
ProtectToolkit J

Reference Guide

ii

© 2000-2014 SafeNet, Inc. All rights reserved.

Part Number 007-007556-006

Version 5.0

Trademarks

All intellectual property is protected by copyright. All trademarks and product names used or referred to are the

copyright of their respective owners. No part of this document may be reproduced, stored in a retrieval system or

transmitted in any form or by any means, electronic, mechanical, chemical, photocopy, recording or otherwise without

the prior written permission of SafeNet.

Disclaimer
SafeNet makes no representations or warranties with respect to the contents of this document and specifically disclaims

any implied warranties of merchantability or fitness for any particular purpose. Furthermore, SafeNet reserves the right

to revise this publication and to make changes from time to time in the content hereof without the obligation upon

SafeNet to notify any person or organization of any such revisions or changes.

We have attempted to make these documents complete, accurate, and useful, but we cannot guarantee them to be

perfect. When we discover errors or omissions, or they are brought to our attention, we endeavor to correct them in

succeeding releases of the product.

SafeNet invites constructive comments on the contents of this document. Send your comments, together with your

personal and/or company details to the address below:

SafeNet, Inc.

4690 Millennium Drive

Belcamp, Maryland USA 21017

Technical Support
If you encounter a problem while installing, registering or operating this product, please make sure that you have read

the documentation. If you cannot resolve the issue, please contact your supplier or SafeNet support. SafeNet support

operates 24 hours a day, 7 days a week. Your level of access to this service is governed by the support plan

arrangements made between SafeNet and your organization. Please consult this support plan for further information

about your entitlements, including the hours when telephone support is available to you.

Contact method Contact information

Address SafeNet, Inc.

4690 Millennium Drive

Belcamp, Maryland 21017

USA

Phone United States (800) 545-6608, (410) 931-7520

Australia and New Zealand +1 410-931-7520

China (86) 10 8851 9191

France 0825 341000

Germany 01803 7246269

India +1 410-931-7520

United Kingdom 0870 7529200, +1 410 931-7520

Web www.safenet-inc.com

Support and

Downloads

www.safenet-inc.com/Support

Provides access to the SafeNet Knowledge Base and quick downloads for various

products.

http://www.safenet-inc.com/
http://www.safenet-inc.com/Support

iv

Technical Support

Customer Portal

https://serviceportal.safenet-inc.com

Existing customers with a Technical Support Customer Portal account can log in to

manage incidents, get the latest software upgrades, and access the SafeNet

Knowledge Base.

Revision History

Revision Date Reason

A 27 October 2014 Release 5.0

https://serviceportal.safenet-inc.com/

ProtectToolkit J Reference Guide

iii

TABLE OF CONTENTS

TABLE OF CONTENTS III

C H A P T E R 1 INTRODUCTION 1

WHO SHOULD READ THIS DOCUMENT? 1

PRODUCT OVERVIEW 1

WORKING WITH SLOTS 1

RESOURCES MANAGEMENT 2

C H A P T E R 2 INSTALLATION 3

C H A P T E R 3 SUPPORTED CIPHERS 5

Cipher Modes ... 5

Padding ... 5

DES 6

DES Cipher Initialisation .. 6
DES Key ... 7
DES KeyGenerator ... 7
DES SecretKeyFactory ... 7
DES Example Code .. 8

DESEDE 8

DESede Cipher Initialisation .. 8
DESede Key ... 9
DESede KeyGenerator ... 10
DESede SecretKeyFactory ... 10
DESede Example Code .. 10

AES 11

AES Cipher Initialisation .. 11
AES Key ... 12
AES KeyGenerator ... 12
AES SecretKeyFactory ... 12
AES Example Code .. 13

IDEA 13

IDEA Cipher Initialisation .. 13
IDEA Key ... 14
IDEA KeyGenerator ... 14
IDEA SecretKeyFactory ... 14
IDEA Example Code .. 15

ProtectToolkit J Reference Guide

iv

CAST128 15

CAST128 Cipher Initialisation ... 15
CAST128 Key .. 16
CAST128 KeyGenerator .. 16
CAST128 SecretKeyFactory .. 17
CAST128 Example Code ... 17

RC2 18

RC2 Cipher Initialisation .. 18
RC2 Key ... 19
RC2 KeyGenerator ... 19
RC2 SecretKeyFactory ... 19
RC2 Example Code .. 20

RC4 20

RC4 Cipher Initialisation .. 20
RC4 Key ... 20
RC4 KeyGenerator ... 21
RC4 SecretKeyFactory ... 21
RC4 Example Code .. 22

PBE CIPHERS 22

PBE Cipher Initialization .. 22
PBE Key ... 23
PBE Example Code .. 23

RSA 24

RSA Cipher Initialisation ... 24
RSA Key ... 24
RSA KeyGenerator ... 25
RSA KeyPairFactory .. 25
RSA Example Code .. 26

C H A P T E R 4 CIPHER ALGORITHM PARAMETERS 27

C H A P T E R 5 SUPPORTED SIGNATURE ALGORITHMS 29

MD2WITHRSA 29

MD5WITHRSA 30

SHA1WITHRSA 30

SHA224WITHRSA 30

SHA256WITHRSA 31

SHA384WITHRSA 31

SHA512WITHRSA 31

ProtectToolkit J Reference Guide

v

SHA1WITHDSA 31

DSA KEY 31

DSA KeyGenerator... 32
DSA KeyPairFactory .. 32
DSA Example Code.. 33

PKCS#1RSA 33

X.509RSA 33

DSARAW 33

RIPEMD128WITHRSA 34

RIPEMD160WITHRSA 34

C H A P T E R 6 SUPPORTED MAC ALGORITHMS 35

DES MAC 35

DESEDE MAC 35

DESEDEX919 MAC 35

IDEA MAC 36

CAST128 MAC 36

RC2 36

HMAC/MD2 36

HMAC/MD5 36

HMAC/SHA1 36

HMAC/SHA224 37

HMAC/SHA256 37

HMAC/SHA384 37

HMAC/SHA512 37

Sample MAC Code ... 38

C H A P T E R 7 SUPPORTED MESSAGE DIGEST ALGORITHMS 39

ProtectToolkit J Reference Guide

vi

MD2 39

MD5 39

SHA-1 39

SHA-224 40

SHA-256 40

SHA-384 40

SHA-512 40

RIPEMD128 41

RIPEMD160 41

C H A P T E R 8 KEY GENERATION 43

SECRET KEYS 43

PUBLIC KEYS 44

RSA Keys ... 44
DSA Keys ... 44
Diffie-Hellman Keys .. 45
KeyAgreement Protocols .. 45
Diffie-Hellman KeyAgreement .. 45
Xor Key Derive .. 45

C H A P T E R 9 KEY MANAGEMENT 47

KEY STORAGE 47

KEY WRAPPING 48

KEY SPECIFICATIONS 49

C H A P T E R 1 0 RANDOM NUMBER GENERATION 51

C H A P T E R 1 1 BEST PRACTICE GUIDELINES 53

INTRODUCTION 53

PROTECTTOOLKIT J PROVIDER 53

KEY VALUE PROTECTION 53

ProtectToolkit J Reference Guide

vii

KEY USAGE PROTECTION 53

GENERAL PROTECTTOOLKIT J USAGE GUIDELINES 53

A P P E N D I X A REFERENCES 55

FIPS PUB 42-2 55

FIPS PUB 81 55

FIPS PUB 113 55

FIPS PUB 180-1 55

FIPS PUB 186-1 55

PKCS#1 55

PKCS#5 55

ProtectToolkit J Reference Guide

viii

THIS PAGE INTENTIONALLY LEFT BLANK

ProtectToolkit J Reference Guide Introduction

1

C H A P T E R 1

INTRODUCTION

Who Should Read This Document?

This document is highly technical in nature and is intended for Java software developers using

ProtectToolkit J.

Readers need to familiarise themselves with the contents of the SafeNet ProtectToolkit C

documentation.

Product Overview

ProtectToolkit J is a JCA/JCE Provider for Java
TM

 (from now on referred to as Java). It implements

a number of cryptographic algorithms which are supported by the SafeNet hardware encryption

adapter. The device supports encryption, message digests, key storage and message authentication.

This document assumes some knowledge of the Java programming language, the JCA/JCE application

programming interfaces, and additionally some understanding of the underlying adapter interface

which is based on PKCS#11 (Cryptoki). The ProtectToolkit C Administration Manual contains further

information on Cryptoki. For general information on the JCA/JCE please consult the JCA/JCE API

Overview and Tutorial (as well as the Javadoc API reference). Furthermore in general this document

does not discuss the security properties of the various algorithms, for information on these please

consult one of the standard cryptography texts.

ProtectToolkit J is known to the JCA/JCE by the provider name SAFENET. To request an algorithm

implemented by this provider, the string "SAFENET" should be passed to the getInstance()

method.

Working With Slots

ProtectToolkit J is capable of interfacing to multiple adapters. This is achieved by using different

“virtual providers” which map to each of the adapters. The virtual providers are named

“SAFENET.n” where n is the slot number as configured with the ProtectToolkit C runtime tools. The

special provider “SAFENET” always maps to the first slot.

A provider class exists (SAFENETProvider) for each of the slots in the package

au.com.safenet.crypto.provider.slot<n>. These providers may be statically installed. Alternatively

they may be added dynamically by calling the SAFENETProvider.addProviders() method.

ProtectToolkit J Reference Guide Introduction

2

Resources Management

NOTE: One important consideration when using the SafeNet provider is the management of resources. In

general creation of a provider instance, e.g. a Cipher object, Key object, will result in the consumption of

resources within the adapter. These resources are much less than that of the main JVM and so the garbage

collection is not tuned to its needs. Unfortunately this means that it is up to the application programmer to

manage.

There are two main techniques that may be employed. The first is to explicitly track resource usage and

invoke garbage collector on certain thresholds. For example after the creation of 100 “session” Key objects

which are only required for a short transaction then discarded it may be necessary to run the garbage

collector to clean up those unused instances.

The second technique requires some tuning of the Cryptoki configuration on the adapter. If ProtectToolkit J

cannot create a new “session” with the adapter it invokes the garbage collection (in the hope that there are

some old unused sessions awaiting clean up). By reducing the maximum number of sessions allowed by the

adapter it is possible to tune the adapter to the applications requirements so that explicit resource

management is not required.

ProtectToolkit J Reference Guide Installation

3

C H A P T E R 2

INSTALLATION

The Provider may be statically installed into the Java Runtime Environment by adding an entry, similar

to the following, into the java.security properties file located in

$JAVA_HOME/lib/security/java.security

security.provider.2 = au.com.safenet.crypto.provider.SAFENETProvider

Alternatively, the Provider may be installed dynamically by an application at runtime by using the

java.security.Security.addProvider() method, for example:

Security.addProvider(new au.com.safenet.crypto.provider.SAFENETProvider());

If the Provider is to be used on a specific Slot (as described in previous Working With Slots section)

then the format for the above references should be:

au.com.safenet.crypto.provider.slot<n>.SAFENETProvider

ProtectToolkit J Reference Guide Installation

4

THIS PAGE INTENTIONALLY LEFT BLANK

ProtectToolkit J Reference Guide Supported Ciphers

5

C H A P T E R 3

SUPPORTED CIPHERS

ProtectToolkit J includes support for symmetric block and stream ciphers as well as support for the

asymmetric RSA cipher. The following algorithms through the javax.crypto.Cipher interface:

Cipher Name Key Length

(bits)

Block

Size (bits)

Cipher

Modes

Padding

DES 64 64 ECB,CBC PKCS5Padding,

NoPadding

DESede 128,192 64 ECB,CBC PKCS5Padding,

NoPadding

AES 128,182,256 64 ECB,CBC PKCS5 Padding,

NoPadding

IDEA 128 64 ECB,CBC PKCS5Padding,

NoPadding

CAST128 8-128 64 ECB,CBC PKCS5Padding,

NoPadding

RC2 0-1024 64 ECB,CBC PKCS5Padding,

NoPadding

RC4 8-2048 N/A ECB NoPadding

PBEWithMD2AndDES 64 64 N/A N/A

PBEWithMD5AndDES 64 64 N/A N/A

PBEWithMD5AndCAST 128 128 N/A N/A

PBEWithSHA1AndCAST 128 128 N/A N/A

PBEWithSHA1AndTripleDES 128 128 N/A N/A

RSA 512-4096 variable ECB PCKS1Padding,

NoPadding

Here, the Cipher name is the name of the Cipher as known to the JCE. To request a particular

algorithm, pass this name to the Cipher.getInstance() method. Some algorithms support

different key length and the supported key lengths are listed in the above table. The block size is the

size of data that is processed by the cipher. During encryption the amount of data processed must be a

multiple of this size (unless padding is employed see below) and the encrypted output will therefore be

a multiple of this size.

