Open session handle

hPub Handle to public key

hPri Handle to private key

DumpDSAKeyPair

Synopsis

CK_RV DumpDSAKeyPair(

int cStyle,

CK_SESSION_HANDLE hSession,

CK_OBJECT_HANDLE hPub,

CK_OBJECT_HANDLE hPri);

Description

Dump DSA key pair details via printf.

Parameters

cStyle 1 for a form which can be included in C code, 0 for standard dump

hSession Open session handle

hPub Handle to public key

hPri Handle to private key

DumpRSAKeyPair

Synopsis

CK_RV DumpRSAKeyPair(

int cStyle,

CK_SESSION_HANDLE hSession,

CK_OBJECT_HANDLE hPub,

CK_OBJECT_HANDLE hPri);

ProtectToolkit C Programming Guide

187

Description

Dump RSA key pair details via printf.

Parameters

cStyle 1 for a form which can be included in C code, 0 for standard dump

hSession Open session handle

hPub Handle to public key

hPri Handle to private key

FindAttribute

Synopsis

CK_ATTRIBUTE * FindAttribute(

CK_ATTRIBUTE_TYPE attrType,

const CK_ATTRIBUTE * attr,

CK_COUNT attrCount);

Description

Find the first attribute of the specified type in an attribute template.

Parameters

attrType Type of the attribute to locate

attr Attribute temple (that is, array of CK_ATTRIBUTE)

attrCount Number of attributes referenced by attr

On Successful Return

Return a pointer to the attribute of the specified type.

FindKeyFromName

Synopsis

CK_RV FindKeyFromName(

const char * keyName,

CK_OBJECT_CLASS cl,

CK_SLOT_ID * phSlot,

CK_SESSION_HANDLE * phSession,

CK_OBJECT_HANDLE * phKey);

Description

Find the key with a given class and label within the specified token, and open a session to this token.

ProtectToolkit C Programming Guide

188

Parameter

keyName String identifying the key to locate format "token(pin)/key" or "token/key"

token name of the Token containing the key pin optional user pin key label of

the key in the Token

cl Class of the object

phSlot Reference to slot id to hold located slot id

phSession Reference to session handle to hold opened session

phKey Reference to object handle to hold located key handle

On Successful Return

*phSlot — slot holding the key

*phSession — open session handle

*phKey — handle to the key object

FindTokenFromName

Synopsis

CK_RV FindTokenFromName(

char * label,

CK_SLOT_ID * pslotID);

Description

Find a token with the specified label and return the corresponding slot id.

Parameters

label String identifying Token to find

pslotID Reference to slot id to hold located slot id

On Successful Return

*pslotID — slot which contains the Token

GenerateDhKeyPair

Synopsis

CK_RV GenerateDhKeyPair(

CK_SESSION_HANDLE hSession,

char * txt,

int ftok,

int priv,

int param,

CK_SIZE valueBits,

CK_OBJECT_HANDLE * phPublicKey,

CK_OBJECT_HANDLE * phPrivateKey);

ProtectToolkit C Programming Guide

189

Description

Generate a DH key pair.

Parameters

On Successful Return

*phPublicKey — handle to newly created public key

*phPrivateKey — handle to newly created private key

In addition to the Public key attributes set via the parameters, the following are set:

CKA_CLASS CKO_PUBLIC_KEY

CKA_KEY_TYPE CKK_DH

CKA_VERIFY TRUE

CKA_EXTRACTABLE TRUE

In addition to the Private key attributes set via the parameters, the following are set:

CKA_CLASS CKO_PRIVATE_KEY

CKA_KEY_TYPE CKK_DH

CKA_SUBJECT_STR “SUBJECT”

CKA_ID 123

CKA_SENSITIVE TRUE

CKA_SIGN TRUE

CKA_EXTRACTABLE TRUE

GenerateDsaKeyPair

Synopsis

CK_RV GenerateDsaKeyPair(

CK_SESSION_HANDLE hSession,

char * txt,

int ftok,

int priv,

int param,

CK_SIZE valueBits,

CK_OBJECT_HANDLE * phPublicKey,

CK_OBJECT_HANDLE * phPrivateKey);

Description

Generate DSA key pair.

hSession Open session handle

txt Optional label

ftok 1 for a Token object, 0 for Session object

priv 1 for private object, 0 for public object

param Not used

valueBits Number of prime bits

phPublicKey Reference to object handle to hold created public key

phPrivateKey Reference to object handle to hold created private key

ProtectToolkit C Programming Guide

190

Parameters

On Successful Return

*phPublicKey — handle to newly created public key

*phPrivateKey — handle to newly created private key

In addition to the Public key attributes set via the parameters, the following are set:

CKA_CLASS CKO_PUBLIC_KEY

CKA_KEY_TYPE CKK_DSA

CKA_VERIFY TRUE

CKA_EXTRACTABLE TRUE

In addition to the Private key attributes set via the parameters, the following are set:

CKA_CLASS CKO_PRIVATE_KEY

CKA_KEY_TYPE CKK_DSA

CKA_SUBJECT_STR “SUBJECT”

CKA_ID 123

CKA_SENSITIVE TRUE

CKA_SIGN TRUE

CKA_EXTRACTABLE TRUE

The default values for the DSA parameters are:

512 P = fca682ce8e12caba26efccf7110e526db078b05edecbcd1eb4a208f3ae1617ae01f35b91a47e6df6

3413c5e12ed0899bcd132acd50d99151bdc43ee737592e17

512 Q = 962eddcc369cba8ebb260ee6b6a126d9346e38c5

512 G = 678471b27a9cf44ee91a49c5147db1a9aaf244f05a434d6486931d2d14271b9e35030b71fd73da

179069b32e2935630e1c2062354d0da20a6c416e50be794ca4

1024 P = e2662c8df32db56309ccb7f8f419e73263c55c1a89954fa68d85d8b09c720618532bd05dc0994b

e245526367b08888f4ef07bb0977ac6aa3c4653f6d70151027fb73a9d7f99e63a63ea5c89de1b1

5b35ecc0beae18a89ee4aac0f75b2c364026c3b6ef8ad13cdd6886d93f9b86c71cb2537b449643

4412033ab3002de749d963

1024 Q = fd5274d166045c96e5f180ab181ccde55804a9c7

1024 G = 0c8392be4b9c222526fc2160864b117b7c8d9e3bec9faa1f7e4d8cfcecbfbf521a0aca11620aaaf0

f847068e8f6c936438bd482cd2d6ee2bbac519b63f5809c412dbd39664fa4e05567fc9bf01f83e3

f816aa945304f31e832a243e138b7b776bb519411d5669b4c6e38c840c2b9ae195f84f04b8b508

7271613c12d938720cc

hSession Open session handle

txt Optional label

ftok 1 for a Token object, 0 for Session object

priv 1 for private object, 0 for public object

param 1 to generate new DSA parameters, 0 to use defaults (see below)

valueBits Number of bits in Prime

phPublicKey Reference to object handle to hold created public key

phPrivateKey Reference to object handle to hold created private key

ProtectToolkit C Programming Guide

191

GenerateRsaKeyPair

Synopsis

CK_RV GenerateRsaKeyPair(

CK_SESSION_HANDLE hSession,

char * txt,

int ftok,

int priv,

CK_SIZE modulusBits,

int expType,

CK_OBJECT_HANDLE * phPublicKey,

CK_OBJECT_HANDLE * phPrivateKey);

Description

Generate an RSA key pair.

Parameters

On Successful Return

*phPublicKey — handle to newly created public key

*phPrivateKey — handle to newly created private key

In addition to the Public key attributes set via the parameters, the following are set:

CKA_CLASS CKO_PUBLIC_KEY

CKA_KEY_TYPE CKK_RSA

CKA_SUBJECT_STR “SUBJECT”

CKA_ENCRYPT TRUE

CKA_VERIFY TRUE

CKA_WRAP FALSE

CKA_EXTRACTABLE TRUE

In addition to the Private key attributes set via the parameters, the following are set:

CKA_CLASS CKO_PRIVATE_KEY CKA_KEY_TYPE CKK_RSA CKA_SUBJECT_STR “SUBJECT”

CKA_ID 123 CKA_SENSITIVE TRUE CKA_DECRYPT TRUE CKA_SIGN TRUE CKA_UNWRAP

FALSE CKA_EXTRACTABLE TRUE

hSession Open session handle

txt Optional label

ftok 1 for a Token object, 0 for Session object

priv 1 for private object, 0 for public object

modulusBits Size of modulus to generate

expType 0 for random exponent, 1 for Fermat 4 exponent (\x00010001), 2 for smallest

valid exponent (3)

phPublicKey Reference to object handle to hold created public key

phPrivateKey Reference to object handle to hold created private key

ProtectToolkit C Programming Guide

192

GetAttr

Synopsis

CK_RV GetAttr(

CK_SESSION_HANDLE hSession,

CK_OBJECT_HANDLE obj,

CK_ATTRIBUTE_TYPE type,

CK_VOID_PTR buf,

CK_SIZE len,

CK_SIZE_PTR size);

Description

Get a single attribute of an object.

Parameters

On Successful Return

buf — contains the attribute value

*size — number of bytes copied to buf

If buf is too small to hold the attribute value (that is, len is < attribute value length), then

CKR_ATTRIBUTE_TYPE_INVALIDis returned.

To determine the attribute value length, pass in 0 for len, and check the resulting value of *size.

GetDeviceError

Synopsis

CK_RV GetDeviceError(CK_SLOT_ID slotID,CK_NUMERIC *pDeviceError);

Description

Returns the device-error value for a given slot ID

Parameters

On Successful Return

*pDeviceError — returned error code

hSession Open session on the slot containing the object

obj Object whose attribute is to be retrieved

type Attribute to retrieve

buf Buffer to hold the attribute value

len Total number of bytes referenced by buf

size Reference to CK_SIZE to hold the number of bytes copied into buf

slotID Slot to be queried

pDeviceError Error code

ProtectToolkit C Programming Guide

193

GetObjectCount

Synopsis

CK_RV GetObjectCount(

CK_SLOT_ID slotID,

unsigned int * pCount);

Description

Determine the number of objects on a token.

Parameters

On Successful Return

*pCount — number of objects

GetSecurityMode

Synopsis

CK_RV GetSecurityMode(CK_SLOT_ID inputSlotId,

CK_SLOT_ID* pAdminSlotId,

CK_FLAGS* pSecMode);

Description

Get the security mode for the slot id given by inputSlotID.

Parameters

On Successful Return

* pStringVal — pointer to the returned string value

* pStringValLen — length of the string

slotID Slot ID containing objects to count

pCount Reference to int to hold number of objects

inputSlotId Slot ID to retrieve the security flags from

pAdminSlotId Location to store the ID of the Admin Slot; Optional - ignored if NULL

pSecMode Location to store the security mode

ProtectToolkit C Programming Guide

194

GetSessionCount

Synopsis

CK_RV GetSessionCount(

CK_SLOT_ID slotID,

unsigned int * pSessionCount,

unsigned int *prwSessionCount);

Description

Determine the number of sessions on a token

Parameters

On Successful Return

*pSessionCount — number of open session

*prwSessionCount — number of open RW session

GetTotalSessionCount

Synopsis

CK_RV GetTotalSessionCount(

unsigned int *pSessionCount);

Description

Determine the total number of sessions open on all tokens on all adapters.

Parameters

On Successful Return

*pSessionCount — total number of open sessions

slotID Slot ID containing objects to coun

pSessionCount Reference to int to hold the number of open session

prwSessionCount Reference to int to hold the number of open RW session

pSessionCount Reference to int to hold the number of open session

ProtectToolkit C Programming Guide

195

rmTrailSpace

Synopsis

void rmTrailSpace(

char * txt,

int len);

Description

Remove trailing spaces from a string.

Parameters

On Successful Return

txt — string no longer has trailing spaces

SetAttr

Synopsis

CK_RV SetAttr(

CK_SESSION_HANDLE hSession,

CK_OBJECT_HANDLE obj,

CK_ATTRIBUTE_TYPE type,

const CK_VOID_PTR buf,

CK_SIZE len);

Description

Set a single attribute of an object.

Parameters

txt String to process

len Length of the string

hSession Open session on the slot containing the object

obj Object whose attribute is to be retrieved

type Attribute to retrieve

buf Contains the attribute value to set

len Number of bytes referenced by buf

ProtectToolkit C Programming Guide

196

ShowSlot

Synopsis

CK_RV ShowSlot(

CK_SLOT_ID slotID,

int verbose);

Description

Dump slot details via printf.

Parameters

ShowToken

Synopsis

CK_RV ShowToken(

CK_SLOT_ID slotID,

int verbose);

Description

Dump token details via printf.

Parameters

strAttribute

Synopsis

char * strAttribute(

CK_NUMERIC val);

Description

Given the numeric value of an attribute, return the string name.

Parameters

slotID Slot to dump

verbose 0 for description and manufacturer, 1 for more details

slotID Slot containing Token to dump

verbose 0 for brief details, 1 for more details

val Numeric value of an attribute

ProtectToolkit C Programming Guide

197

strError

Synopsis

char * strError(

CK_NUMERIC val);

Description

Given the numeric value of an error, return the string name.

Parameters

strKeyType

Synopsis

char * strKeyType(

CK_NUMERIC val);

Description

Given the numeric value of a key type, return the string name.

Parameters

strMechanism

Synopsis

char * strMechanism(

CK_NUMERIC val);

Description

Given the numeric value of a mechanism, return the string name.

Parameters

val Numeric value of an error

val Numeric value of a key type

val Numeric value of a mechanism

ProtectToolkit C Programming Guide

198

strObjClass

Synopsis

char * strObjClass(

CK_NUMERIC val);

Description

Given the numeric value of an object class, return the string name.

Parameters

strSesState

Synopsis

char * strSesState(

CK_NUMERIC val);

Description

Given the numeric value of a session state, return the string name.

Parameters

TransferObject

Synopsis

CK_RV TransferObject(

CK_SESSION_HANDLE sTo,

CK_SESSION_HANDLE sFrom,

CK_OBJECT_HANDLE hObj,

CK_OBJECT_HANDLE * phObj,

CK_ATTRIBUTE_PTR pTemplate,

CK_COUNT ulCount);

Description

Copies an object from one Token to another.

Parameters

val Numeric value of an object class

val Numeric value of a session state

sTo Open session handle on destination Token

sFrom Open session handle on source Token

hObj Handle to object to transfer

phObj Reference to handle to hold new object

pTemplate Specifies new values for some attributes of the new object

ulCount Number of attributes in pTemplate

ProtectToolkit C Programming Guide

199

On Successful Return

*phObj — handle to newly copied object

pTemplate — can only overwrite attributes which are ordinarily writeable.

This function tries the following methods to copy the object, in order:

 Using the CKM_ENCODE_ATTRIBUTES vendor defined key wrapping mechanism to transfer keys.

 Reading all the attributes of the existing object and creating a new object with them.

 valAttribute

Synopsis

CK_NUMERIC valAttribute(

const char * txt);

Description

Given the string name of an attribute, return the numeric value.

Parameters

valError

Synopsis

CK_NUMERIC valError(

const char * txt);

Description

Given the string name of an error, return the numeric value.

Parameters

valKeyType

Synopsis

CK_NUMERIC valKeyType(

const char * txt);

Description

Given the string name of a key type, return the numeric value.

Parameters

txt String name of an attribute

txt String name of an error

txt String name of a key type

ProtectToolkit C Programming Guide

200

valMechanism

Synopsis

CK_NUMERIC valMechanism(

const char * txt);

Description

Given the string name of a mechanism, return the numeric value.

Parameters

valObjClass

Synopsis

CK_NUMERIC valObjClass(

const char * txt);

Description

Given the string name of an object class, return the numeric value.

Parameters

 valSesState

Synopsis

CK_NUMERIC valSesState(

const char * txt);

Description

Given the string name of a session state, return the numeric value.

Parameters

txt String name of a mechanism

txt String name of the object class

txt String name of a session state

ProtectToolkit C Programming Guide

201

C H A P T E R 1 2

CTEXTRA.H LIBRARY REFERENCE

Overview
The ProtectToolkit C Software Development Kit offers a number of extended API libraries with

functionality that is extended to that of the standard PKCS#11 function set.

The following additional features do not form part of the standard PKCS#11 functionality, but are provided

by SafeNet as part of the ProtectToolkit C API within the CTEXTRA.H library.

AddAttributeSets

Synopsis

CK_RV AddAttributeSets(TOK_ATTR_DATA ** pSum,const TOK_ATTR_DATA *

base,const TOK_ATTR_DATA * user);

Description

Add two attribute sets being careful to drop duplicates. The 'base' attributes will override 'user' attributes

where duplicates are concerned. Resulting set is located in *pSum.

Parameters

On Successful Return

*pSum—reference to a newly allocated attribute set resulting from the addition. This memory needs to be

released via a call to FreeAttributeSet.

at_assign

Synopsis

CK_RV at_assign(

CK_ATTRIBUTE * tgtNa,

const CK_ATTRIBUTE * srcNa);

Description

Assign one attribute value to another. Attribute types and lengths have to match up.

Parameters

To determine the length of tgtNa->pValue required, set tgtNa->pValue to NULL and check tgtNa->valueLen

after invocation.

pSum Reference to addition of base and user sets

base Attribute set to add to user set

user Attribute set to add to base set

tgtNa Target attribute

srcNa Source attribute

ProtectToolkit C Programming Guide

202

ConcatAttributeSets

Synopsis

CK_RV ConcatAttributeSets(

TOK_ATTR_DATA * base,

const TOK_ATTR_DATA * user);

Description

Append attributes from the user set to the base set. The 'base' attributes will override 'user' attributes where

duplicates are concerned.

Parameters

CopyAttribute

Synopsis

CK_ATTRIBUTE * CopyAttribute(

CK_ATTRIBUTE_TYPE at,

TOK_ATTR_DATA * tgt,

const TOK_ATTR_DATA * src);

Description

Make a copy of an attribute from one attribute set to another. Only copy it if it is in 'src'. Overwrite it if it is

in 'tgt'. Returns reference to the copied attribute in tgt attribute set.

Parameters

On Successful Return

tgt — contains value of the specified attribute from src

DupAttributes

Synopsis

TOK_ATTR_DATA * DupAttributes(

const CK_ATTRIBUTE * attr,

CK_COUNT attrCount);

Description

Make a copy of an array of attributes. The returned attribute set is newly allocated. This memory needs to

be released via a call to FreeAttributeSet.

base Reference to attribute set to append to

user Reference to attribute set to append

at Attribute to copy

tgt Target attribute set

src Source attribute set

ProtectToolkit C Programming Guide

203

Parameters

DupAttributeSet

Synopsis

TOK_ATTR_DATA * DupAttributeSet(

const TOK_ATTR_DATA * attrData);

Description

Make a copy of an attribute set. The returned attribute set is newly allocated. This memory needs to be

released via a call to FreeAttributeSet.

Parameters

ExtractAllAttributes

Synopsis

CK_RV ExtractAllAttributes(

CK_SESSION_HANDLE hSession,

CK_OBJECT_HANDLE hobj,

TOK_ATTR_DATA ** pna);

Description

Extract all non-sensitive valid attributes of an object.

Parameters

On Successful Return

*pna — newly allocated attribute set of extracted attributes; this memory needs to be freed (see

FreeAttributeSet)

FindAttr

Synopsis

CK_ATTRIBUTE * FindAttr(CK_ATTRIBUTE_TYPE attrType,const TOK_ATTR_DATA *

attrData);

Description

Find the first attribute of the specified type in an attribute set.

attr Attribute array to duplicate

attrCount Number of attributes in attr

attrData Attribute set to duplicate

hSession Open session handle

hObj Object to extract from

pna Reference to a reference to extracted attribute set

ProtectToolkit C Programming Guide

204

Parameters

On Successful Return

Return a pointer to the attribute of the specified type.

FreeAttributes

Synopsis

void FreeAttributes(

CK_ATTRIBUTE_PTR attr,

CK_COUNT attrCount);

Description

Free all attributes contained in the attribute array, then free the array itself. This function also explicitly

writes 0xaa to the memory to be freed before freeing.