The ECB mode is Electronic codebook mode and CBC is cipher block chaining as defined in FIPS

PUB 81: DES Modes of Operation. All ciphers will default to ECB mode.

PKCS#5 padding is defined in PKCS#5 and is the standard padding applied to block ciphers with a

block size of 64 bits. DES, DESede, IDEA, CAST128 and RC2 all default to "NoPadding". When

PKCS5Padding is employed with a block cipher, the input data for encryption can be any length and

will be padded to the appropriate length before encryption.

PKCS#1 padding is defined in PKCS#1 and is the standard padding mechanism for the RSA cipher.

When this padding mechanism is used, PKCS#1 padding will be performed on each block encrypted.

For public-key encryption PKCS#1 type 1 blocks will be created, and for private-key encryption type 2

blocks will be created. When “NoPadding” is requested, no PKCS#1 packing is applied to the data and

the processing is performed as per the X.509 (raw) RSA specification.

ProtectToolkit J Reference Guide Supported Ciphers

6

DES

This algorithm is a 64-bit block cipher with a 64-bit key, however the effective key size is only 56-bit

as 8 bits of the key are used for parity bits. The algorithm described in FIPS PUB 46-2 (see

http://www.itl.nist.gov/div897/pubs/fip46-2.htm).

DES Cipher Initialisation

This cipher supports both ECB and CBC modes, and may be used with NoPadding or

PKCS5Padding. To create an instance of this class use the Cipher.getInstance() method

with “SAFENET” as the provider and one of the following strings as the transformation:

 DES

 DES/ECB/NoPadding

 DES/ECB/PKCS5Padding

 DES/CBC/NoPadding

 DES/CBC/PKCS5Padding

Using the “DES” transformation the Cipher will default to ECB and NoPadding.

If the NoPadding padding mode is selected the input data must be a multiple of 8 bytes, otherwise the

encrypted or decrypted result will be truncated. In PKCS5Padding arbitrary data lengths are

accepted, the cipher-text will be padded to a multiple of 8 bytes as described in PKCS#5. The

decryption process will remove the padding from the data so that the correct plain text is returned.

This Cipher will accept a javax.crypto.spec.SecretKeySpec or

au.com.safenet.crypto.provider.CryptokiSecretKey as the key parameter during

initialisation. For details on using keys with the DES Cipher see section 2.1.2.

When the Cipher is intialised in CBC mode the Initialisation Vector (IV) may be specified by passing

a javax.crypto.spec.IvParameterSpec instance to the Cipher.init() method. When

decrypting in this mode a valid IV must be specified in the Cipher.init() method, for encryption

however a random IV will be generated if none is specified (the IV may be retrieved using the

Cipher.getIV() method).

The IV may be provided as a java.security.AlgorithmParameters or a

javax.crypto.spec.IvParameterSpec instance. If the initialisation is done using an

AlgorithmParameters instance it must be convertible to an IvParameterSpec using the

AlgorithmParameters.getParameterSpec() method.

This Cipher does not support the Cipher.getParameters() method, this method will always

return null. The only supported parameter for this class is the initialisation vector which may be

determined using the Cipher.getIV() method.

http://www.itl.nist.gov/div897/pubs/fip46-2.htm

ProtectToolkit J Reference Guide Supported Ciphers

7

DES Key

The DES Cipher requires either a SecretKeySpec or ProtectToolkit J provider DES Key during

initialisation.

To create an appropriate SecretKeySpec simple pass an 8 byte array and the algorithm name

“DES” to the SecretKeySpec constructor. For example:

byte[] keyBytes = { 0x01, 0x23, 0x45, 0x67,

 0x89, 0xAB, 0xCD, 0xEF };

SecretKeySpec desKey = new SecretKeySpec(keyBytes, “DES”);

Alternatively, a random ProtectToolkit J DES key can be generated randomly using the

KeyGenerator as described in section 2.1.3, or from a provider independent form as described in

section 2.1.4. The DES key may also be stored in the ProtectToolkit J KeyStore as described in section

8.1.

The ProtectToolkit J DES key will return the string “DES” as its algorithm name, “RAW” as its

encoding. However, since the key is stored within the hardware the actual key encoding may not be

available.

The key value can only be extracted from a key if the associated Cryptoki key is not marked as

sensitive. The keys generated in ProtectToolkit J will always be marked as sensitive, however it is

possible to access any Cryptoki keys stored on the device and it is possible that the attributes of these

keys have been modified.

DES KeyGenerator

The DES KeyGenerator is used to generate random DES keys. The generated key will be a

hardware key that has the Cryptoki CKA_EXTRACTABLE and CKA_SENSITIVE attributes set. Since

these keys are marked as sensitive their getEncoded() method will return null.

During initialisation the strength and random parameters are ignored as all keys are 64-bits and

the hardware includes a cryptographically-secure random source.

Keys generated using the KeyGenerator are not thread-safe. That is, a ProtectToolkit J Key

instance may only be used by a single Cipher instance (as well as a single MAC instance) at any given

time. See section 7.0 for a discussion on threading and ProtectToolkit J keys.

DES SecretKeyFactory

The DES SecretKeyFactory is used to construct ProtectToolkit J keys from their provider-

independent form. The provider independent form of the DES key is the

javax.crypto.spec.DESKeySpec class.

Keys generated using the SecretKeyFactory are not thread-safe. That is, a ProtectToolkit J Key

instance may only be used by a single Cipher instance (as well as a single MAC instance) at any given

time. See section 7.0 for a discussion on threading and ProtectToolkit J keys.

For example, to create the provider based key from it’s provider independent form:
byte[] keyBytes = { 0x01, 0x23, 0x45, 0x67,

 0x89, 0xAB, 0xCD, 0xEF };

DESKeySpec desKeySpec = new DESKeySpec(keyBytes);

SecretKeyFactory desKeyFact =

 SecretKeyFactory.getInstance(“DES”, “SAFENET”);

SecretKey desKey = desKeyFact.generateSecret(desKeySpec);

ProtectToolkit J Reference Guide Supported Ciphers

8

DES Example Code

The following example code will create a random DES key, then create a DES cipher in CBC mode

with PKCS5Padding. Next it initialises the cipher for encryption using the newly created key, we

then save the initialisation vector and encrypt the string "hello world".

To perform the decryption we re-initialize the cipher in decrypt mode, with the same key and the

initialization vector that was created during encryption.

KeyGenerator keyGen = KeyGenerator.getInstance("DES",

 "SAFENET");

Key desKey = keyGen.generateKey();

Cipher desCipher = Cipher.getInstance("DES/CBC/PKCS5Padding",

 "SAFENET");

desCipher.init(Cipher.ENCRYPT_MODE, desKey);

byte[] iv = desCipher.getIV();

byte[] cipherText = desCipher.doFinal(

 "hello world".getBytes());

desCipher.init(Cipher.DECRYPT_MODE, desKey,

 new IvParameterSpec(iv));

byte[] plainText = desCipher.doFinal(cipherText);

DESede

This algorithm, known as triple-DES, is a 64-bit block cipher with a 192-bit key, although 24 bits of

the key are parity bits. This algorithm works by splitting the 192-bit key into three 64-bit keys and then

applying the basic DES cipher, firstly in the encrypt mode, secondly in the decrypt mode and finally in

the encrypt mode. The algorithm is described in ANSI X9.17. It is also possible to use a double length

key (128 bits), in this case the first key is re-used as the final key.

DESede Cipher Initialisation

This cipher supports both ECB and CBC modes, and may be used with NoPadding or

PKCS5Padding. To create an instance of this class use the Cipher.getInstance() method

with “SAFENET” as the provider and one of the following strings as the transformation:

 DESede

 DESede/ECB/NoPadding

 DESede/ECB/PKCS5Padding

 DESede/CBC/NoPadding

 DESede/CBC/PKCS5Padding

Using the “DESede” transformation the Cipher will default to ECB and NoPadding.

If the NoPadding padding mode is selected the input data must be a multiple of 8 bytes, otherwise the

encrypted or decrypted result will be truncated. In PKCS5Padding arbitrary data lengths are

accepted, the cipher-text will be padded to a multiple of 8 bytes as described in PKCS#5. The

decryption process will remove the padding from the data so that the correct plain text is returned.

ProtectToolkit J Reference Guide Supported Ciphers

9

This Cipher will accept a javax.crypto.spec.SecretKeySpec or

au.com.safenet.crypto.provider.CryptokiSecretKey as the key parameter during

initialisation. For details on using keys with the DESede Cipher see below for DESede Example

Code.

When the Cipher is intialised in CBC mode the Initialisation Vector (IV) may be specified by passing

a javax.crypto.spec.IvParameterSpec instance to the Cipher.init() method. When

decrypting in this mode a valid IV must be specified in the Cipher.init() method, for encryption

however a random IV will be generated if none is specified (the IV may be retrieved using the

Cipher.getIV() method).

The IV may also be provided as a java.security.AlgorithmParameters or a

javax.crypto.spec.IvParameterSpec instance. If the initialisation is done using an

AlgorithmParameters instance it must be convertible to an IvParameterSpec using the

AlgorithmParameters.getParameterSpec() method.

This Cipher does not support the Cipher.getParameters() method, this method will always

return null. The only supported parameter for this class is the initialisation vector which may be

determined using the Cipher.getIV() method.

DESede Key

The DESede Cipher requires either a SecretKeySpec or ProtectToolkit J provider DESede Key

during initialisation. The DESede key may be either a double or triple length key.

To create an appropriate SecretKeySpec simple pass a 16 or 24-byte array and the algorithm name

“DESede” to the SecretKeySpec constructor. For example:

byte[] keyBytes = { 0x41, 0x22, 0x35, 0x17,

 0x39, 0xDB, 0xDC, 0xEF

 0x11, 0x93, 0x55, 0x67,

 0x39, 0xAC, 0xCD, 0xFF };

SecretKeySpec desEdeKey = new SecretKeySpec(keyBytes,

 “DESede”);

Alternatively, a random ProtectToolkit J DESede key can be generated using the KeyGenerator as

described in section 2.2.3, or from a provider independent form as described in section 2.2.4. The

DESede key may also be stored in the ProtectToolkit J KeyStore as described in section 8.1.

The ProtectToolkit J DESede key will return the string “DESede” as its algorithm name, “RAW” as its

encoding. However, since the key is stored within the hardware the actual key encoding may not be

available.

The key value can only be extracted from a key if the associated Cryptoki key is not marked as

sensitive. The keys generated in ProtectToolkit J will always be marked as sensitive, however it is

possible to access any Cryptoki keys stored on the device and it is possible that the attributes of these

keys have been modified.

ProtectToolkit J Reference Guide Supported Ciphers

10

DESede KeyGenerator

The DESede KeyGenerator is used to generate random DESede double or triple length keys. The

generated key will be a hardware key that has the Cryptoki CKA_EXTRACTABLE and

CKA_SENSITIVE attributes set. Since these keys are marked as sensitive their getEncoded()

method will return null.

During initialisation the strength parameter may be 128 to specify a double length key or 196 to

specify a triple length key. If no strength is specified a triple length key will be generated. The

random parameter is ignored as the hardware includes a cryptographically-secure random source.

Keys generated using the KeyGenerator are not thread-safe. That is, a ProtectToolkit J Key

instance may only be used by a single Cipher instance (as well as a single MAC instance) at any given

time. See section 7.0 for a discussion on threading and ProtectToolkit J keys.

DESede SecretKeyFactory

The DESede SecretKeyFactory is used to construct ProtectToolkit J keys from their provider-

independent form. The provider independent form of the DESede key is the

javax.crypto.spec.DESedeKeySpec class.