Parameters

FreeAttributesNoClear

Synopsis

void FreeAttributesNoClear(

CK_ATTRIBUTE_PTR attr,

CK_COUNT attrCount);

Description

Free all attributes contained in the attribute array, then free the array itself. This function does not explicitly

write 0xaa to the memory to be freed before freeing.

Parameters

FreeAttributeSet

Synopsis

void FreeAttributeSet(

TOK_ATTR_DATA * attr);

Description

Free all of the attributes contained in the attribute set, and then free the set itself. This function also

explicitly writes 0xaa to the memory to be freed before freeing.

attrType Type of attribute to locate

attrData Attribute set

attr Attribute array to free

attrCount Number of attributes in the array

attr Attribute array to free

attrCount Number of attributes in the array

ProtectToolkit C Programming Guide

205

Parameters

FreeMechData

Synopsis

void FreeMechData(

TOK_MECH_DATA * pMech);

Description

Free dynamic memory of pMech, including pMech itself.

Parameters

genkMechanismTabFromMechanismTab

Synopsis

CK_MECHANISM_TYPE * genkMechanismTabFromMechanismTab(TOK_MECH_DATA *

mTab,unsigned int * len);

Description

Creates a key generation mechanism table for the list of mechanisms supplied in mTab

Parameters

genkpMechanismTabFromMechanismTab

Synopsis

CK_MECHANISM_TYPE * genkpMechanismTabFromMechanismTab(TOK_MECH_DATA *

mTab,unsigned int * len);

Description

Creates a key pair generation mechanism table for the list of mechanisms supplied in mTab.

Parameters

attr Reference to the attribute set to free

pMech Mechanism list to free

mTab Number of mechanisms to look up

len Number of returned mechanisms

mTab List of mechanisms to look up

len Number of returned mechanisms

ProtectToolkit C Programming Guide

206

GetCryptokiVersion

Synopsis

CK_VOID GetCryptokiVersion(CK_VERSION_PTR pVer);

Description

Returns the Cryptoki version information.

Parameters

On Successful Return

pVer — pointer to a value which holds Cryptoki version

GetObjAttrInfo

Synopsis

CK_RV GetObjAttrInfo(CK_SESSION_HANDLE hSession,

CK_OBJECT_HANDLE hObj,

CK_ATTRIBUTE_PTR* ppAttributes,

CK_ULONG_PTR pAttrCount);

Description

Get the list of attributes (type and size) of the specified object.

This function relies on the SafeNet extension CKA_ENUM_ATTRIBUTES to retrieve the list of attributes.

Only the attribute type and size are returned. Attribute values must be retrieved by the caller as required.

Parameters

On Successful Return

*ppAttributes — handle that points to the returned attributes

pAttrCount — number of returned attributes

pVer Returned Cryptoki version

hSession Handle to a valid session

hObj Handle to the object to operate on

ppAttributes Location to receive the attribute array (on return, *ppAttributes references an

array of CK_ATTRIBUTE - the caller must free the memory allocated at

*ppAttributes).

pAttrCount Location to hold the number of CK_ATTRIBUTE entries (on return,

*pAttrCount is the number of CK_ATTRIBUTE entries referenced by

*ppAttributes).

ProtectToolkit C Programming Guide

207

GetObjectClassAndKeyType

Synopsis

CK_RV GetObjectClassAndKeyType(

const TOK_ATTR_DATA * attr,

CK_OBJECT_CLASS * at_class,

CK_KEY_TYPE * kt);

Description

Extract the object class and key type from an attribute set.

Parameters

On Successful Return

at_class — references located object class

kt — references located key type

hashMech

Synopsis

CK_MECHANISM_TYPE * hashMech(

unsigned int * len);

Description

Return an array of all related mechanisms.

Parameters

intAttr

Synopsis

unsigned int intAttr(

const CK_ATTRIBUTE * at);

Description

Return the value of the attribute as an int.

Parameters

attr Attribute set to extract from

at_class Reference to object class to hold resulting value

kt Reference to key type to hold resulting value

len Reference to int to hold the number of items returned

at Reference to attribute whose value is to be returned

ProtectToolkit C Programming Guide

208

intAttrLookup

Synopsis

unsigned int intAttrLookup(CK_ATTRIBUTE_TYPE atype,const CK_ATTRIBUTE *

attr,CK_COUNT attrCount);

Description

Extract an int attribute from an attribute template.

Parameters

isBooleanAttr

Synopsis

int isBooleanAttr(const CK_ATTRIBUTE * na);

Description

Return TRUE if an attribute is a Boolean.

Parameters

isEnumeratedAttr

Synopsis

int isEnumeratedAttr(

const CK_ATTRIBUTE * na);

Description

Return TRUE if attribute is enumerated and can have Vendor defined values.

Parameters

isGenMech

Synopsis

int isGenMech(

CK_MECHANISM_TYPE mechType);

Description

Return TRUE if mechType is a key or key pair generation mechanism.

atype Type of attribute to extract attr array of attributes to search attrCount number

of attributes in attr array

na Reference to attribute to check

na Reference to attribute to check

ProtectToolkit C Programming Guide

209

Parameters

kgMech

Synopsis

CK_MECHANISM_TYPE * kgMech(

unsigned int * len);

Description

Return an array of all key generation related mechanisms.

Parameters

isNumericAttr

Synopsis

int isNumericAttr(const CK_ATTRIBUTE * na);

Description

Return TRUE if an attribute is a numeric.

Parameters

isSensitiveAttr

Synopsis

int isSensitiveAttr(

const struct TOK_ATTR_DATA * attrData,

const CK_ATTRIBUTE * na);

Description

Report TRUE for potentially sensitive attributes, as per the PKCS#11 spec. Note that the object has to be

marked sensitive for this to have any effect.

ProtectToolkit C extension: all objects have the CKA_VALUE as sensitive if the object has

CKA_SENSITIVEset to TRUE. This is useful for objects that are used internally only, or just wrapped for

transmission elsewhere.

Parameters

mechType Mechanism type to check

mechType Reference to int to hold the number of items returned

na Reference to attribute to check

na Reference to attribute to check

ProtectToolkit C Programming Guide

210

KeyFromPin

Synopsis

void KeyFromPin(

unsigned char key[16],

unsigned int klen,

CK_USER_TYPE user,

const unsigned char * pin,

unsigned int pinLen);

Description

Generate a double length key from a PIN, using PKCS#5 password based encryption.

Parameters

On Successful Return

key — contains the generated key

kpgMech

Synopsis

CK_MECHANISM_TYPE * kpgMech(

unsigned int * len);

Description

Return an array of all key pair generation related mechanisms.

Parameters

ktFromMech

Synopsis

CK_KEY_TYPE * ktFromMech(

CK_MECHANISM_TYPE mt,

unsigned int * len);

Description

Return an array of key types valid for the given mechanism. The returned array does not need to be freed.

key Buffer to hold generated key

keylen Number of bytes in key (should be 16)

user Salt value for key generation

pin Password used for key generation

pinLen Number of bytes referenced by pin

len Reference to int to hold the number of items returned

ProtectToolkit C Programming Guide

211

Parameters

On Successful Return

*len number of items in returned array

LookupMech

Synopsis

int LookupMech(

TOK_MECH_DATA * pMech,

CK_MECHANISM_TYPE mechType);

Description

Return TRUE if mechType is in the pMech list.

Parameters

MatchAttributeSet

Synopsis

int MatchAttributeSet(

const TOK_ATTR_DATA * match,

const TOK_ATTR_DATA * ad);

Description

Do a comparison of two attribute sets. Every attribute in the 'match' set must be found in the 'ad' set. It is

OK if 'ad' is a super set of 'match'. Return TRUE if all attributes in 'match' were found in 'ad'.

Parameters

mechDeriveFromKt

Synopsis

CK_MECHANISM_TYPE * mechDeriveFromKt(CK_KEY_TYPE kt,unsigned int * len);

Description

Return an array of derive mechanisms valid for the given key type. The returned array is newly allocated

and needs to be freed.

mt Mechanism type to get key types for

len Reference to int to hold the number of items in returned array

pMech Reference to mechanism list

mechType Mechanism to look for in pMech list

match Attribute set to look for

ad Atritute set to compare to

ProtectToolkit C Programming Guide

212

Parameters

On Successful Return

Array of CK_MECHANISM_TYPE values or NULL if key type is invalid. Caller should free the array

when finished.

mechFromKt

Synopsis

CK_MECHANISM_TYPE * mechFromKt(

CK_KEY_TYPE kt,

unsigned int * len);

Description

Return an array of mechanisms valid for the given key type. The returned array is newly allocated and needs

to be freed.

Parameters

On Successful Return

Array of CK_MECHANISM_TYPE values or NULL if key type is invalid. Caller should free the array

when finished.

mechSignFromKt

Synopsis

CK_MECHANISM_TYPE * mechSignFromKt(CK_KEY_TYPE kt,unsigned int * len);

Description

Return an array of signing mechanisms valid for the given key type. The returned array is newly allocated

and needs to be freed.

Parameters

On Successful Return

Array of CK_MECHANISM_TYPE values or NULL if key type is invalid. Caller should free the array

when finished.

kt Key type to look up

len Pointer to integer that receives length of returned array

kt Key type to get mechanisms for

len Reference to int to hold number of items in returned array

kt Key type to get mechanisms for

len Reference to int to hold number of items in returned array

ProtectToolkit C Programming Guide

213

mechSignRecFromKt

Synopsis

CK_MECHANISM_TYPE * mechSignRecFromKt(CK_KEY_TYPE kt,unsigned int * len);

Description

Return an array of signing mechanisms valid for the given key type. The returned array is newly allocated

and needs to be freed.

Parameters

On Successful Return

Array of CK_MECHANISM_TYPE values or NULL if key type is invalid. Caller should free the array

when finished.

NewAttributeSet

Synopsis

TOK_ATTR_DATA * NewAttributeSet(

unsigned int count);

Description

Allocate memory for an attribute set to hold the specified number of attributes. The returned memory needs

to be freed (see FreeAttributeSet)

Parameters

numAttr

Synopsis

CK_NUMERIC numAttr(

const CK_ATTRIBUTE * at);

Description

Return the value of the attribute as a numeric.

Parameters

kt Key type to get mechanisms for

len Reference to int to hold number of items in returned array

count Number of attribute place holders to allocate in the set

at Reference to attribute whose value is to be returned

ProtectToolkit C Programming Guide

214

numAttrLookup

Synopsis

CK_NUMERIC numAttrLookup(CK_ATTRIBUTE_TYPE atype,const CK_ATTRIBUTE *

attr,CK_COUNT attrCount);

Description

Extract a numeric attribute from an attribute template.

Parameters

PvcFromPin

Synopsis

void PvcFromPin(unsigned char * key,unsigned int klen,CK_USER_TYPE

user,const unsigned char * pin,unsigned int pinLen);

Description

Create a PVC from a PIN using PKCS#5 password based encryption.

Parameters

On Successful Return

key — contains the pvc

ReadAttr

Synopsis

int ReadAttr(

void * buf,

unsigned int len,

unsigned int * plen,

CK_ATTRIBUTE_TYPE attrType,

const TOK_ATTR_DATA * attr);

Description

Read an attribute value from an attribute set. Return TRUEif the attribute was present.

atype Type of attribute to extract attr array of attributes to search

attrCount Number of attributes in attr array

key Resulting pvc

klen Number of bytes referenced by key

user Salt value

pin Password

pinLen Number of bytes referenced by pin

ProtectToolkit C Programming Guide

215

Parameters

On Successful Return

buf — contains attribute value

plen — references number of bytes copied into buf

TransferAttr

Synopsis

CK_RV TransferAttr(

CK_ATTRIBUTE * pTgtTemplate,

const CK_ATTRIBUTE * pSrcTemplate,

CK_COUNT attrCount);

Description

Using at_assign, copy attribute values from one array to another. The order of the attributes must be the

same in both arrays.

Parameters

On Successful Return

pTgtTemplate — contains copy of attribute values from pSrcTemplate

UnwrapDec

Synopsis

int UnwrapDec(

CK_SESSION_HANDLE hSession,

CK_OBJECT_HANDLE hUnwrapper,

CK_OBJECT_HANDLE * hUnwrappedKey,

unsigned char * buf,

unsigned int bufLen);

Description

Unwrap a key and decode its attributes.

buf Buffer to receive attribute value

len Number of bytes referenced by buf

plen Reference to int to hold number of bytes copied to buf

attrType Type of attribute to extract from attr

attr Attribute set to search

pTgtTemplate Target attribute array

pSrcTemplate Source attribute array

attrCount Number of attributes to copy from source to target

ProtectToolkit C Programming Guide

216

Parameters

On Successful Return

*hUnwrappedKey — handle to unwrapped key with attributes

WrapEnc

Synopsis

int WrapEnc (

CK_SESSION_HANDLE hSession,

CK_OBJECT_HANDLE hWrapper,

CK_OBJECT_HANDLE hWrappee,

unsigned char * buf,

unsigned int bufLen,

CK_SIZE * bytesWritten);

Description

Wrap a key, encode its attributes and write it to a buffer.

Parameters

On Successful Return

buf — contains the wrapped key and encoded attributes *bytesWritten number of bytes written to buf

WriteAttr

Synopsis

CK_RV WriteAttr(

const void * buf,

unsigned int len,

CK_ATTRIBUTE_TYPE attrType,

TOK_ATTR_DATA * attr);

Description

Add/Replace an attribute to an attribute set. Delete attribute if len is 0.

hSession Open session handle

hUnwrapper Handle to unwrapping key

hUnwrappedKey Reference to handle to the key unwrapped

buf Reference to bytes containing the key and attributes

bufLen Number of bytes referenced by buf

hSession Open session handle

hWrapper Handle to wrapping key

hWrappee Wrappee handle to the key to wrap

buf Reference to bytes to hold the result

bufLen Number of bytes referenced by buf

bytesWritten Reference to value to hold the number of bytes written to buf

ProtectToolkit C Programming Guide

217

Parameters

On Successful Return

attr — modified attribute set

buf Value to add to attribute set

len Number of bytes to add from buf

attrType Type of attribute to add

attr Attribute set to modify

ProtectToolkit C Programming Guide

218

THIS PAGE INTENTIONALLY LEFT BLANK

ProtectToolkit C Programming Guide

219

C H A P T E R 1 3

HEX2BIN.H LIBRARY REFERENCE

Overview
The ProtectToolkit C Software Development Kit offers a number of extended API libraries

with functionality that is extended to that of the standard PKCS#11 function set.

The following additional features do not form part of the standard PKCS#11 functionality, but

are provided by SafeNet as part of the ProtectToolkit C API within the HEX2BIN.H library.

hex2bin

Synopsis

int hex2bin(

void * bin,

const char * hex,

unsigned maxLen);

Description

Used to convert ASCII HEX strings to binary data.

The function ignores white space in 'hex' and converts pairs of HEX characters into their

equivalent binary representation.

Example:

Input –

hex = "41424300"

maxLen = 4

Output -

bin[4] = "ABC"

Parameters

bin2hex

Synopsis

int bin2hex(

char * hex,

const void * bin,

unsigned maxLen);

bin Output A buffer to receive the binary data

hex Input A string of ASCII HEX characters to be converted

maxLen Input The maximum number of characters that 'bin' can hold

ProtectToolkit C Programming Guide

220

Description

Converts binary data into an ASCII HEX. This function is the inverse of bin2hex.

Example:

Input -

bin = "abc"

maxLen = 3

Output -

 hex[7] = "616263"

Parameters

bin2hexM

Synopsis

int bin2hexM(

char * hex,

const void * bin,

unsigned maxLen,

unsigned int lineLen);

Description

As for bin2hex Converts binary data into an ASCII HEX and then inserts a '\n' after every

'lineLen' characters for display formatting.

Parameters

memdump

Synopsis

void memdump(

const char * txt,

const unsigned char * buf,

unsigned int len);

Description

bin Input A buffer of binary data

hex Output A buffer to receive the string of ASCII HEX characters

maxLen Input The number of characters that 'bin' contains that should be converted (this is

not the length of the output buffer 'hex')

bin Input A buffer of binary data

hex Output A buffer to receive the string of ASCII HEX characters

maxLen Input The number of characters that 'bin' contains that should be converted (this is

not the length of the output buffer 'hex')

lineLen Number of characters before a new line (\n) is added

ProtectToolkit C Programming Guide

221

This function prints the contents of the memory as binary data to stdout for debugging

purposes.

Parameters

SetOddParity

Synopsis

void SetOddParity(

unsigned char * string,

unsigned int count);

Description

Converts a buffer of binary data to 'odd' parity.

For each byte in 'string' this function will flip the least significant bit, if necessary, to make the

number of one bits in the entire byte an odd number (odd parity).

Parameters

isOddParity

Synopsis

int isOddParity(

const unsigned char * string,

unsigned int count);

Description

This function checks the parity of the supplied data and returns 1 if buffer contains bytes that

are all of odd parity.

Parameters

txt Input Title string (may be NULL)

buf Input Binary data that is to be hex dumped

len Input Length of 'buf'

string Input/output, binary data to convert

count Length of 'string'

string Input, binary data to check

count Input, length of 'string'

ProtectToolkit C Programming Guide

222

THIS PAGE INTENTIONALLY LEFT BLANK

ProtectToolkit C Programming Guide

223

C H A P T E R 1 4

HSMADMIN.H LIBRARY REFERENCE

Overview
The ProtectToolkit C Software Development Kit offers a number of extended API libraries

with functionality that is extended to that of the standard PKCS#11 function set.

The following additional features do not form part of the standard PKCS#11 functionality, but

are provided by SafeNet as part of the ProtectToolkit C API within the HSMAdmin.h library.

The following functions provide an interface to the HSM’s Real Time Clock (RTC). This

Library is used in conjunction with the CTCONF utility. The CTCONF utility provides the

capability to set the access control configuration parameters for the RTC.

This Library cannot be used in software emulation mode.

Return Codes
The return code of all of the functions in the HSMAdmin Library is the enumerated type

HSMADM_RV which can have the following values.

Return Code Meaning

HSMADM_OK The operation was successful.

HSMADM_BAD_PARAMETER One or more of the parameters have an invalid value.

HSMADM_ADJ_TIME_LIMIT The delta value passed to the HSMADM_AdjustTime() is too large,

and will not be used.

HSMADM_ADJ_COUNT_LIMIT The number of calls made to the HSMADM_AdjustTime() that change

the time is too large. The adjustment will not be made.

HSMADM_NO_MEMORY There is not enough memory to complete operation.

HSMADM_SYSERR There was a system error. The operation was not performed.

HSMADM_GetTimeOfDay

Synopsis

#include hsmadmin.h

HSMADM_RV HSMADM_GetTimeOfDay(unsigned int

hsmIndex,HSMADM_TimeVal_t * tv);

Description

Obtains the current time of day from the HSM RTC.

ProtectToolkit C Programming Guide

224

Parameters

HSMADM_AdjustTime

Synopsis

#include hsmadmin.h

HSMADM_RV HSMADM_AdjustTime(unsigned int hsmIndex,const

HSMADM_TimeVal_t * delta,HSMADM_TimeVal_t * oldDelta);

Description

Either adjust the time, or obtain the current adjustment value.

The parameter, delta, indicates the adjustment to be applied to the HSM RTC. The HSM is

only capable of performing Slew Adjustment when updating the Real Time Clock (RTC).

This prevents large (multiple second) negative or positive steps of the current RTC. The RTC

has a Slew Adjustment of 1 second for every 10 seconds of elapsed time, hence if the RTC

was out by 1000 seconds, it will take approx 10000 seconds (2.7 hours) to match the external

time source.

Because Slew Adjustment is the means by which the RTC is updated, the HSM may not have

completed making an adjustment requested by a previous HSMADM_AdjustTime call. If

there is an adjustment being performed when this function is called, then this adjustment is

discarded, and the new adjustment value is used instead.

This function can alternatively be used to obtain the value of the time adjustment that remains

to be completed. If the parameter delta is NULL, and oldDelta is a valid pointer, it will return

the pending adjustment.

Parameters

hsmIndex Zero-based index of the HSM number to be used

tv Address of the variable which is to be initialized with the current time of day.