Keys generated using the SecretKeyFactory are not thread-safe. That is, a ProtectToolkit J Key

instance may only be used by a single Cipher instance (as well as a single MAC instance) at any given

time. See section 7.0 for a discussion on threading and ProtectToolkit J keys.

For example, to create the provider based key from it’s provider independent form (in this case we are

generating a triple length key, specify 16 bytes for a double length key):

byte[] keyBytes = { 0x41, 0x22, 0x35, 0x17,

 0x39, 0xDB, 0xDC, 0xEF,

 0x39, 0xDF, 0x28, 0x94,

 0x11, 0x93, 0x55, 0x67,

 0x11, 0x93, 0x55, 0x67,

 0x39, 0xAC, 0xCD, 0xFF };

DESedeKeySpec desEdeKeySpec = new DESedeKeySpec(keyBytes);

SecretKeyFactory desEdeKeyFact =

 SecretKeyFactory.getInstance(“DESede”, “SAFENET”);

SecretKey desEdeKey =

 desEdeKeyFact.generateSecret(desEdeKeySpec);

DESede Example Code

See section 2.1.5 for the simple DES example, to convert the example to use DESede simply use

“DESede” in place of “DES”.

ProtectToolkit J Reference Guide Supported Ciphers

11

AES

This algorithm is an implementation of AES which is a 64bit block cipher with a variable length key,

either 128, 192 or 256 bits long.

AES Cipher Initialisation

This cipher supports both ECB and CBC modes, and may be used with NoPadding or

PKCS5Padding. To create an instance of this class use the Cipher.getInstance() method

with “SAFENET” as the provider and one of the following strings as the transformation:

 AES

 AES/ECB/NoPadding

 AES/CBC/NoPadding

 AES/CBC/PKCS5Padding

Using the “AES” transformation the Cipher will default to ECB and NoPadding.

If the NoPadding padding mode is selected the input data must be a multiple of 8 bytes, otherwise the

encrypted or decrypted result will be truncated. In PKCS5Padding arbitrary data lengths are

accepted, the cipher-text will be padded to a multiple of 8 bytes as described in PKCS#5. The

decryption process will remove the padding from the data so that the correct plain text is returned.

This Cipher will accept a javax.crypto.spec.SecretKeySpec or

au.com.safenet.crypto.provider.CryptokiSecretKey as the key parameter during

initialisation. For details on using keys with the AES Cipher see section 2.3.2.

When the Cipher is intialised in CBC mode the Initialisation Vector (IV) may be specified by passing

a javax.crypto.spec.IvParameterSpec instance to the Cipher.init() method. When

decrypting in this mode a valid IV must be specified in the Cipher.init() method, for encryption

however a random IV will be generated if none is specified (the IV may be retrieved using the

Cipher.getIV() method).

The IV may also be provided as a java.security.AlgorithmParameters or a

javax.crypto.spec.IvParameterSpec instance. If the initialisation is done using an

AlgorithmParameters instance it must be convertible to an IvParameterSpec using the

AlgorithmParameters.getParameterSpec() method.

This Cipher does not support the Cipher.getParameters() method, this method will always

return null. The only supported parameter for this class is the initialisation vector which may be

determined using the Cipher.getIV() method.

ProtectToolkit J Reference Guide Supported Ciphers

12

AES Key

The AES Cipher requires either a SecretKeySpec or ProtectToolkit J provider AES Key during

initialisation. AES keys can either be 128, 192 or 256 bits long.

To create an appropriate SecretKeySpec simply pass a 16, 24 or 32 byte array and the algorithm

name “AES” to the SecretKeySpec constructor.

For example:

byte[] keyBytes = { 0x41, 0x22, 0x35, 0x17,

 0x39, 0xB6, 0xDC, 0x34,

 0x11, 0x93, 0x55, 0x67,

 0x39, 0xAC, 0xCD, 0xFF };

SecretKeySpec aesKey = new SecretKeySpec(keyBytes, “AES”);

Alternatively, a random ProtectToolkit J AES key can be generated using the KeyGenerator as

described in section 2.3.3, or, a provider independent form as described in section 2.3.4. The AES key

may also be stored in the ProtectToolkit J KeyStore as described in section 8.1.

The ProtectToolkit J AES key will return the string “AES” as its algorithm name, “RAW” as its

encoding. However, since the key is stored within the hardware the actual key encoding may not be

available.

The key value can only be extracted from a key if the associated Cryptoki key is not marked as

sensitive. The keys generated in ProtectToolkit J will always be marked as sensitive, however it is

possible to access any Cryptoki keys stored on the device and it is possible that the attributes of these

keys have been modified.

AES KeyGenerator

The AES KeyGenerator is used to generate random AES keys. The generated key will be a

hardware key that has the Cryptoki CKA_EXTRACTABLE and CKA_SENSITIVE attributes set. Since

these keys are marked as sensitive their getEncoded() method will return null.

During initialisation the strength parameter may only be one 128, 192 or 256 bits, with the default

size being 128 bits. The random parameter is ignored as the hardware includes a cryptographically-

secure random source

Keys generated using the KeyGenerator are not thread-safe. That is, a ProtectToolkit J Key

instance may only be used by a single Cipher instance (as well as a single MAC instance) at any given

time. See section 7.0 for a discussion on threading and ProtectToolkit J keys.

AES SecretKeyFactory

The AES SecretKeyFactory is used to construct ProtectToolkit J keys from their provider-

independent form. The provider independent form of the AES key is the

au.com.safenet.crypto.spec.AESKeySpec class.

Keys generated using the SecretKeyFactory are not thread-safe. That is, a ProtectToolkit J Key

instance may only be used by a single Cipher instance (as well as a single MAC instance) at any given

time. See section 7.0 for a discussion on threading and ProtectToolkit J keys.

ProtectToolkit J Reference Guide Supported Ciphers

13

For example, to create the provider based key from it’s provider independent form:

byte[] keyBytes = { 0x41, 0x22, 0x35, 0x17,

 0x39, 0xDB, 0xDC, 0xEF

 0x11, 0x93, 0x55, 0x67,

 0x39, 0xAC, 0xCD, 0xFF };

AESKeySpec ideaKeySpec = new AESKeySpec(keyBytes);

SecretKeyFactory aesKeyFact =

 SecretKeyFactory.getInstance(“AES”, “SAFENET”);

SecretKey aesKey = aesKeyFact.generateSecret(aesKeySpec);

AES Example Code

See above DES Example Code for the simple DES example, to convert the example to use AES simply

use “AES” in place of “DES”.

IDEA

This algorithm is a 64-bit block cipher with a 128-bit key. This algorithm is patented in Europe and the

United States by Ascom-Tech Ag, (see http://www.ascom.com/), however no license fee is required for

non-commercial use. A description of the cipher may be found at

http://www.ascom.ch/infosec/idea/techspecs.html.

IDEA Cipher Initialisation

This cipher supports both ECB and CBC modes, and may be used with NoPadding or

PKCS5Padding. To create an instance of this class use the Cipher.getInstance() method

with “SAFENET” as the provider and one of the following strings as the transformation:

 IDEA

 IDEA/ECB/NoPadding

 IDEA/ECB/PKCS5Padding

 IDEA/CBC/NoPadding

 IDEA/CBC/PKCS5Padding

Using the “IDEA” transformation the Cipher will default to ECB and NoPadding.

If the NoPadding padding mode is selected the input data must be a multiple of 8 bytes, otherwise the

encrypted or decrypted result will be truncated. In PKCS5Padding arbitrary data lengths are

accepted, the cipher-text will be padded to a multiple of 8 bytes as described in PKCS#5. The

decryption process will remove the padding from the data so that the correct plain text is returned.

This Cipher will accept a javax.crypto.spec.SecretKeySpec or

au.com.safenet.crypto.provider.CryptokiSecretKey as the key parameter during

initialisation. For details on using keys with the IDEA Cipher see section 2.3.2.

When the Cipher is intialised in CBC mode the Initialisation Vector (IV) may be specified by passing

a javax.crypto.spec.IvParameterSpec instance to the Cipher.init() method. When

decrypting in this mode a valid IV must be specified in the Cipher.init() method, for encryption

however a random IV will be generated if none is specified (the IV may be retrieved using the

Cipher.getIV() method).

http://www.ascom.com/
http://www.ascom.ch/infosec/idea/techspecs.html

ProtectToolkit J Reference Guide Supported Ciphers

14

The IV may also be provided as a java.security.AlgorithmParameters or a

javax.crypto.spec.IvParameterSpec instance. If the initialisation is done using an

AlgorithmParameters instance it must be convertible to an IvParameterSpec using the

AlgorithmParameters.getParameterSpec() method.

This Cipher does not support the Cipher.getParameters() method, this method will always

return null. The only supported parameter for this class is the initialisation vector which may be

determined using the Cipher.getIV() method.

IDEA Key

The IDEA Cipher requires either a SecretKeySpec or ProtectToolkit J provider IDEA Key

during initialisation. The IDEA key is always 128 bits long.

To create an appropriate SecretKeySpec simple pass a 16 byte array and the algorithm name

“IDEA” to the SecretKeySpec constructor. For example:

byte[] keyBytes = { 0x41, 0x22, 0x35, 0x17,

 0x39, 0xB6, 0xDC, 0x34,

 0x11, 0x93, 0x55, 0x67,

 0x39, 0xAC, 0xCD, 0xFF };

SecretKeySpec ideaKey = new SecretKeySpec(keyBytes, “IDEA”);

Alternatively, a random ProtectToolkit J IDEA key can be generated using the KeyGenerator as

described in section 2.3.3, or, a provider independent form as described in section 2.3.4. The IDEA

key may also be stored in the ProtectToolkit J KeyStore as described in section 8.1.

The ProtectToolkit J IDEA key will return the string “IDEA” as its algorithm name, “RAW” as its

encoding. However, since the key is stored within the hardware the actual key encoding may not be

available.

The key value can only be extracted from a key if the associated Cryptoki key is not marked as

sensitive. The keys generated in ProtectToolkit J will always be marked as sensitive, however it is

possible to access any Cryptoki keys stored on the device and it is possible that the attributes of these

keys have been modified.

IDEA KeyGenerator

The IDEA KeyGenerator is used to generate random IDEA keys. The generated key will be a

hardware key that has the Cryptoki CKA_EXTRACTABLE and CKA_SENSITIVE attributes set. Since

these keys are marked as sensitive their getEncoded() method will return null.

During initialisation the strength and random parameters are ignored as all keys are 128-bits and

the hardware includes a cryptographically-secure random source.

Keys generated using the KeyGenerator are not thread-safe. That is, a ProtectToolkit J Key

instance may only be used by a single Cipher instance (as well as a single MAC instance) at any given

time. See section 7.0 for a discussion on threading and ProtectToolkit J keys.

IDEA SecretKeyFactory

The IDEA SecretKeyFactory is used to construct ProtectToolkit J keys from their provider-

independent form. The provider independent form of the IDEA key is the

au.com.safenet.crypto.spec.IDEAKeySpec class.

ProtectToolkit J Reference Guide Supported Ciphers

15

Keys generated using the SecretKeyFactory are not thread-safe. That is, a ProtectToolkit J Key

instance may only be used by a single Cipher instance (as well as a single MAC instance) at any given

time. See section 7.0 for a discussion on threading and ProtectToolkit J keys.

For example, to create the provider based key from it’s provider independent form:

byte[] keyBytes = { 0x41, 0x22, 0x35, 0x17,

 0x39, 0xDB, 0xDC, 0xEF

 0x11, 0x93, 0x55, 0x67,

 0x39, 0xAC, 0xCD, 0xFF };

IDEAKeySpec ideaKeySpec = new IDEAKeySpec(keyBytes);

SecretKeyFactory ideaKeyFact =

 SecretKeyFactory.getInstance(“IDEA”, “SAFENET”);

SecretKey ideaKey = ideaKeyFact.generateSecret(ideaKeySpec);

IDEA Example Code

See section 2.1.5 for the simple DES example, to convert the example to use IDEA simply use “IDEA”

in place of “DES”.

CAST128

This algorithm is an implementation of CAST-128 which is a 64-bit block cipher with a variable length

key from 8 to 128 bits. The algorithm is described in RFC-2144, see

http://www.ietf.org/rfc/rfc2144.txt.

CAST128 Cipher Initialisation

This cipher supports both ECB and CBC modes, and may be used with NoPadding or

PKCS5Padding. To create an instance of this class use the Cipher.getInstance() method

with “SAFENET” as the provider and one of the following strings as the transformation:

 CAST128

 CAST128/ECB/NoPadding

 CAST128/ECB/PKCS5Padding

 CAST128/CBC/NoPadding

 CAST128/CBC/PKCS5Padding

Using the “CAST128” transformation the Cipher will default to ECB and NoPadding.

If the NoPadding padding mode is selected the input data must be a multiple of 8 bytes, otherwise the

encrypted or decrypted result will be truncated. In PKCS5Padding arbitrary data lengths are

accepted, the cipher-text will be padded to a multiple of 8 bytes as described in PKCS#5. The

decryption process will remove the padding from the data so that the correct plain text is returned.

http://www.ietf.org/rfc/rfc2144.txt

ProtectToolkit J Reference Guide Supported Ciphers

16

This Cipher will accept a javax.crypto.spec.SecretKeySpec or

au.com.safenet.crypto.provider.CryptokiSecretKey as the key parameter during

initialisation. For details on using keys with the CAST128 Cipher see CAST128 Key above

When the Cipher is intialised in CBC mode the Initialisation Vector (IV) may be specified by passing

a javax.crypto.spec.IvParameterSpec instance to the Cipher.init() method. When

decrypting in this mode a valid IV must be specified in the Cipher.init() method, for encryption

however a random IV will be generated if none is specified (the IV may be retrieved using the

Cipher.getIV() method).

The IV may also be provided as a java.security.AlgorithmParameters or a

javax.crypto.spec.IvParameterSpec instance. If the initialisation is done using an

AlgorithmParameters instance it must be convertible to an IvParameterSpec using the

AlgorithmParameters.getParameterSpec() method.

This Cipher does not support the Cipher.getParameters() method, this will method return

null. The only supported parameter for this class is the initialisation vector which may be determined

using the Cipher.getIV() method.

CAST128 Key

The CAST128 Cipher requires either a SecretKeySpec or ProtectToolkit J provider CAST128

Key during initialisation. The CAST128 key may be any length of 8 to 128 bits.

To create an appropriate SecretKeySpec simple pass an array of up to 16 bytes and the algorithm

name “CAST128” to the SecretKeySpec constructor. For example:

byte[] keyBytes = { 0x41, 0x22, 0x35, 0x17,

 0x39, 0xDF, 0x28, 0x94,

 0x11, 0x93, 0x55, 0x67,

 0x39, 0xAC, 0xCD, 0xFF };

SecretKeySpec castKey = new SecretKeySpec(keyBytes,

 “CAST128”);

Alternatively, a random ProtectToolkit J CAST128 key can be generated using the KeyGenerator

as described in section 2.4.3, or from a provider independent form as described in section 2.4.4. The

CAST128 key may also be stored in the ProtectToolkit J KeyStore as described in section 8.1.

The ProtectToolkit J CAST128 key will return the string “CAST128” as its algorithm name, “RAW” as

its encoding. However, since the key is stored within the hardware the actual key encoding may not be

available.

The key value can only be extracted from a key if the associated Cryptoki key is not marked as

sensitive. The keys generated in ProtectToolkit J will always be marked as sensitive, however it is

possible to access any Cryptoki keys stored on the device and it is possible that the attributes of these

keys have been modified.

CAST128 KeyGenerator

The CAST128 KeyGenerator is used to generate random CAST128. The generated key will be a

hardware key that has the Cryptoki CKA_EXTRACTABLE and CKA_SENSITIVE attributes set. Since

these keys are marked as sensitive their getEncoded() method will return null.

During initialisation the strength parameter may be any length from 8 to 128. The default key size

is 128 bits. The random parameter is ignored as the hardware includes a cryptographically-secure

random source.

ProtectToolkit J Reference Guide Supported Ciphers

17

Keys generated using the KeyGenerator are not thread-safe. That is, a ProtectToolkit J Key

instance may only be used by a single Cipher instance (as well as a single MAC instance) at any given

time. See section 7.0 for a discussion on threading and ProtectToolkit J keys.

CAST128 SecretKeyFactory

The CAST128 SecretKeyFactory is used to construct ProtectToolkit J keys from their provider-

independent form. The provider independent form of the CAST128 key is the

au.com.safenet.crypto.spec.CASTKeySpec class.

Keys generated using the SecretKeyFactory are not thread-safe. That is, a ProtectToolkit J Key

instance may only be used by a single Cipher instance (as well as a single MAC instance) at any given

time. See section 7.0 for a discussion on threading and ProtectToolkit J keys.

For example, to create the provider based key from it’s provider independent form:

byte[] keyBytes = { 0x41, 0x22, 0x35, 0x17,

 0x39, 0xDB, 0xDC, 0xEF

 0x11, 0x93, 0x55, 0x67,

 0x39, 0xAC, 0xCD, 0xFF };

CAST128KeySpec castKeySpec = new CAST128KeySpec(keyBytes);

SecretKeyFactory castKeyFact =

 SecretKeyFactory.getInstance(“CAST128”, “SAFENET”);

SecretKey castKey=castKeyFact.generateSecret(castEdeKeySpec);

CAST128 Example Code

See DES Example Code for the simple DES example, to convert the example to use CAST128 simply

use “CAST128” in place of “DES”.

ProtectToolkit J Reference Guide Supported Ciphers

18

RC2

This algorithm is a 64-bit block cipher with a variable length key usually 40-bit or 128-bit. RC2 was

designed by Ron Rivest and is a trademark of RSA Data Security. For more information on this

algorithm see RFC-2268.

RC2 Cipher Initialisation

This cipher supports both ECB and CBC modes, and may be used with NoPadding or

PKCS5Padding. To create an instance of this class use the Cipher.getInstance() method

with “SAFENET” as the provider and one of the following strings as the transformation:

 RC2

 RC2/ECB/NoPadding

 RC2/ECB/PKCS5Padding

 RC2/CBC/NoPadding

 RC2/CBC/PKCS5Padding

Using the “RC2” transformation the Cipher will default to ECB and NoPadding.

If the NoPadding padding mode is selected the input data must be a multiple of 8 bytes, otherwise the

encrypted or decrypted result will be truncated. In PKCS5Padding arbitrary data lengths are

accepted, the cipher-text will be padded to a multiple of 8 bytes as described in PKCS#5. The

decryption process will remove the padding from the data so that the correct plain text is returned.

This Cipher will accept a javax.crypto.spec.SecretKeySpec or

au.com.safenet.crypto.provider.CryptokiSecretKey as the key parameter during

initialisation. For details on using keys with the RC2 Cipher see section 2.5.2.

The RC2 Cipher may also be initialised with an instance of the

javax.crypto.spec.RC2ParameterSpec class. With this class it is possible to supply an

initialisation vector and an effective key size. If the Cipher is not initialised in this way the effective

key size will default to 128.

The IV may also be provided as a java.security.AlgorithmParameters instance. If the

initialisation is done using an AlgorithmParameters instance, it must be convertible to an

IvParameterSpec using the AlgorithmParameters.getParameterSpec() method.

This Cipher does not support the Cipher.getParameters() method, this method will always

return null. The only supported parameter for this class is the initialisation vector which may be

determined using the Cipher.getIV() method.

ProtectToolkit J Reference Guide Supported Ciphers

19

RC2 Key

The RC2 Cipher requires either a SecretKeySpec or ProtectToolkit J provider RC2 Key during

initialisation. The RC2 key may be any length of 8 to 1024 bits.

To create an appropriate SecretKeySpec simple pass an array of up to 128 bytes and the algorithm

name “RC2” to the SecretKeySpec constructor. For example:

byte[] keyBytes = { 0x41, 0x22, 0x35, 0x17,

 0x39, 0xDF, 0x28, 0x94,

 0x11, 0x93, 0x55, 0x67,

 0x39, 0xAC, 0xCD, 0xFF };

SecretKeySpec rc2Key = new SecretKeySpec(keyBytes, “RC2”);

Alternatively, a random ProtectToolkit J RC2 key can be generated using the KeyGenerator as

described in section 2.5.3, or from a provider independent form as described in section 2.5.4. The RC2

key may also be stored in the ProtectToolkit J KeyStore as described in section 8.1.

The ProtectToolkit J RC2 key will return the string “RC2” as its algorithm name, “RAW” as its

encoding. However, since the key is stored within the hardware the actual key encoding may not be

available.

The key value can only be extracted from a key if the associated Cryptoki key is not marked as

sensitive. The keys generated in ProtectToolkit J will always be marked as sensitive, however it is

possible to access any Cryptoki keys stored on the device and it is possible that the attributes of these

keys have been modified.

RC2 KeyGenerator

The RC2 KeyGenerator is used to generate random RC2. The generated key will be a hardware key

that has the Cryptoki CKA_EXTRACTABLE and CKA_SENSITIVE attributes set. Since these keys are

marked as sensitive their getEncoded() method will return null.

During initialisation the strength parameter may be any multiple of 8 of 8 to 1024 inclusive. The

default key size is 128 bits. The random parameter is ignored as the hardware includes a

cryptographically-secure random source.

Keys generated using the KeyGenerator are not thread-safe. That is, a ProtectToolkit J Key

instance may only be used by a single Cipher instance (as well as a single MAC instance) at any given

time. See section 7.0 for a discussion on threading and ProtectToolkit J keys.

RC2 SecretKeyFactory

The RC2 SecretKeyFactory is used to construct ProtectToolkit J keys from their provider-

independent form. The provider independent form of the RC2 key is the

au.com.safenet.crypto.spec.RC2KeySpec class.

Keys generated using the SecretKeyFactory are not thread-safe. That is, a ProtectToolkit J Key

instance may only be used by a single Cipher instance (as well as a single MAC instance) at any given

time. See section 7.0 for a discussion on threading and ProtectToolkit J keys.

ProtectToolkit J Reference Guide Supported Ciphers

20

For example, to create the provider based key from it’s provider independent form:

byte[] keyBytes = { 0x41, 0x22, 0x35, 0x17,

 0x39, 0xDB, 0xDC, 0xEF

 0x11, 0x93, 0x55, 0x67,

 0x39, 0xAC, 0xCD, 0xFF };

RC2KeySpec rc2KeySpec = new RC2KeySpec(keyBytes);

SecretKeyFactory rc2KeyFact =

 SecretKeyFactory.getInstance(“RC2”, “SAFENET”);

SecretKey rc2Key = rc2KeyFact.generateSecret(castEdeKeySpec);

RC2 Example Code

See section 2.1.5 for the simple DES example, to convert the example to use RC2 simply use “RC2” in

place of “DES”.

Replace the IvParameterSpec call with the RC2ParameterSpec call, as illustrated in the

following code example:

KeyGenerator keyGen = KeyGenerator.getInstance("RC2","SAFENET");

Key rcKey = keyGen.generateKey();

Cipher rc2Cipher = Cipher.getInstance("RC2/CBC/PKCS5Padding","SAFENET");

rc2Cipher.init(Cipher.ENCRYPT_MODE, rcKey);

byte[] iv = rc2Cipher.getIV();

byte[] cipherText = rc2Cipher.doFinal("hello world".getBytes());

rc2Cipher.init(Cipher.DECRYPT_MODE, rcKey,new RC2ParameterSpec(iv));

byte[] plainText = rc2Cipher.doFinal(cipherText);

RC4

This algorithm is a stream cipher with a variable length key usually 40-bit or 128-bit. RC4 is a

trademark of RSA Data Security. A description of the algorithm may be found in Applied

Cryptography by Bruce Schneier.

RC4 Cipher Initialisation

Since the RC4 Cipher is a stream cipher it always operates in the same mode which may be specified

by the transformations “RC4” or “RC4/ECB/NoPadding”. To create an instance of this class use the

Cipher.getInstance() method with “SAFENET” as the provider and one of the valid

transformation strings.