It indicates the time passed since midnight, 1 Jan 1970. This struct contains a

field tv_usec, which is the number of microseconds. The HSM real-time clock

only has millisecond resolution; therefore, tv_usec is always rounded up to the

nearest millisecond HSMADM_TimeVal_t is defined in hsmadmin.h.

hsmIndex Zero-based index of the HSM number to be used

delta Amount of adjustment to be made to the RTC. This parameter must be NULL

if oldDelta is not NULL. HSMADM_TimeVal_t is defined in hsmadmin.h

oldDelta Address of the variable that will receive the value of the adjustment that

remains to be completed. HSMADM_TimeVal_t is defined in hsmadmin.h. If

this parameter is not NULL, delta must be NULL

ProtectToolkit C Programming Guide

225

HSMADM_SetRtcStatus

Synopsis

#include hsmadmin.h

HSMADM_RV HSMADM_SetRtcStatus(unsigned int

hsmIndex,HSMADM_RtcStatus_t status);

Description

Changes the RTC status.

Parameters

Value Meaning

HSMADM_RTC_UNIN ITIALIZED The RTC is not initialized yet.

HSMADM_RTC_STA ND_ALONE The RTC is in the stand alone mode. This means that it is

completely controlled by the crypto subsystem. In this

mode, all cryptographic operations are allowed to use the

value of the clock.

HSMADM_RTC_MANAGED_UNTRUSTED The RTC is being controlled by an external program; but

the value is not trusted yet. This means certain

cryptographic operations are refused access to the RTC

because the value is (possibly) incorrect. When the RTC

Status is set to this value, the CTCONF –t command,

which normally is used to set the RTC, cannot be used.

HSMADM_RTC_MANAGED_TRUSTED The RTC is being controlled by an external program, and

its value may be trusted. This means that all

cryptographic operations are allowed to use the value of

the clock. When the RTC Status is set to this value, the

CTCONF –t command, which normally is used to set the

RTC, cannot be used.

HSMADM_GetRtcStatus

Synopsis

#include hsmadmin.h

HSMADM_RV HSMADM_GetRtcStatus(unsigned int

hsmIndex,HSMADM_RtcStatus_t* status);

Description

Obtain the HSM RTC status.

hsmIndex Zero-based index of the HSM number to be used

status New status of the RTC. Possible values of the RTC status are defined in

hsmadmin.h and are described below.

ProtectToolkit C Programming Guide

226

Parameters

Value Meaning

HSMADM_RTC_UNIN ITIALIZED The RTC is not initialized yet.

HSMADM_RTC_STA ND_ALONE The RTC is in the stand alone mode. This means that it is

completely controlled by the crypto subsystem. In this

mode, all cryptographic operations are allowed to use the

value of the clock.

HSMADM_RTC_MANAGED_UNTRUSTED The RTC is being controlled by an external program; but

the value is not trusted yet. This means certain

cryptographic operations are refused access to the RTC

because the value is (possibly) incorrect. When the RTC

Status is set to this value, the CTCONF –t command,

which normally is used to set the RTC, cannot be used.

HSMADM_RTC_MANAGED_TRUSTED The RTC is being controlled by an external program, and

its value may be trusted. This means that all cryptographic

operations are allowed to use the value of the clock. When

the RTC Status is set to this value, the CTCONF –t

command, which normally is used to set the RTC, cannot

be used.

HSMADM_GetRtcAdjustAmount

Synopsis

#include hsmadmin.h

HSMADM_RV HSMADM_GetRtcAdjustAmount(unsigned intlong*);

hsmIndex,totalMs

Description

Get the effective total amount, in milliseconds, of adjustment made to the RTC using the

HSMADM_AdjustTime() function.

Parameters

hsmIndex Zero-based index of the HSM number to be used. This parameter is only valid

if RTC Access Control is enabled. RTC Access Control can be modified via

the CTCONF utility.

status Address of the variable that will obtain the current status of the RTC. This

parameter must not be NULL. Possible values of the RTC status are defined in

hsmadmin.hand are described below.

hsmIndex Zero-based index of the HSM number to be used.

totalMs Address of the variable that will contain the total amount adjusted. The total

amount adjusted is calculated by summing the adjust amounts specified via a

valid HSMADM_AdjustTime() call. For instance if two adjustments are made

of 20ms and -3ms this parameter should return 17ms. This parameter must not

be NULL. This parameter is only valid if RTC Access Control is enabled. RTC

ProtectToolkit C Programming Guide

227

HSMADM_GetRtcAdjustCount

Synopsis

#include hsmadmin.h

HSMADM_RV HSMADM_GetRtcAdjustCount(unsigned intunsigned long*);

hsmIndex,totalCount

Description

Get the effective count of adjustments made to the RTC using the HSMADM_AdjustTime()

function.

Parameters

HSMADM_GetHsmUsageLevel

Synopsis

#include hsmadmin.h

HSMADM_RV HSMADM_GetHsmUsageLevel (unsigned int hsmIndex,

unsigned long* value

);

Description

Get the usage level of the hsm as a percentage i.e. the load on the HSM.

Parameters

Access Control can be modified via the CTCONF utility.

hsmIndex Zero-based index of the HSM number to be used.

totalCount Address of the variable that will obtain the total count of adjustments. The

total count of adjustments indicates the a count of the number of valid

adjustments made via HSMADM_AdjustTime() call. This parameter must not

be NULL. This parameter is only valid if RTC Access Control is enabled. RTC

Access Control can be modified via the CTCONF utility.

hsmIndex Zero-based index of the HSM number to be used.

totalCount Address of the variable that will obtain the value. This parameter must not be

NULL

ProtectToolkit C Programming Guide

228

THIS PAGE INTENTIONALLY LEFT BLANK

ProtectToolkit C Programming Guide

229

C H A P T E R 1 5

KMLIB.H LIBRARY REFERENCE

Overview
The ProtectToolkit C Software Development Kit offers a number of extended API libraries

with functionality that is extended to that of the standard PKCS#11 function set.

The following functions provide an interface to the key management library used by the

KMUTIL utility. Not all functions are documented – refer to kmlib.h for more details.

KM_EncodeECParamsP

#include “kmlib.h”

 Windows UNIX

Library Kmlib.lib Libkmlib.a

CK_RV KM_EncodeECParamsP(

 CK_BYTE_PTR prime, CK_SIZE primeLen,

 CK_BYTE_PTR curveA, CK_SIZE

curveALen,

 CK_BYTE_PTR curveB, CK_SIZE

curveBLen,

 CK_BYTE_PTR curveSeed,CK_SIZE

curveSeedLen,

 CK_BYTE_PTR baseX, CK_SIZE baseXLen,

 CK_BYTE_PTR baseY, CK_SIZE baseYLen,

 CK_BYTE_PTR bpOrder, CK_SIZE

bpOrderLen,

 CK_BYTE_PTR cofactor, CK_SIZE

cofactorLen,

 CK_BYTE_PTR result, CK_SIZE *

resultLen

);

Do DER enc of ECC Domain Parameters Prime

All integer values are variable length big endian numbers with optional leading zeros. Integer

lengths are all in bytes.

Parameters

prime Prime modulus

primeLen Prime modulus len

curveA Elliptic Curve coefficient a

curveALen Elliptic Curve coefficient a length

curveB Elliptic Curve coefficient b

ProtectToolkit C Programming Guide

230

KM_EncodeECParams2M
#include “kmlib.h”

 Windows UNIX

Library Kmlib.lib Libkmlib.a

typedef enum {

 ECBT_GnBasis, /* Gaussian Normal Basis - parameters = 0, 0, 0

*/

 ECBT_TpBasis, /* Trinomial Basis - parameters = k, 0, 0 */

 ECBT_PpBasis /* Pentanomial Basis - parameters = k1, k2, k3 */

} ECBasisType;

CK_RV KM_EncodeECParams2M(

CK_SIZE m,

ECBasisType basis,

CK_SIZE parameters[3],

CK_BYTE_PTR curveA, CK_SIZE curveALen,

CK_BYTE_PTR curveB, CK_SIZE curveBLen,

CK_BYTE_PTR curveSeed,CK_SIZE curveSeedLen,

CK_BYTE_PTR baseX, CK_SIZE baseXLen,

CK_BYTE_PTR baseY, CK_SIZE baseYLen,

CK_BYTE_PTR bpOrder, CK_SIZE bpOrderLen,

CK_BYTE_PTR cofactor, CK_SIZE cofactorLen,

CK_BYTE_PTR result, CK_SIZE * resultLen

);

Do DER enc of ECC Domain Parameters 2^M

All long integer values are variable length big endian numbers with

optional leading zeros, lengths are all in bytes.

curveBLen Elliptic Curve coefficient b length

curveSeed Seed (optional may be NULL)

curveSeedLen Seed length

baseX Elliptic Curve point X coord

baseXLen Elliptic Curve point X coord length

baseY Elliptic Curve point Y coord

baseYLen Elliptic Curve point Y coord length

bpOrder Order n of the Base Point

bpOrderLen Order n of the Base Point length

cofactor The integer h = #E(Fq)/n (optional)

cofactorLen h length

result Resultant Encoding (length prediction supported if NULL)

resultLen Buffer len/Length of resultant encoding

Return Status of operation. CKR_OK if ok

ProtectToolkit C Programming Guide

231

Parameters

M Degree of field

basis Should be ECBT_GnBasis or ECBT_TpBasis or ECBT_PpBasis

parameters Array of three integers - values depend on basis

ECBT_GnBasis - parameters = 0. 0. 0

ECBT_TpBasis - parameters = k. 0. 0

ECBT_PpBasis - parameters = k1.k2.k3

curveA Elliptic Curve coefficient a

curveALen Elliptic Curve coefficient a length

curveB Elliptic Curve coefficient b

curveBLen Elliptic Curve coefficient b length

curveSeed Seed (optional may be NULL)

curveSeedLen Seed length

baseX Elliptic Curve point X coord

baseXLen Elliptic Curve point X coord length

baseY Elliptic Curve point Y coord

baseYLen Elliptic Curve point Y coord length

bpOrder Order n of the Base Point

bpOrderLen Order n of the Base Point length

cofactor The integer h = #E(Fq)/n (optional)

cofactorLen h length

result Resultant Encoding (length prediction supported if NULL)

resultLen Buffer len/Length of resultant encoding

Return Status of operation. CKR_OK if ok

ProtectToolkit C Programming Guide

232

THIS PAGE INTENTIONALLY LEFT BLANK

ProtectToolkit C Programming Guide

233

C H A P T E R 1 6

CTAUTH.H LIBRARY REFERENCE

Overview
The ctauthlib library provides a single function used by a remote agent attempting to

authenticate to the HSM using the challenge Response system.