The size of the output of this cipher will always be the same as that of the input.

This Cipher will accept a javax.crypto.spec.SecretKeySpec or

au.com.safenet.crypto.provider.CryptokiSecretKey as the key parameter during

initialisation. For details on using keys with the RC4 Cipher see section 2.6.2.

This Cipher does not support initialisation with algorithm parameters and so the

Cipher.getParameters() method, this will always return null.

RC4 Key

The RC4 Cipher requires either a SecretKeySpec or ProtectToolkit J provider RC4 Key during

initialisation. The RC4 key may be any length of 8 to 2048 bits.

ProtectToolkit J Reference Guide Supported Ciphers

21

To create an appropriate SecretKeySpec simple pass an array of up to 256 bytes and the algorithm

name “RC4” to the SecretKeySpec constructor. For example:

byte[] keyBytes = { 0x41, 0x22, 0x35, 0x17,

 0x39, 0xDF, 0x28, 0x94,

 0x11, 0x93, 0x55, 0x67,

 0x39, 0xAC, 0xCD, 0xFF };

SecretKeySpec desKey = new SecretKeySpec(keyBytes, “RC4”);

Alternatively, a random ProtectToolkit J RC4 key can be generated using the KeyGenerator as

described in section 2.6.3, or, a provider independent form as described in section 2.6.4. The RC4 key

may also be stored in the ProtectToolkit J KeyStore as described in section 8.1.

The ProtectToolkit J RC4 key will return the string “RC4” as its algorithm name, “RAW” as its

encoding. However, since the key is stored within the hardware the actual key encoding may not be

available.

The key value can only be extracted from a key if the associated Cryptoki key is not marked as

sensitive. The keys generated in ProtectToolkit J will always be marked as sensitive, however it is

possible to access any Cryptoki keys stored on the device and it is possible that the attributes of these

keys have been modified.

RC4 KeyGenerator

The RC4 KeyGenerator is used to generate random RC4. The generated key will be a hardware key

that has the Cryptoki CKA_EXTRACTABLE and CKA_SENSITIVE attributes set. Since these keys are

marked as sensitive their getEncoded() method will return null.

During initialisation the strength parameter may be any length from 8 to 2048. The default key size

is 128 bits. The random parameter is ignored as the hardware includes a cryptographically-secure

random source.

Keys generated using the KeyGenerator are not thread-safe. That is, a ProtectToolkit J Key

instance may only be used by a single Cipher instance (as well as a single MAC instance) at any given

time. See section 7.0 for a discussion on threading and ProtectToolkit J keys.

RC4 SecretKeyFactory

The RC4 SecretKeyFactory is used to construct ProtectToolkit J keys from their provider-

independent form. The provider independent form of the RC4 key is the au.com.

safenet.crypto.spec.RC4KeySpec class.

Keys generated using the SecretKeyFactory are not thread-safe. That is, a ProtectToolkit J Key

instance may only be used by a single Cipher instance (as well as a single MAC instance) at any given

time. See section 7.0 for a discussion on threading and ProtectToolkit J keys.

For example, to create the provider based key from it’s provider independent form:

byte[] keyBytes = { 0x41, 0x22, 0x35, 0x17,

 0x39, 0xDB, 0xDC, 0xEF

 0x11, 0x93, 0x55, 0x67,

 0x39, 0xAC, 0xCD, 0xFF };

RC4KeySpec castKeySpec = new RC4KeySpec(keyBytes);

SecretKeyFactory castKeyFact =

 SecretKeyFactory.getInstance(“RC4”, “SAFENET”);

SecretKey castKey=castKeyFact.generateSecret(castEdeKeySpec);

ProtectToolkit J Reference Guide Supported Ciphers

22

RC4 Example Code

The following example code will create a random RC4 key, then create a RC4 cipher. Next it initialises

the cipher for encryption using the newly created key, we then save the initialisation vector and encrypt

the string "hello world".

To perform the decryption we simply re-initialise the cipher in decrypt mode, with the same key. In

this case there is no need to process the initialisation vector as there is none with the RC4 algorithm.

KeyGenerator keyGen = KeyGenerator.getInstance("RC4",

 "SAFENET");

Key rc4Key = keyGen.generateKey();

Cipher rc4Cipher = Cipher.getInstance("RC4", "SAFENET");

rc4Cipher.init(Cipher.ENCRYPT_MODE, rc4Key);

byte[] cipherText = rc4Cipher.doFinal(

 "hello world".getBytes());

rc4Cipher.init(Cipher.DECRYPT_MODE, rc4Key);

byte[] plainText = desCipher.doFinal(cipherText);

PBE Ciphers

A PBE Cipher is a password based cipher. It provides for keying of a cipher based on a user supplied

password. PKCS#5 is the standard which defines the generic PBE algorithm used by all the PBE

algorithms except for the PBEWithSHA1AndTripleDES algorithm which uses PKCS#12 (see

http://www.rsasecurity.com/rsalabs/pkcs/pkcs-12/index.html). A particular PBE implementation will

combine a message digest algorithm (such as MD5) with a symmetric encryption algorithm (DES for

example).

ProtectToolkit J includes five password based Ciphers, PBEWithMD2AndDES,

PBEWithMD5AndDES , PBEWithMD5AndCAST, PBEWithSHA1AndCAST, and

PBEWithSHA1AndTripleDES.These ciphers are essentially identical, the only difference being that

the first uses MD2 in the password generation, the second two MD5 and the last two MD5. As the

names suggest these ciphers use either DES, CAST or TripleDES as their encryption algorithm, and so

are 64-bit block ciphers. They are all operated with the block cipher in CBC mode however the

initialisation vector is determined from the password so there is no need to supply its value.

PBE Cipher Initialization

A PBE Cipher will always operate with the underlying Cipher in a specific mode. For ProtectToolkit

J the DES Cipher will operate in CBC mode with PCKS5Padding. Thus the only valid

transformations that may be passed to the Cipher.getInstance() method are PBEWithMD2AndDES,

PBEWithMD5AndDES , PBEWithMD5AndCAST, PBEWithSHA1AndCAST, or

PBEWithSHA1AndTripleDES.

This Cipher will only accept a ProtectToolkit J provider PBE key as the key parameter during

initialisation. To create such a Key use the PBE SecretKeyFactory in section 2.6.2.

ProtectToolkit J Reference Guide Supported Ciphers

23

This Cipher also requires initialisation with a valid PBEParameterSpec instance, (or an

AlgorithmParameters instance that can be converted to the generic form via the

getParameterSpec() method). This parameters instance is used to supply the salt and iteration

count parameters to the PBE Cipher. This is a required parameter, there are no defaults and so the

Cipher.getParameters() method, this will always return null.

PBE Key

The PBE Cipher instances require initialisation with a ProtectToolkit J provider PBE key. Instances

of this type may be created using the PBE SecretKeyFactory. The PBE SecretKeyFactory is used

to construct ProtectToolkit J keys from their provider-independent form. The provider independent

form of the PBE key is the javax.crypto.spec.PBEKeySpec class.

For example, to create the provider based key from it’s provider independent form:

PBEKeySpec pbeKS = new PBEKeySpec(“password”.toCharArray())

SecretKeyFactory pbeKF = SecretKeyFactory.getInstance(“PBE”,

 “SAFENET”);

Key key = pbeKF.generateSecret(pbeKS);

The ProtectToolkit J PBE key will return the string “PBE” as its algorithm name, “RAW” as its

encoding. However, this key class does not support encoding and so will return null from the

getEncoded() method.

PBE Example Code

The following example code will create a PBE key with the string “password”, convert this into a

ProtectToolkit J PBE key, then create a PBE cipher. Next it initialises the cipher for encryption using

the newly created key and the PBE parameters with a salt of “salt” and an iteration count of 5. Finally

we encrypt the string "hello world".

To perform the decryption we simply re-initialise the cipher in decrypt mode, with the same key and

parameters.

PBEKeySpec pbeKS = new PBEKeySpec(“password”.toCharArray())

SecretKeyFactory pbeKF = SecretKeyFactory.getInstance(“PBE”,

 “SAFENET”);

Key pbeKey = pbeKF.generateSecret(pbeKS);

PBEParameterSpec pbeParams =

 new PBEParameterSpec(“salt”.getBytes, 5);

Cipher pbeCipher = Cipher.getInstance(“PBEWithMD5andDES”,

 “SAFENET”);

pbeCipher.init(Cipher.ENCRYPT_MODE, pbeKey, pbeParams);

byte[] cipherText = pbeCipher.doFinal(

 “hello world”.getBytes());

pbeCipher.init(Cipher.DECRYPT_MODE, pbeKey, pbeParams);

byte[] plainText = pbeCipher.doFinal(cipherText);

ProtectToolkit J Reference Guide Supported Ciphers

24

RSA

This algorithm is a block cipher with a variable length key whose block size is equal to the key size.

RSA is patented in the United States by RSA Data Security. The RSA cipher will operate in one of

two modes depending on the padding requested. If “PKCS1Padding” is requested the processing is

performed as described in PKCS#1. If “NoPadding” is requested then the processing is performed as

specified in X.509 for raw RSA.

NOTE: Currently the RSA Cipher only supports encryption or decryption of a single block. Any

attempt to pass more data than a single block will result in a RuntimeException.

RSA Cipher Initialisation

This cipher supports both only ECB mode, and may be used with NoPadding or PKCS1Padding.

To create an instance of this class use the Cipher.getInstance() method with “SAFENET” as

the provider and one of the following strings as the transformation:

 RSA

 RSA/ECB/NoPadding

 RSA/ECB/PKCS1Padding

Using the “RSA” transformation the Cipher will default to ECB and PKCS1Padding. The

NoPadding option will result in “RAW” RSA, where each block will be 0 padded.

The block size of this cipher is dependent on the key size in use. The block size is equal to the number

of bytes of the RSA modulus. If the modulus is k bytes long then the encrypted output size is always k.

For the “NoPadding” mode the plain text input must be equal to or less than k, with the

“PKCS1Padding” mode the plain text input must be equal to or less than k-11 bytes.

This Cipher will only accept a ProtectToolkit J provider based key during initialisation. This key

must be generated by the ProtectToolkit J RSA KeyFactory, KeyPairGenerator or

KeyStore. For details on using keys with the RSA Cipher see RSA Key.

This Cipher does not support initialisation with algorithm parameters and so the

Cipher.getParameters() method, this will always return null.

RSA Key

The RSA Cipher requires either a ProtectToolkit J RSA public, or private Key during initialisation.

The RSA key may be any length between 512 and 4096 bits (inclusive).

A new ProtectToolkit J RSA key can be generated randomly using the KeyPairGenerator as

described in section 2.8.3, or, a from provider independent form as described in section 2.8.4. The

RSA key may also be stored in the ProtectToolkit J KeyStore as described in section 8.1.

The ProtectToolkit J RSA key will return the string “RSA” as its algorithm name, the public key type

will return “X.509” as its encoding (the private key types will return “RAW”) as its encoding.

However, since the key is stored within the hardware the actual key encoding may not be available

(private keys will return null from the getEncoded() method). If the public key is available the

getEncoded() method will return the key as a DER encoded X.509 SubjectPublicKeyInfo block

containing the public key as defined in PKCS#1.

ProtectToolkit J Reference Guide Supported Ciphers

25

The key value can only be extracted from a key if the associated Cryptoki key is not marked as

sensitive. The public keys generated in ProtectToolkit J will not be marked as sensitive, and the private

keys generated in ProtectToolkit J will always be marked as sensitive. It is possible to access any

Cryptoki keys stored on the device and it is possible that the attributes of these keys have been

modified.

RSA KeyGenerator

The RSA KeyPairGenerator is used to generate random RSA key pairs. The generated key pair

will consist of two hardware keys, the public key and a private key with the Cryptoki

CKA_SENSITIVE attribute set. The public exponent for this key generator is fixed to the Fermat-4

value (hex 0x100001).

During initialisation the strength parameter may be any length from 512 to 4096. The default key

size is 1024 bits. The random parameter is ignored as the hardware includes a cryptographically-

secure random source.