CT_Gen_AUTH_Response
Creates the response to a challenge.

CK_RV CT_Gen_AUTH_Response(CK_BYTE_PTR pPin,

 CK_ULONG ulPinLen, CK_BYTE_PTR pChallenge,

 CK_ULONG ulChallengeLen, CK_USER_TYPE userType,

 CK_BYTE_PTR pResponse, CK_ULONG_PTR

pulResponse);

ProtectToolkit C Programming Guide

234

THIS PAGE INTENTIONALLY LEFT BLANK

ProtectToolkit C Programming Guide

235

A P P E N D I X

ATTRIBUTE CERTIFICATE

The Set Attribute Ticket, which is used to authorise updates to key usage limits, has the

format of an Attribute Certificate defined by PKIX (RFC 3281).

AttributeCertificate ::= SEQUENCE {

 acinfo AttributeCertificateInfo,

 signatureAlgorithm AlgorithmIdentifier,

 signatureValue BIT STRING

}

AttributeCertificateInfo ::= SEQUENCE {

 version AttCertVersion -- version is v2,

 holder Holder,

 issuer AttCertIssuer,

 signature AlgorithmIdentifier,

 serialNumber CertificateSerialNumber,

 attrCertValidityPeriod AttCertValidityPeriod,

 attributes SEQUENCE OF Attribute,

 issuerUniqueID UniqueIdentifier OPTIONAL,

 extensions Extensions OPTIONAL

}

AttCertVersion ::= INTEGER { v2(1) }

Holder ::= SEQUENCE {

 baseCertificateID [0] IssuerSerial OPTIONAL,

 -- the issuer and serial number of

 -- the holder's Public Key Certificate

 entityName [1] GeneralNames OPTIONAL,

 objectDigestInfo [2] ObjectDigestInfo OPTIONAL

 -- used to directly authenticate the target key,

 -- see further description below

}

ObjectDigestInfo ::= SEQUENCE {

 digestedObjectType ENUMERATED {

 publicKey (0),

 publicKeyCert (1),

 otherObjectTypes (2) },

 -- otherObjectTypes only to be used

 otherObjectTypeID OBJECT IDENTIFIER OPTIONAL,

 -- must be OID_X509_ATTR_KEY_DIGEST

 digestAlgorithm AlgorithmIdentifier,

 objectDigest BIT STRING

 }

ProtectToolkit C Programming Guide

236

The algorithm OID_X509_ATTR_KEY_DIGEST is:

objectDigest = Digest(Token_Serial_Number | Token_Label |

ObjectID)

Where ObjectID is the concatenation of the CKA_LABEL and CKA_ID attributes of the

target Object.

AttCertIssuer ::= CHOICE {

 v1Form GeneralNames, -- MUST NOT be used in this

 -- profile

 v2Form [0] V2Form -- v2 only

}

V2Form ::= SEQUENCE {

 issuerName GeneralNames OPTIONAL,

 baseCertificateID [0] IssuerSerial OPTIONAL,

 objectDigestInfo [1] ObjectDigestInfo OPTIONAL

 -- issuerName MUST be present in this profile

 -- baseCertificateID and objectDigestInfo MUST NOT

 -- be present in this profile

}

IssuerSerial ::= SEQUENCE {

 issuer GeneralNames,

 serial CertificateSerialNumber,

 issuerUID UniqueIdentifier OPTIONAL

}

AttCertValidityPeriod ::= SEQUENCE {

 notBeforeTime GeneralizedTime,

 notAfterTime GeneralizedTime

}

Attribute ::= SEQUENCE {

 type AttributeType,

 values SET OF AttributeValue

 -- at least one value is required

}

AttributeType ::= OBJECT IDENTIFIER

-- there is a different OID for each type of Cryptoki Attribute

-- see below for a list

AttributeValue ::= ANY DEFINED BY AttributeType

 -- the data type depends on the type field but it

 -- represents the value part of the Cryptoki attribute.

ProtectToolkit C Programming Guide

237

OID Used to Indicate Key Digest Algorithm

OID OID-type

 { iso(1) identified-organization(3)

dod(6) internet(1) private(4)

enterprises(1) safeNetInc(23629)

safenetRoot(1) safenetHSM(4)

ptkc(2) objDigests(2) key(1) }

OID_X509_ATTR_KEY_DIGEST

OID Value OID-type Cryptoki Attribute

Type

DER Encoded

Value

{ iso(1) identified-organization(3)

dod(6) internet(1) private(4)

enterprises(1) safeNetInc(23629)

safenetRoot(1) safenetHSM(4)

ptkc(2) p11Attrs(1) usage_limit(1) }

OID_X509_ATTR_USAGE_LIMIT CKA_USAGE_LIMIT INTEGER

{ iso(1) identified-organization(3)

dod(6) internet(1) private(4)

enterprises(1) safeNetInc(23629)

safenetRoot(1) safenetHSM(4)

ptkc(2) p11Attrs(1) end_date(2) }

OID_X509_ATTR_END_DATE CKA_END_DATE PrintableString

{ iso(1) identified-organization(3)

dod(6) internet(1) private(4)

enterprises(1) safeNetInc(23629)

safenetRoot(1) safenetHSM(4)

ptkc(2) p11Attrs(1) start_date(3) }

OID_X509_ATTR_START_DATE CKA_START_DATE PrintableString

{ iso(1) identified-organization(3)

dod(6) internet(1) private(4)

enterprises(1) safeNetInc(23629)

safenetRoot(1) safenetHSM(4)

ptkc(2) p11Attrs(1) admin_cert(4) }

OID_X509_ATTR_ADMIN_CERT CKA_ADMIN_CERT

ProtectToolkit C Programming Guide

238

THIS PAGE INTENTIONALLY LEFT BLANK

ProtectToolkit C Programming Guide

239

GLOSSARY

COMMON TERMS AND PHRASEOLOGY

Software Development Kits (SDKs)
Other documentation may refer to the SafeNet Cprov and Protect Toolkit J SDKs. These

SDKs have been renamed ProtectToolkit C and ProtectToolkit J respectively.

 The names Cprov and ProtectToolkit C refer to the same device in the context of this

or previous manuals.

 The names Protect Toolkit J and ProtectToolkit J refer to the same device in the

context of this or previous manuals.

ProtectToolkit C Programming Guide

240

END OF DOCUMENT

	Technical Support
	Chapter Contents
	Runtime Licensing
	The PKCS#11 Model
	Application Environment
	Win32™ Environment
	UNIX Environments
	Java™ Environments
	JCPROV Java JNI Support (AIX Only)
	If using a 32-bit Java VM:
	If using a 64-bit Java VM:

	Development Environment Guidelines
	Compiling and Linking Applications on AIX
	Compiling and Linking 64-bit Applications on AIX
	Compiling and Linking 64-bit Applications for Solaris SPARC
	Compiling and Linking 64-bit Applications for HP-UX
	MSVC Project Settings
	Modes of Operation

	Configuration / Setup
	Objects
	Creating, Modifying, Copying, and Deleting Objects
	Creating Objects
	Modifying Objects
	Copying Objects
	Deleting Objects

	Additional Attribute Types
	CKA_KEY_SIZE
	CKA_TIME_STAMP
	CKA_TRUSTED
	CKA_USAGE_COUNT
	CKA_USAGE_LIMIT
	CKA_START_DATE, CKA_END_DATE
	CKA_ADMIN_CERT
	CKA_ISSUER_STR, CKA_SUBJECT_STR, CKA_SERIAL_NUMBER_INT
	CKA_PKI_ATTRIBUTE_BER_ENCODED
	CKA_EXPORT, CKA_EXPORTABLE
	CKA_DELETABLE
	CKA_SIGN_LOCAL_CERT
	CKA_CHECK_VALUE
	CKA_IMPORT
	CKA_CERTIFICATE_START_TIME; CKA_CERTIFICATE_END_TIME
	CKA_MECHANISM_LIST
	CKA_ENUM_ATTRIBUTE

	Common Attributes
	Hardware Feature Objects
	Clock Objects
	Monotonic Counter Objects
	User Objects
	Storage Objects
	Data Objects
	Certificate Objects
	X.509 Public Key Certificate Objects
	Certificate Request Objects
	Certificate Revocation List

	Key Objects
	Public Key Objects
	RSA Public Key Objects
	DSA Public Key Objects
	Diffie-Hellman Public Key Objects
	Elliptic Curve Public Key Objects
	Private Key Objects
	RSA Private Key Objects
	DSA Private Key Objects
	Diffie-Hellman Private Key Objects
	Elliptic Curve Private Key Objects
	Secret Key Objects
	Generic Secret Key Objects
	RC2 Secret Key Objects
	RC4 Secret Key Objects
	AES Secret Key Objects
	DES Secret Key Objects
	DES2 Secret Key Objects
	DES3 Secret Key Objects
	CAST128 (CAST5) Secret Key Objects
	IDEA Secret Key Objects
	SEED Secret Key Objects

	Key Parameter Objects
	DSA Public Key Parameter Objects
	Diffie-Hellman Public Key Parameter Objects
	Elliptic Curve Public Key Parameter Objects