Keys generated using the KeyGenerator are not thread-safe. That is, a ProtectToolkit J Key

instance may only be used by a single Cipher instance (as well as a single Signature instance) at

any given time. See section 7.0 for a discussion on threading and ProtectToolkit J keys.

RSA KeyPairFactory

The RSA KeyPairFactory is used to construct ProtectToolkit J keys from their provider-

independent form. There are three standard provider independent forms for RSA keys, one for public

keys, and two for private keys. They are java.security.spec.RSAPublicKeySpec,

java.security.spec.RSAPrivateKeySpec, and

java.security.spec.RSAPrivateCrtKeySpec

Additionally there is the au.com. safenet.crypto.spec.AsciiEncodedKeySpec class

which can be used for keys encoded as hexadecimal strings. For more information on this KeySpec

see section 8.3.

Keys generated using the KeyPairFactory are not thread-safe. That is, a ProtectToolkit J Key

instance may only be used by a single Cipher instance (as well as a single MAC instance) at any given

time. See section 7.0 for a discussion on threading and ProtectToolkit J keys.

To convert one of these supported KeySpec classes into a ProtectToolkit J provider key:

KeyFactory rsaKeyFact = KeyFactory.getInstance(“RSA”,

 “SAFENET”);

PublicKey pubKey = rsaKeyFact.generatePublic(pubKeySpec);

PrivateKey privKey = rsaKeyFact.generatePrivate(privKeySpec);

The RSA KeyFactory cannot currently convert ProtectToolkit J keys into their provider independent

format so the getKeySpec() method will throw an InvalidKeySpecException. The class

also cannot perform any key translation via the translateKey() method.

ProtectToolkit J Reference Guide Supported Ciphers

26

RSA Example Code

The following example code will create a random RSA key pair, then create a RSA cipher in ECB

mode with PKCS1Padding. Next it initialises the cipher for encryption using the public key from

newly created key pair, finally we encrypt the string "hello world".

To perform the decryption we re-initialise the cipher in decrypt mode, with the private key from the

key pair.

KeyPairGenerator keyGen = KeyPairGenerator.getInstance("RSA",

 "SAFENET");

KeyPair rsaPair = keyGen.generateKeyPair();

Cipher rsaCipher = Cipher.getInstance("RSA/ECB/PKCS1Padding",

 "SAFENET");

rsaCipher.init(Cipher.ENCRYPT_MODE, rsaPair.getPublic());

byte[] cipherText = rsaCipher.doFinal(

 "hello world".getBytes());

rsaCipher.init(Cipher.DECRYPT_MODE, rsaPair.getPrivate());

byte[] plainText = rsaCipher.doFinal(cipherText);

ProtectToolkit J Reference Guide Cipher Algorithm Parameters

27

C H A P T E R 4

CIPHER ALGORITHM PARAMETERS

Currently, ProtectToolkit J does not support algorithm parameters.

Calls to Cipher.getParameters() will always return null. Additionally, the provider does not

include any java.security.AlgorithmParameters classes.

ProtectToolkit J Reference Guide Cipher Algorithm Parameters

28

THIS PAGE INTENTIONALLY LEFT BLANK

ProtectToolkit J Reference Guide Supported Signature Algorithms

29

C H A P T E R 5

SUPPORTED SIGNATURE ALGORITHMS

The following Signature algorithms are available with the Provider through the

java.security.Signature interface.

 MD2withRSA

 MD5withRSA

 SHA1withRSA

 SHA224withRSA

 SHA256withRSA

 SHA384withRSA

 SHA512withRSA

 SHA1withDSA

 PKCS#1RSA

 X.509RSA

 DSARaw

 RIPEMD128withRSA

 RIPEMD160withRSA

MD2withRSA

This Signature class implements the algorithm “MD2 with RSA” as defined in PKCS#1. This

algorithm will perform a message digest of the data to be signed, encode that information in a X.509

DigestInfo block and then finally RSA encrypt the DER encoded block.

To initialise this requires a ProtectToolkit J RSA key, either a private key for signing or a public key

for signature verification. See the RSA Cipher (section 2.8) for information on RSA keys.

This algorithm is provided for compatibility only, newer applications should use either MD5withRSA

or SHA1withRSA.

ProtectToolkit J Reference Guide Supported Signature Algorithms

30

The following example will sign the message “hello world” with a pre-existing RSA private key and

then verify it with the corresponding public key.

KeyPair rsaPair; // pre existing key pair

Signature rsaSig = Signature.getInstance(“MD2withRSA”, “SAFENET”);

rsaSig.initSign(rsaPair.getPrivate());

rsaSig.update(“hello world”.getBytes());

byte[] sig = rsaSig.sign();

rsaSig.initVerify(rsaPair.getPublic());

rsaSig.update(“hello world”.getBytes());

if (rsaSig.verify(sig)) {

 System.out.println(“Signature okay”);

}

else {

 System.out.println(“Signature fails verification”);

}

MD5withRSA

This Signature class implements the algorithm “MD5 with RSA” as defined in PKCS#1. This

algorithm will perform a message digest of the data to be signed, encode that information in a X.509

DigestInfo block and then finally RSA encrypt the DER encoded block.

To initialise this requires a ProtectToolkit J RSA key, either a private key for signing or a public key

for signature verification. See the RSA Cipher (section 2.8) for information on RSA keys.

See section 4.1 for a simple example on using this algorithm, simply modify the algorithm name used

to “MD5withRSA”.

SHA1withRSA

This Signature class implements the algorithm “RSASSA-PKCS1-v1_5” as defined in PKCS#1. This

algorithm will perform a message digest of the data to be signed, encode that information in a X.509

DigestInfo block and then finally RSA encrypt the DER encoded block.

To initialise this requires a ProtectToolkit J RSA key, either a private key for signing or a public key

for signature verification. See the RSA Cipher (section 2.8) for information on RSA keys.

Where there is no requirement for backwards compatibility this is the recommended RSA signature

algorithm to use as there are no known weaknesses in the SHA1 message digest algorithm whereas

known weaknesses exist in the MD2 and MD5 message digest algorithms.

See section 4.1 for a simple example on using this algorithm, simply modify the algorithm name used

to “SHA1withRSA”.

SHA224withRSA

This signature class is similar to SHA1withRSA, except it produces a signature from a digest length of

224 bits.

See MD2withRSA for a simple example on using this algorithm; simply modify the algorithm name

used to “SHA224withRSA”.

ProtectToolkit J Reference Guide Supported Signature Algorithms

31

SHA256withRSA

This signature class is similar to SHA1withRSA, except it produces a signature from a digest length of

256 bits.

See MD2withRSA for a simple example on using this algorithm; simply modify the algorithm name

used to “SHA256withRSA”.

SHA384withRSA

This signature class is similar to SHA1withRSA, except it produces a signature from a digest length of

384 bits.

See MD2withRSA for a simple example on using this algorithm; simply modify the algorithm name

used to “SHA384withRSA”.

SHA512withRSA

This signature class is similar to SHA1withRSA, except it produces a signature from a digest length of

512 bits.

See MD2withRSA for a simple example on using this algorithm, simply modify the algorithm name

used to “SHA512withRSA”.

SHA1withDSA

This Signature class implements the Digital Signature Algorithm (DSA) as defined in FIPS PUB 186,

which is also compatible with the Sun provided Signature algorithm of the same name. This algorithm

will perform a message digest (using SHA1) of the data to be signed and then sign that data using

DSA. The result of a sign operation using this algorithm will be a DER encoded block containing a

sequence of the two integer values r and s.

To initialise this requires a ProtectToolkit J DSA key, either a private key for signing or a public key

for signature verification. The following sections detail how to generate ProtectToolkit J provider DSA

keys.

DSA Key

The DSA Signature requires either a ProtectToolkit J DSA public, or private Key during

initialisation. The DSA key may be any length between 512 and 4096 bits (inclusive).

A new ProtectToolkit J DSA key pair can be generated randomly using the KeyPairGenerator as

described in section 4.5.2, or, a from provider independent form as described in section 4.5.3. The

DSA keys may also be stored in the ProtectToolkit J KeyStore as described in section 8.1.

The ProtectToolkit J DSA public and private keys will return the string “DSA” as the algorithm name,

“RAW” as the encoding type and null for the encoding.

ProtectToolkit J Reference Guide Supported Signature Algorithms

32

DSA KeyGenerator

The DSA KeyPairGenerator is used to generate random DSA key pairs. The generated key pair

will consist of two hardware keys, the public key and a private key with the Cryptoki

CKA_SENSITIVE attribute set. Each key will also share the same set of DSA parameters.

During initialisation the strength parameter may be either 512 or 4096. The default key size is

1024 bits. The random parameter is ignored as the hardware includes a cryptographically-secure

random source. Any provided AlgorithmParameterSpec parameters will also be ignored (this

precludes generation of keys with non-default parameters). The DSA parameters used for the 512 and

1024 bit keys are as specified in the Java Cryptography Architecture Specification.

Keys generated using the KeyGenerator are not thread-safe. That is, a ProtectToolkit J Key

instance may only be used by a single Signature instance) at any given time. See section 7.0 for a

discussion on threading and ProtectToolkit J keys.

The following example will generate a new random 1024 bit key pair:

KeyPairGenerator keyGen = KeyPairGenerator.getInstance(

 “DSA”, “SAFENET”);

KeyPair dsaPair = keyGen.generateKeyPair();

DSA KeyPairFactory

The DSA KeyPairFactory is used to construct ProtectToolkit J keys from their provider-

independent form. There are two standard provider independent forms for DSA keys, one for public

keys, and one for private keys. They are java.security.spec.DSAPublicKeySpec, and

java.security.spec.DSAPrivateKeySpec.

Keys generated using the KeyPairFactory are not thread-safe. That is, a ProtectToolkit J Key

instance may only be used by a single Cipher instance (as well as a single MAC instance) at any given

time. See section 7.0 for a discussion on threading and ProtectToolkit J keys.

To convert one of these supported KeySpec classes into a ProtectToolkit J provider key:

KeyFactory dsaKeyFact = KeyFactory.getInstance(“DSA”,

 “SAFENET”);

PublicKey pubKey = dsaKeyFact.generatePublic(pubKeySpec);

PrivateKey privKey = dsaKeyFact.generatePrivate(privKeySpec);

The DSA KeyFactory cannot currently convert ProtectToolkit J keys into their provider independent

format so the getKeySpec() method will throw an InvalidKeySpecException. The class

also cannot perform any key translation via the translateKey() method.

ProtectToolkit J Reference Guide Supported Signature Algorithms

33

DSA Example Code

The following example code will create a random DSA key pair, then create a DSA Signature. We

will then use this instance to sign the message “hello world” and then verify that signature using the

public key.

KeyPairGenerator keyGen = KeyPairGenerator.getInstance("DSA",

 "SAFENET");

KeyPair rsaPair = keyGen.generateKeyPair();

Signature dsaSig = Signature.getInstance("DSA",

 "SAFENET");

dsaSig.initSign(dsaPair.getPrivate());

dsaSig.update(“hello world”.getBytes());

byte[] sig = dsaSig.sign();

dsaSig.initVerify(dsaPair.getPublic();

dsaSig.update(“hello world”.getBytes());

if (dsaSig.verify()) {

 System.out.println(“Signature okay”);

}

else {

 System.out.println(“Signature fails verification”);

}

PKCS#1RSA

This signature algorithm will produce a PKCS#1 encoded block (block type 01) containing the private-

key encrypted message. The message length must be k-11 bytes long where k is the length of the

RSA modulus. The generated signature will be k bytes long.

X.509RSA

This signature algorithm will perform "raw" RSA exponentiation on the input message by converting it

to an integer, most-significant byte first, and converting the result to a byte string, most-significant byte

first. The input message, considered as an integer, must be less than the modulus. Where necessary the

input message is padded by prepending the message with 0-valued bytes.

This algorithm is intended for compatibility with applications that do not follow the PKCS#1 block

format.

DSARaw

This signature algorithm will perform "raw" RSA exponentiation on the input message by converting it

to an integer, most-significant byte first, and converting the result to a byte string, most-significant byte

first. The input message, considered as an integer, must be less than the modulus. Where necessary the

input message is padded by prepending the message with 0-valued bytes.

This algorithm is intended for compatibility with applications that do not follow the PKCS#1 block

format.

ProtectToolkit J Reference Guide Supported Signature Algorithms

34

RIPEMD128withRSA

This Signature class implements the algorithm “MD5 with RSA” as defined in PKCS#1 however it

uses the message digest algorithm RIPEMD128 in place of MD5. This algorithm will perform a

message digest of the data to be signed, encode that information in a X.509 DigestInfo block and then

finally RSA encrypt the DER encoded block.

To initialise this requires a ProtectToolkit J RSA key, either a private key for signing or a public key

for signature verification. See the RSA Cipher (section 2.8) for information on RSA keys.

See MD2withRSA above for a simple example on using this algorithm, simply modify the algorithm

name used to “RIPEMD128withRSA”.

RIPEMD160withRSA

This Signature class implements the algorithm “MD5 with RSA” as defined in PKCS#1 however it

uses the message digest algorithm RIPEMD160 in place of MD5. This algorithm will perform a

message digest of the data to be signed, encode that information in a X.509 DigestInfo block and then

finally RSA encrypt the DER encoded block.

To initialise this requires a ProtectToolkit J RSA key, either a private key for signing or a public key

for signature verification. See the RSA Cipher (section 2.8) for information on RSA keys.

See section 4.1 for a simple example on using this algorithm, simply modify the algorithm name used

to “RIPEMD128withRSA”.

ProtectToolkit J Reference Guide Supported MAC Algorithms

35

C H A P T E R 6

SUPPORTED MAC ALGORITHMS

The following MAC algorithms are available with the Provider through the javax.crypto.Mac

interface.

 DES

 DESede

 DESedeX919

 IDEA

 CAST128

 RC2

 HMAC/MD2

 HMAC/MD5

 HMAC/SHA1

 HMAC/SHA224

 HMAC/SHA256

 HMAC/SHA384

 HMAC/SHA512

DES MAC

This algorithm is compatible with FIPS PUB 113 (see http://www.itl.nist.gov/div897/pubs/fip113.htm)

as well as ANSI X9.9.

The MAC may be initialized using any valid DES key (see section 2.1.2). The result MAC value will

be a four byte array.

DESede MAC

This algorithm is compatible with FIPS PUB 113 (see http://www.itl.nist.gov/div897/pubs/fip113.htm).

The MAC may be initialised using any valid DESede key (see section 2.2.2). The result MAC value

will be a four byte array.

DESedeX919 MAC

This MAC implements the triple DES MAC algorithm as defined in X9.19 (or ISO 9807).

The MAC may be initialised using any valid DESede key (see section 2.2.2). The result MAC value

will be a four byte array.

http://www.itl.nist.gov/div897/pubs/fip113.htm
http://www.itl.nist.gov/div897/pubs/fip113.htm

ProtectToolkit J Reference Guide Supported MAC Algorithms

36

IDEA MAC

This algorithm is compatible with FIPS PUB 113 (see http://www.itl.nist.gov/div897/pubs/fip113.htm).

The MAC may be initialized using any valid IDEA key (see section 2.3.2). The result MAC value will

be a four byte array.

CAST128 MAC

This algorithm is compatible with FIPS PUB 113 (see http://www.itl.nist.gov/div897/pubs/fip113.htm).

The MAC may be initialised using any valid CAST128 key (see section 2.4.2). The result MAC value

will be a four byte array.

RC2

This algorithm is compatible with FIPS PUB 113 (see http://www.itl.nist.gov/div897/pubs/fip113.htm).

The MAC may be initialized using any valid RC2 key (see section 2.5.2). The result MAC value will

be a four byte array.

HMAC/MD2

This HMAC implements the HMAC algorithm as defined in RFC 2104 (see

http://www.ietf.org/rfc/rfc2194.txt) using the message digest function MD2. The result MAC value

will be a 16 byte array.

The MAC may be initialized using a SecretKeySpec with the algorithm name “HMAC/MD2”. It is

also possible to initialize this MAC using any of the secret keys generated by one of the KeyGenerator

classes or KeyFactory classes as detailed in section 2.

HMAC/MD5

This HMAC implements the HMAC algorithm as defined in RFC 2104 (see

http://www.ietf.org/rfc/rfc2194.txt) using the message digest function MD5. The result MAC value

will be a 16 byte array.

The MAC may be initialized using a SecretKeySpec with the algorithm name “HMAC/MD5”. It is

also possible to initialize this MAC using any of the secret keys generated by one of the KeyGenerator

classes or KeyFactory classes as detailed in section 2.

HMAC/SHA1

This HMAC implements the HMAC algorithm as defined in RFC 2104 (see

http://www.ietf.org/rfc/rfc2194.txt) using the message digest function SHA1. The result MAC value

will be a 20 byte array.

http://www.itl.nist.gov/div897/pubs/fip113.htm
http://www.itl.nist.gov/div897/pubs/fip113.htm
http://www.itl.nist.gov/div897/pubs/fip113.htm
http://www.ietf.org/rfc/rfc2194.txt
http://www.ietf.org/rfc/rfc2194.txt
http://www.ietf.org/rfc/rfc2194.txt

ProtectToolkit J Reference Guide Supported MAC Algorithms

37

The MAC may be initialized using a SecretKeySpec with the algorithm name “HMAC/SHA1”. It is

also possible to initialise this MAC using any of the secret keys generated by one of the KeyGenerator

classes or KeyFactory classes as detailed in section 2.

HMAC/SHA224

This HMAC implements the HMAC algorithm as defined in RFC 2104 (see

http://www.ietf.org/rfc/rfc2194.txt) using the message digest function SHA224. The result MAC value

will be a 28 byte array.

The MAC may be initialized using a SecretKeySpec with the algorithm name “HMAC/SHA224”. It is

also possible to initialise this MAC using any of the secret keys generated by one of the KeyGenerator

classes or KeyFactory classes as detailed in section 2.

HMAC/SHA256

This HMAC implements the HMAC algorithm as defined in RFC 2104 (see

http://www.ietf.org/rfc/rfc2194.txt) using the message digest function SHA256. The result MAC value

will be a 32 byte array.

The MAC may be initialized using a SecretKeySpec with the algorithm name “HMAC/SHA256”. It is

also possible to initialise this MAC using any of the secret keys generated by one of the KeyGenerator

classes or KeyFactory classes as detailed in section 2.

HMAC/SHA384

This HMAC implements the HMAC algorithm as defined in RFC 2104 (see

http://www.ietf.org/rfc/rfc2194.txt) using the message digest function SHA384. The result MAC value

will be a 48 byte array.

The MAC may be initialized using a SecretKeySpec with the algorithm name “HMAC/SHA384”. It is

also possible to initialise this MAC using any of the secret keys generated by one of the KeyGenerator

classes or KeyFactory classes as detailed in section 2.

HMAC/SHA512

This HMAC implements the HMAC algorithm as defined in RFC 2104 (see

http://www.ietf.org/rfc/rfc2194.txt) using the message digest function SHA512. The result MAC value

will be a 64 byte array.

The MAC may be initialized using a SecretKeySpec with the algorithm name “HMAC/SHA512”. It is

also possible to initialise this MAC using any of the secret keys generated by one of the KeyGenerator

classes or KeyFactory classes as detailed in section 2.

http://www.ietf.org/rfc/rfc2194.txt
http://www.ietf.org/rfc/rfc2194.txt
http://www.ietf.org/rfc/rfc2194.txt
http://www.ietf.org/rfc/rfc2194.txt

ProtectToolkit J Reference Guide Supported MAC Algorithms

38

Sample MAC Code

This simple code fragment will generate a MAC code (based on a randomly generated DES key) for

the bytes in the string "hello world".

KeyGenerator keyGen = KeyGenerator.getInstance("DES", "SAFENET");

Key desKey = keyGen.generateKey();

Mac desMac = Mac.getInstance("DES", "SAFENET");

desMac.init(desKey);

byte[] mac = desMac.doFinal("hello world".getBytes());

ProtectToolkit J Reference Guide Supported Message Digest Algorithms

39

C H A P T E R 7

SUPPORTED MESSAGE DIGEST ALGORITHMS

The following standard message digest algorithms are supported by the Provider through the

java.security.MessageDigest interface.

Message Digest Name Digest Length (bits)

MD2 128

MD5 128

SHA-1 160

SHA-224 224

SHA-256 256

SHA-384 384

SHA-512 512

RIPEMD128 128

RIPEMD160 160

MD2

This message digest algorithm produces a 128-bit digest. The algorithm is described in RFC-1319, see

http://www.ietf.org/rfc/rfc1319.txt. This algorithm is provided for compatibility only and is not

recommended for other purposes. Instances of this algorithm are not clone-able.

To create a MD2 message digest for the message “hello world”:

MessageDigest md2 = MessageDigest.getInstance(“MD2”, “SAFENET”);

byte[] digest = md2.digest(“hello world”.getBytes());

MD5

This message digest algorithm produces a 128-bit digest. The algorithm is described in RFC-1321, see

http://www.ietf.org/rfc/rfc1321.txt. This algorithm is provided for compatibility only and is not

recommended for other purposes. Instances of this algorithm are not clone-able.

To create a MD5 message digest for the message “hello world”:

MessageDigest md5 = MessageDigest.getInstance(“MD5”, “SAFENET”);

byte[] digest = md5.digest(“hello world”.getBytes());

SHA-1

The SHA-1 message digest algorithm produces a 160-bit digest. The algorithm is described in FIPS

PUB 180-1, see http://www.itl.nist.gov/div897/pubs/fip180-1.htm. Instances of this algorithm are not

cloneable.

http://www.ietf.org/rfc/rfc1319.txt
http://www.ietf.org/rfc/rfc1321.txt
http://www.itl.nist.gov/div897/pubs/fip180-1.htm

ProtectToolkit J Reference Guide Supported Message Digest Algorithms

40

To create a SHA-1 message digest for the message “hello world”:

MessageDigest sha1 = MessageDigest.getInstance(“SHA-1”, “SAFENET”);

byte[] digest = sha1.digest(“hello world”.getBytes());

SHA-224

The SHA-224 message digest algorithm produces a 224-bit digest. The algorithm is described in FIPS

PUB 180-1, see http://www.itl.nist.gov/div897/pubs/fip180-1.htm. Instances of this algorithm are not

cloneable.

To create a SHA-224 message digest for the message “hello world”:

MessageDigest sha256 = MessageDigest.getInstance(“SHA-224”,

“SAFENET”);

byte[] digest = sha224.digest(“hello world”.getBytes());

SHA-256

The SHA-256 message digest algorithm produces a 256-bit digest. The algorithm is described in FIPS

PUB 180-1, see http://www.itl.nist.gov/div897/pubs/fip180-1.htm. Instances of this algorithm are not

cloneable.

To create a SHA-256 message digest for the message “hello world”:

MessageDigest sha256 = MessageDigest.getInstance(“SHA-256”,

“SAFENET”);

byte[] digest = sha256.digest(“hello world”.getBytes());

SHA-384

The SHA-384 message digest algorithm produces a 384-bit digest. The algorithm is described in FIPS

PUB 180-1, see http://www.itl.nist.gov/div897/pubs/fip180-1.htm. Instances of this algorithm are not

cloneable.

To create a SHA-384 message digest for the message “hello world”:

MessageDigest sha384 = MessageDigest.getInstance(“SHA-384”,

“SAFENET”);

byte[] digest = sha384.digest(“hello world”.getBytes());

SHA-512

The SHA-512 message digest algorithm produces a 512-bit digest. The algorithm is described in FIPS

PUB 180-1, see http://www.itl.nist.gov/div897/pubs/fip180-1.htm. Instances of this algorithm are not

cloneable.

To create a SHA-512 message digest for the message “hello world”:

http://www.itl.nist.gov/div897/pubs/fip180-1.htm
http://www.itl.nist.gov/div897/pubs/fip180-1.htm
http://www.itl.nist.gov/div897/pubs/fip180-1.htm
http://www.itl.nist.gov/div897/pubs/fip180-1.htm

ProtectToolkit J Reference Guide Supported Message Digest Algorithms

41

MessageDigest sha512 = MessageDigest.getInstance(“SHA-512”,

“SAFENET”);

byte[] digest = sha512.digest(“hello world”.getBytes());

RIPEMD128

The RIPEMD128 message digest algorithm produces a 128-bit digest.Instances of this algorithm are

not cloneable.