	Mechanisms
	CKM_AES_CBC
	CKM_AES_CBC_PAD
	CKM_AES_ECB
	CKM_AES_KEY_GEN
	CKM_AES_MAC
	CKM_AES_MAC_GENERAL

	CKM_CAST128_ECB_PAD
	CKM_DECODE_PKCS_7
	CKM_DECODE_X_509
	CKM_DES_DERIVE_CBC
	CKM_DES_DERIVE_ECB
	CKM_DES_ECB_PAD
	CKM_DES_MDC_2_PAD1
	CKM_DES_OFB64
	CKM_DES3_DDD_CBC
	CKM_DES3_DERIVE_CBC
	CKM_DES3_DERIVE_ECB
	CKM_DES3_ECB_PAD
	CKM_DES3_OFB64
	CKM_DES3_RETAIL_CFB_MAC
	CKM_DES3_X919_MAC
	CKM_DES3_X919_MAC_GENERAL
	CKM_DH_PKCS_PARAMETER_GEN
	CKM_DSA_PARAMETER_GEN
	CKM_DSA_SHA1_PKCS
	CKM_EC_KEY_PAIR_GEN
	CKM_ECDH1_DERIVE
	CKM_ECIES
	CKM_ENCODE_ATTRIBUTES
	CKM_ENCODE_PKCS_10
	From PKCS#10
	Usage

	CKM_ENCODE_PUBLIC_KEY
	CKM_ENCODE_X_509
	Usage

	CKM_ENCODE_X_509_LOCAL_CERT
	CKM_IDEA_ECB_PAD
	CKM_NVB
	CKM_KEY_TRANSLATION
	CKM_PBA_SHA1_WITH_HMAC_SHA1
	CKM_PBE_SHA1_RC2_128_CBC
	CKM_PBE_SHA1_RC2_40_CBC
	CKM_PBE_SHA1_RC4_128
	CKM_PBE_SHA1_RC4_40
	CKM_PKCS12_PBE_EXPORT
	CKM_PKCS12_PBE_IMPORT
	Length Prediction
	Returning Multiple Ceritificates
	Reporting Remaining Certificates
	PKCS#12 Import Return Code

	CKM_PP_LOAD_SECRET
	CKM_RC2_ECB_PAD
	CKM_REPLICATE_TOKEN_RSA_AES
	Wrapping Tokens
	Unwrapping Tokens

	CKM_RSA_PKCS_KEY_PAIR_GEN
	CKM_SECRET_RECOVER_WITH_ATTRIBUTES
	Usage Note

	CKM_SECRET_SHARE_WITH_ATTRIBUTES
	Usage Note
	Security Note
	Secret Share Mechanism Parameter

	CKM_SEED_CBC
	CKM_SEED_CBC_PAD
	CKM_SEED_ECB
	CKM_SEED_ECB_PAD
	CKM_SEED_KEY_GEN
	CKM_SEED_MAC
	CKM_SEED_MAC_GENERAL
	CKM_SET_ATTRIBUTES
	CKM_SHA1_RSA PKCS_TIMESTAMP
	CKM_VISA_CVV
	CKM_WRAPKEY_DES3_CBC
	Encoding Format
	Definitions

	CKM_WRAPKEY_DES3_ECB
	CKM_WRAPKEY_AES_CBC
	CKM_WRAPKEYBLOB_AES_CBC, CKM_WRAPKEY_DES3_ECB
	CKM_XOR_BASE_AND_KEY
	CKM_ZKA_MDC_2_KEY_DERIVATION
	Vendor-Defined Error Codes

	C Samples
	Compiling the Sample Programs
	To compile under Windows:
	To compile under UNIX:

	CTDEMO
	FCRYPT
	Usage
	Options

	Additional C Sample Programs
	Java Samples
	Compiling and Running the Sample Programs
	For compiling and running under Windows NT:
	For compiling and running under UNIX:

	The Java Classes
	DeleteKey
	Usage
	Options

	EccDemo
	Usage
	Options

	EncDec
	Usage
	Options

	EnumAttributes
	Usage
	Options

	GenerateKey
	Usage
	Options

	GetInfo
	Usage
	Options

	ListObjects
	Usage
	Options

	ReEncrypt
	Usage

	Threading
	Usage
	Options

	Overview
	Introduction
	Confidentiality
	Integrity / Authentication
	Access Control

	Getting to Know ProtectToolkit C
	Application Implementation Goals
	Application Security
	ProtectToolkit C Security
	ProtectToolkit C Security Caveats

	Application Usability
	ProtectToolkit C Application Usability
	ProtectToolkit C Usability Caveats

	Performance
	ProtectToolkit C Performance
	ProtectToolkit C Performance Caveats

	Capacity
	ProtectToolkit C Capacity Improvement
	ProtectToolkit C Capacity Caveats

	Setup / Configuration
	ProtectToolkit C Setup / Configuration
	ProtectToolkit C Setup/Configuration Caveats

	Maintainability
	ProtectToolkit C Maintenance
	ProtectToolkit C Maintenance Caveats

	Debugging
	ProtectToolkit C Debugging Techniques
	ProtectToolkit C Debugging Caveats

	Interoperability
	ProtectToolkit C Interoperability
	ProtectToolkit C Interoperability Caveats

	Programming in FIPS Mode
	No Public Crypto
	No Clear PINS
	Authentication Protection
	Security Mode Locked
	Tamper Before Upgrade
	Only FIPS Approved Algorithms

	Key Management
	Backup and Restore
	Key Replication
	Operator Authentication
	Operator Authentication Use Cases
	Setup
	Programmatic Challenge Response Activation
	Pass Authentication to a New Process

	Key Usage Limits
	Programmatic Use Cases for a Developer
	Create Usage Limited Key Object
	Set Usage Limits of an Object Directly
	Update Usage Limits of an Object Indirectly

	Overview
	Compliance
	PKCS#11 Extensions Used

	Operation
	User Interface
	Tree View
	Token Management Services
	Example Service - Generate Key Pair
	Cryptographic Services
	Operation
	Drag and Drop
	Using CTBROWSE With Protect Toolkit J

	Required Header Files
	Runtime Switches
	Encrypt Functions
	Decrypt Function
	FCRYPT Usage
	Wrapped Encryption Key Template
	Assembling the Application
	Overview
	Logger Architecture and Functionality
	Logger Setup
	Activating Logging
	Windows Systems
	UNIX Systems
	Storing ProtectToolkit C Host Library File Details
	Storing Log File Details
	Changing Detail Recorded by the Logger

	Deactivating Logger Operation
	Windows Systems
	UNIX Systems

	General Purpose Functions
	C_Initialize
	Synopsis
	Description
	Operation in WLD Mode

	C_Finalize
	Synopsis
	Description

	C_GetInfo
	Synopsis
	Description

	C_GetFunctionList
	Synopsis
	Description

	Slot and Token Management Functions
	C_GetSlotList
	Synopsis
	Description
	Operation in WLD Mode

	C_GetSlotInfo
	Synopsis
	Description
	Operation in WLD Mode

	C_GetTokenInfo
	Synopsis
	Description
	Operation in WLD Mode

	C_WaitForSlotEvent
	Synopsis
	Description

	C_GetMechanismList
	Synopsis
	Description
	Operation in WLD Mode

	C_GetMechanismInfo
	Synopsis
	Description
	Operation in WLD Mode

	C_InitToken
	Synopsis
	Description
	Operation in WLD Mode

	CT_InitToken
	Synopsis
	Description
	Operation in WLD Mode

	CT_ResetToken
	Synopsis
	Description
	Operation in WLD Mode

	C_InitPIN
	Synopsis
	Description
	Operation in WLD Mode

	C_SetPIN
	Synopsis
	Description
	Operation in WLD Mode

	Session Management Functions
	C_OpenSession
	Synopsis
	Description

	C_CloseSession
	Synopsis
	Description

	C_CloseAllSessions
	Synopsis
	Description

	C_GetSessionInfo
	Synopsis
	Description
	Operation in WLD Mode

	C_GetOperationState
	Synopsis
	Description
	Operation in WLD Mode

	C_SetOperationState
	Synopsis
	Description
	Operation in WLD Mode

	C_Login
	Synopsis
	Description
	Operation in WLD Mode
	Temporary Pin Login
	Challenge Response Login

	C_Logout
	Synopsis
	Description
	Operation in WLD Mode

	Object Management Functions
	C_CreateObject
	Synopsis
	Description

	C_CopyObject
	Synopsis
	Description
	Operation in WLD Mode

	CT_CopyObject
	Synopsis
	Description

	C_DestroyObject
	Synopsis
	Description

	C_GetObjectSize
	Synopsis
	Description

	C_GetAttributeValue
	Synopsis
	Description

	C_SetAttributeValue
	Synopsis
	Description

	C_FindObjectsInit
	Synopsis
	Description

	C_FindObjects
	Synopsis
	Description

	C_FindObjectsFinal
	Synopsis
	Description

	Encryption Functions
	C_EncryptInit
	Synopsis
	Description

	C_Encrypt
	Synopsis
	Description

	C_EncryptUpdate
	Synopsis
	Description

	C_EncryptFinal
	Synopsis
	Description

	Decryption Functions
	C_DecryptInit
	Synopsis
	Description

	C_Decrypt
	Synopsis
	Description

	C_DecryptUpdate
	Synopsis
	Description

	C_DecryptFinal
	Synopsis
	Description

	Message Digesting Functions
	C_DigestInit
	Synopsis
	Description

	C_Digest
	Synopsis
	Description

	C_DigestUpdate
	Synopsis
	Description

	C_DigestKey
	Synopsis
	Description

	C_DigestFinal
	Synopsis
	Description

	Signing and MACing Functions
	C_SignInit
	Synopsis
	Description

	C_Sign
	Synopsis
	Description

	C_SignUpdate
	Synopsis
	Description

	C_SignFinal
	Synopsis
	Description

	C_SignRecoverInit
	Synopsis
	Description

	C_SignRecover
	Synopsis
	Description

	Functions for Verifying Signatures and MACs
	C_VerifyInit
	Synopsis
	Description

	C_Verify
	Synopsis
	Description

	C_VerifyUpdate
	Synopsis
	Description

	C_VerifyFinal
	Synopsis
	Description

	C_VerifyRecoverInit
	Synopsis
	Description

	C_VerifyRecover
	Synopsis
	Description

	Dual-function Cryptographic Functions
	C_DigestEncryptUpdate
	Synopsis
	Description

	C_DecryptDigestUpdate
	Synopsis
	Description

	C_SignEncryptUpdate
	Synopsis
	Description

	C_DecryptVerifyUpdate
	Synopsis
	Description

	Key Management Functions
	C_GenerateKey
	Synopsis
	Description

	C_GenerateKeyPair
	Synopsis
	Description

	C_WrapKey
	Synopsis
	Description

	C_UnwrapKey
	Synopsis
	Description

	C_DeriveKey
	Synopsis
	Description

	Random Number Generation Functions
	C_SeedRandom
	Synopsis
	Description

	C_GenerateRandom
	Synopsis
	Description

	Parallel Function Management Functions
	C_GetFunctionStatus
	Synopsis
	Description

	C_CancelFunction
	Synopsis
	Description

	Extra Functions
	CT_PresentTicket
	CT_SetHsmDead
	CT_GetHSMId

	Overview
	BuildDhKeyPair
	Synopsis
	Description
	Parameters
	On successful return
	In addition to the Private key attributes set via the parameters, the following are set:

	BuildDsaKeyPair
	Synopsis
	Description
	Parameters
	On successful return

	BuildRsaCrtKeyPair
	Synopsis
	Description
	Parameters
	On successful return

	BuildRsaKeyPair
	Synopsis
	Description
	Parameters
	On successful return

	calcKvc
	Synopsis
	Description
	Parameters
	On successful return

	calcKvcMech
	Synopsis
	Description
	Parameters
	On successful return

	cDump
	Synopsis
	Description
	Parameters

	CreateDesKey
	Synopsis
	Description
	Parameters
	On successful return

	CreateSecretKey
	Synopsis
	Description
	Parameters
	On successful return

	CT_AttrToString
	Synopsis
	Description
	Parameters
	On successful return

	CT_CreateObject
	Synopsis
	Description
	Parameters
	On successful return

	CT_CreatePublicObject
	Synopsis
	Description
	Parameters
	On successful return

	CT_Create_Set_Attributes_Ticket_Info()
	Synopsis
	Description

	CT_Create_Set_Attributes_Ticket()
	Synopsis
	Description

	CT_DerEncodeNamedCurve
	Synopsis
	Description
	Parameters
	On successful return

	CT_GetAuthChallenge
	Synopsis
	Description

	CT_GetObjectDigest
	Synopsis
	Description

	CT_GetECCDomainParameters
	Description
	Parameters

	CT_GetObjectDigestFromParts
	Synopsis
	Description

	CT_GetTmpPin
	Synopsis
	Description

	CT_ErrorString
	Synopsis
	Description
	Parameters
	On successful return

	CT_GetECKeySize
	Synopsis
	Description
	Parameters
	On successful return

	CT_MakeObjectNonModifiable
	Synopsis
	Description

	CT_OpenObject
	Synopsis
	Description
	Parameters
	On successful return

	CT_ReadObject
	Synopsis
	Description
	Parameters
	On successful return

	CT_RenameObject
	Synopsis
	Description
	Parameters

	CT_SetCKDateStrFromTime
	Synopsis
	Description

	CT_Structure_To_Armor
	Synopsis
	Description

	CT_Structure_From_Armor
	Synopsis
	Description

	CT_SetLimitsAttributes
	Synopsis
	Description

	CT_WriteObject
	Synopsis
	Description
	Parameters
	On successful return

	DateConvertGmtToLocal
	Synopsis
	Description
	Parameters
	On Successful Return

	DateConvert
	Synopsis
	Description
	Parameters
	On Successful Return

	DumpAttributes
	Synopsis
	Description
	Parameters

	DumpDHKeyPair
	Synopsis
	Description
	Parameters

	DumpDSAKeyPair
	Synopsis
	Description
	Parameters

	DumpRSAKeyPair
	Synopsis
	Description
	Parameters

	FindAttribute
	Synopsis
	Description
	Parameters
	On Successful Return

	FindKeyFromName
	Synopsis
	Description
	Parameter
	On Successful Return

	FindTokenFromName
	Synopsis
	Description
	Parameters
	On Successful Return

	GenerateDhKeyPair
	Synopsis
	Description
	Parameters
	On Successful Return

	GenerateDsaKeyPair
	Synopsis
	Description
	Parameters
	On Successful Return

	GenerateRsaKeyPair
	Synopsis
	Description
	Parameters
	On Successful Return

	GetAttr
	Synopsis
	Description
	Parameters
	On Successful Return

	GetDeviceError
	Synopsis
	Description
	Parameters
	On Successful Return

	GetObjectCount
	Synopsis
	Description
	Parameters
	On Successful Return

	GetSecurityMode
	Synopsis
	Description
	Parameters
	On Successful Return

	GetSessionCount
	Synopsis
	Description
	Parameters
	On Successful Return

	GetTotalSessionCount
	Synopsis
	Description
	Parameters
	On Successful Return

	rmTrailSpace
	Synopsis
	Description
	Parameters
	On Successful Return

	SetAttr
	Synopsis
	Description
	Parameters

	ShowSlot
	Synopsis
	Description
	Parameters

	ShowToken
	Synopsis
	Description
	Parameters

	strAttribute
	Synopsis
	Description
	Parameters

	strError
	Synopsis
	Description
	Parameters

	strKeyType
	Synopsis
	Description
	Parameters

	strMechanism
	Synopsis
	Description
	Parameters

	strObjClass
	Synopsis
	Description
	Parameters

	strSesState
	Synopsis
	Description
	Parameters

	TransferObject
	Synopsis
	Description
	Parameters
	On Successful Return

	valAttribute
	Synopsis
	Description
	Parameters

	valError
	Synopsis
	Description
	Parameters

	valKeyType
	Synopsis
	Description
	Parameters

	valMechanism
	Synopsis
	Description
	Parameters

	valObjClass
	Synopsis
	Description
	Parameters

	valSesState
	Synopsis
	Description
	Parameters

	Overview
	AddAttributeSets
	Synopsis
	Description
	Parameters
	On Successful Return

	at_assign
	Synopsis
	Description
	Parameters

	ConcatAttributeSets
	Synopsis
	Description
	Parameters

	CopyAttribute
	Synopsis
	Description
	Parameters
	On Successful Return

	DupAttributes
	Synopsis
	Description
	Parameters

	DupAttributeSet
	Synopsis
	Description
	Parameters

	ExtractAllAttributes
	Synopsis
	Description
	Parameters
	On Successful Return

	FindAttr
	Synopsis
	Description
	Parameters
	On Successful Return

	FreeAttributes
	Synopsis
	Description
	Parameters

	FreeAttributesNoClear
	Synopsis
	Description
	Parameters

	FreeAttributeSet
	Synopsis
	Description
	Parameters

	FreeMechData
	Synopsis
	Description
	Parameters

	genkMechanismTabFromMechanismTab
	Synopsis
	Description
	Parameters

	genkpMechanismTabFromMechanismTab
	Synopsis
	Description
	Parameters

	GetCryptokiVersion
	Synopsis
	Description
	Parameters
	On Successful Return

	GetObjAttrInfo
	Synopsis
	Description
	Parameters
	On Successful Return

	GetObjectClassAndKeyType
	Synopsis
	Description
	Parameters
	On Successful Return

	hashMech
	Synopsis
	Description
	Parameters

	intAttr
	Synopsis
	Description
	Parameters

	intAttrLookup
	Synopsis
	Description
	Parameters

	isBooleanAttr
	Synopsis
	Description
	Parameters

	isEnumeratedAttr
	Synopsis
	Description
	Parameters

	isGenMech
	Synopsis
	Description
	Parameters

	kgMech
	Synopsis
	Description
	Parameters

	isNumericAttr
	Synopsis
	Description
	Parameters

	isSensitiveAttr
	Synopsis
	Description
	Parameters

	KeyFromPin
	Synopsis
	Description
	Parameters
	On Successful Return

	kpgMech
	Synopsis
	Description
	Parameters

	ktFromMech
	Synopsis
	Description
	Parameters
	On Successful Return

	LookupMech
	Synopsis
	Description
	Parameters

	MatchAttributeSet
	Synopsis
	Description
	Parameters

	mechDeriveFromKt
	Synopsis
	Description
	Parameters
	On Successful Return

	mechFromKt
	Synopsis
	Description
	Parameters
	On Successful Return

	mechSignFromKt
	Synopsis
	Description
	Parameters
	On Successful Return

	mechSignRecFromKt
	Synopsis
	Description
	Parameters
	On Successful Return

	NewAttributeSet
	Synopsis
	Description
	Parameters

	numAttr
	Synopsis
	Description
	Parameters

	numAttrLookup
	Synopsis
	Description
	Parameters

	PvcFromPin
	Synopsis
	Description
	Parameters
	On Successful Return

	ReadAttr
	Synopsis
	Description
	Parameters
	On Successful Return

	TransferAttr
	Synopsis
	Description
	Parameters
	On Successful Return

	UnwrapDec
	Synopsis
	Description
	Parameters
	On Successful Return

	WrapEnc
	Synopsis
	Description
	Parameters
	On Successful Return

	WriteAttr
	Synopsis
	Description
	Parameters
	On Successful Return

	Overview
	hex2bin
	Synopsis
	Description
	Parameters

	bin2hex
	Synopsis
	Description
	Parameters

	bin2hexM
	Synopsis
	Description
	Parameters

	memdump
	Synopsis
	Description
	Parameters

	SetOddParity
	Synopsis
	Description
	Parameters

	isOddParity
	Synopsis
	Description
	Parameters

	Overview
	Return Codes
	HSMADM_GetTimeOfDay
	Synopsis
	Description
	Parameters

	HSMADM_AdjustTime
	Synopsis
	Description
	Parameters

	HSMADM_SetRtcStatus
	Synopsis
	Description
	Parameters

	HSMADM_GetRtcStatus
	Synopsis
	Description
	Parameters

	HSMADM_GetRtcAdjustAmount
	Synopsis
	Description
	Parameters

	HSMADM_GetRtcAdjustCount
	Synopsis
	Description
	Parameters

	HSMADM_GetHsmUsageLevel
	Synopsis
	Description
	Parameters

	Overview
	KM_EncodeECParamsP
	Parameters

	KM_EncodeECParams2M
	Parameters

	Overview
	CT_Gen_AUTH_Response

	A P P E N D I X Attribute Certificate
	OID Used to Indicate Key Digest Algorithm
	Glossary Common Terms and Phraseology
	Software Development Kits (SDKs)