To create a RIPEMD128 message digest for the message “hello world”:

MessageDigest rmd128 = MessageDigest.getInstance(“RIPEMD128”,

 “SAFENET”);

byte[] digest = rmd128.digest(“hello world”.getBytes());

RIPEMD160

The RIPEMD160 message digest algorithm produces a 160-bit digest. Instances of this algorithm are

not clone-able.

To create a RIPEMD160 message digest for the message “hello world”:

MessageDigest rmd160 = MessageDigest.getInstance(“RIPEMD160”,

 “SAFENET”);

byte[] digest = rmd160.digest(“hello world”.getBytes());

ProtectToolkit J Reference Guide Supported Message Digest Algorithms

42

THIS PAGE INTENTIONALLY LEFT BLANK

ProtectToolkit J Reference Guide Key Generation

43

C H A P T E R 8

KEY GENERATION

ProtectToolkit J can generate random keys for each of the cipher algorithms it supports. These keys

are Cryptoki session keys, that is, they are not stored permanently on the adapter. Session keys are not

thread-safe and so may only be used by a single Cipher instance and a single Signature (or MAC)

instance at any time. Thus it is allowable to use a DES key for encryption in a Cipher instance and a

single MAC instance but not two Cipher instances. Keys fetched from the ProtectToolkit J KeyStore

do not have this restriction (see section 8.1).

When generating a random key the size of the key will be as follows:

Key Name Default Key Size Valid Key Sizes

DES 56 56

DESede 196 128,196

AES 128 (128,196,256)

IDEA 128 128

CAST128 128 8-128

RC2 64 0-1024

RC4 64 8-2048

RSA 1024 512-4096

DSA 1024 512-4096

DH 1024 512-4096

Secret Keys

The secret key Ciphers will simply generate the appropriate number of random bytes for the key (there

are no checks for weak keys).

The following example will generate a random double length DESede key. Generation of a key for a

different algorithm is as simple as changing the algorithm name and choosing an appropriate key

length.

KeyGenerator keyGen = KeyGenerator.getInstance(“DESede”, “SAFENET”);

keyGen.init(128);

SecretKey key = keyGen.generateKey();

ProtectToolkit J Reference Guide Key Generation

44

Public Keys

RSA Keys

The RSA key pair generator will generate a RSA key pair based on an algorithm determined by key

size. If the size is some multiple of 256 bits greater then 1024 then the algorithm specified in ANSI X

9.31 will be used else the one specified in PKCS#1 is used. The key pair will be compatible with

PKCS#1 RSA, ISO/IEC 9796 RSA and X.509 (raw) RSA standards. ANSI X 9.31 keys have a random

16 bit exponent while PKCS#1 public exponent is fixed to the Fermat-4 value (hex 0x1001).

The following example will generate a 2048 bit RSA key pair.

KeyPairGenerator keyPairGen = KeyPairGenerator.getInstance(“RSA”,

“SAFENET”);

keyPairGen.initialise(2048);

KeyPair keyPair = keyPairGen.generateKeyPair();

DSA Keys

The DSA key pair generator will generate a DSA key pair based on the algorithm specified in the

Digital Signature Standard (FIPS PUB 186-1). DSA key generation requires a number of parameters,

these parameters are generally fixed in a given application but they are also usually randomly generated

for a particular application. At present ProtectToolkit J does not include any mechanism to generate

these parameters, however the DSA key pair generator can accept these parameters (via a

java.security.spec.DSAParameterSpec) or has configured defaults for 512 or 1024 bit

keys (these defaults are listed in the JCE specification).

The following example will generate a 1024 bit DSA key pair using the default DSA parameters.

KeyPairGenerator keyPairGen = KeyPairGenerator.getInstance(“DSA”,

“SAFENET”);

keyPairGen.initialise(1024);

KeyPair keyPair = keyPairGen.generateKeyPair();

This example will use the provided DSA parameters rather than the built in defaults.

BigInteger p, q, g; // These are the parameter values

KeyPairGenerator keyPairGen = KeyPairGenerator.getInstance(“DSA”,

“SAFENET”);

DSAParameterSpec keyParamSpec = new DSAParamterSpec(p, q, g);

keyPairGen.initialise(keyParamSpec);

KeyPair keyPair = keyPairGen.generateKeyPair();

ProtectToolkit J Reference Guide Key Generation

45

Diffie-Hellman Keys

The DH KeyPairGenerator will generate Diffie-Hellman keys suitable for the Diffie-Hellman key

agreement protocol. Diffie-Hellman key generation requires a number of parameters, these parameters

are generally fixed in a given application but they are also usually randomly generated for a particular

application. At present ProtectToolkit J does not include any mechanism to generate these parameters,

however the DH key pair generator can accept these parameters (via a

java.security.spec.DHParameterSpec) or has configured defaults for 512 or 1024 bit keys

(these defaults are listed in the JCE specification).

The following example will generate a 1024 bit DH key pair using the default DH parameters.

KeyPairGenerator keyPairGen = KeyPairGenerator.getInstance(“DH”,

“SAFENET”);

keyPairGen.initialise(1024);

KeyPair keyPair = keyPairGen.generateKeyPair();

This example will use the provided DH parameters rather than the built in defaults.

BigInteger p, g; // These are the parameter values

KeyPairGenerator keyPairGen = KeyPairGenerator.getInstance(“DH”,

“SAFENET”);

DSAParameterSpec keyParamSpec = new DHParamterSpec(p, g);

keyPairGen.initialise(keyParamSpec);

KeyPair keyPair = keyPairGen.generateKeyPair();

KeyAgreement Protocols

ProtectToolkit J also includes mechanisms which allow for the creation of keys based on other keys.

Diffie-Hellman KeyAgreement

The DH KeyAgreement algorithm can be used to perform a 2 phase key Diffie-Hellman key

agreement.

Xor Key Derive

This algorithm may be used to derive a new key from an existing key and a known data pattern. The

key value and the data pattern will be combined on the adapter using the XOR function. For example

if the initial key has the value 0x12,0x34 and the data pattern has the value 0x89,0xAB then the

resultant key will have the value 0x88,0x88.

The actual key values will be combined within the adapter to ensure their values are never

compromised. In addition the newly created key will inherit the attributes of the two keys such that the

derived key will be as protected as the two original keys. Further, this mechanism may not be used to

change the key type of the base key. Therefore if the base key is a DES key the derived key must also

be a DES key.

ProtectToolkit J Reference Guide Key Generation

46

This mechanism can only be used on keys with the CKA_DERIVE attribute set to true. This will the

case for keys generated with any of the ProtectToolkit J mechanisms (i.e. KeyGenerator classes)

however if the key is generated with the Browser application be sure to check the ‘Derive’ checkbox.

Do not create an instance of this class directly, rather use the KeyAgreement.getInstance()

factory method:

KeyAgreement ka = KeyAgreement.getInstance("XorBaseAndKey",

"SAFENET");

Once created the instance should be initialised using the base key. Then to combine with the data

pattern call the doPhase() method with a SecretKeySpec instance created with the data pattern and

true for the lastPhase parameter.

Finally to obtain the newly created instance call the generateSecret() method with the

appropriate key name.

For example:

byte[] data = {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08};

ka.init(baseKey);

ka.doPhase(new SecretKeySpec(data), true);

Key newKey = ka.generateSecret("DES");

Note, the key material generated must be compatible with the key type requested in the

generateSecret() method call. Specifically the length of the new key will be the minimum of

the length's of the two components.

ProtectToolkit J Reference Guide Key Management

47

C H A P T E R 9

KEY MANAGEMENT

Key Storage

The encryption adapter has the facility to store public, private and secret keys. These keys will be

stored in the non-volatile storage on the card. As well as key storage it is also possible to store X.509

Certificates (which contain a public key). ProtectToolkit J provides access to this storage mechanism

via the JCE KeyStore API. The JCE name for this KeyStore is CRYPTOKI.

The JCE KeyStore API allows storage of a Key and an associated alias. This alias is simply a

unique string which may be used to access the key. To store a key in the key store, use the

setKeyEntry(). To retrieve a key, use the getKey(). Keys may be removed from the KeyStore

using the deleteEntry() method.

Currently only two types of keys may be stored in the ProtectToolkit J KeyStore, either ProtectToolkit

J keys or javax.crypto.spec.SecretKeySpec keys. Other key types need to be converted to

their ProtectToolkit J equivalents before storage.

Currently the Certificate support is based on Sun’s Certificate implementation which is only

available on the Sun Java2 JVM.

Per Key password protection is not supported so a null password may be supplied to the methods use

to store and retrieve keys from the KeyStore. The password provided to the load() method will be

used login to the token, and so to access private objects on the token it is necessary to provide the PIN.

If a PIN is not supplied all objects will be stored as public objects, when a PIN is supplied only

PublicKey and Certificate objects will be stored as public objects all others will be private. In

either case the InputStream passed to the store() and load() methods will not change the contents

of the key store.

Keys stored in the KeyStore are the only thread-safe ProtectToolkit J keys. A key instance obtained

from the KeyStore.getKeyEntry() method will return a key that may be used in multiple Cipher, Mac

and Signature instances.

The following example will create a new random DES key, and then store that key in the keystore.

Note that even though we first create the key and then store it, it actual key value will not leave the

hardware and therefore remains secure.

KeyGenerator keyGen = KeyGenerator.getInstance(“DES”, “SAFENET”);

Key key = keyGen.generateKey();

KeyStore keyStore = KeyStore.getInstance(“CRYPTOKI”, “SAFENET”);

keyStore.load(null, null);

keyStore.setKeyEntry(“des key”, key, null, null);

The following example can be used to access the previously stored key.

KeyStore keyStore = KeyStore.getInstance(“CRYPTOKI”,

“SAFENET”);

keyStore.load(null, null);

Key key = keyStore.getKey(“des key”, null);

ProtectToolkit J Reference Guide Key Management

48

Key Wrapping

The CRYPTOKI KeyStore also provides a key wrapping mechanism. Key wrapping is a technique

where one key value is encrypted using another key. With ProtectToolkit J since the keys values are

stored securely on the hardware we can use this technique to encrypt the key on the hardware and then

extract the encrypted key.

For example, using this mechanism, a session key may be generated on the hardware and then exported

from the hardware in an encrypted (i.e. wrapped) form. The key will generally be encrypted using a

Public/Private key encryption cipher and can then be safely exported from the board. It is also possible

to use secret keys for key wrapping, however in this case the same secret key must exist on both the

source (performing the wrapping function) and the destination adapters.

The WrappingKeyStore API is an extension to the standard JCE that is used to provide access to

key wrapping services. This class is identical to the standard KeyStore API except that it provides

wrapKey() and unwrapKey methods. The wrapping key store can be instantiated using the

following code:

import au.com. safenet.crypto.WrappingKeyStore;

...

WrappingKeyStore wks = WrappingKeyStore.getInstance("CRYPTOKI",

 "SAFENET");

...

The wrapKey() method has the following signature:

public byte[] wrapKey(Key wrapKey, String transformation, Key key)

throws GeneralSecurityException

The wrapKey parameter specifies the Key used to encrypt the key parameter. The

transformation parameter specifies the encryption transformation that is to be used to encrypt the

key. With the CRYPTOKI KeyStore you can transform the following:

 RSA/ECB/PKCS1Padding

 RSA/ECB/NoPadding

 DES/ECB/NoPadding

 DES/ECB/PKCS5Padding

 DESede/ECB/NoPadding

 DESede/ECB/PKCS5Padding

 IDEA/ECB/NoPadding

 IDEA/ECB/PKCS5Padding

 CAST128/ECB/NoPadding

 CAST128/ECB/PKCS5Padding

 RC2/ECB/NoPadding

 RC2/ECB/PKCS5Padding

 RC4

A GeneralSecurityException will be thrown if the transformation parameter is invalid.

ProtectToolkit J Reference Guide Key Management

49

The value returned is a byte array containing the encrypted key. This value may be passed to the

unwrapKey() method to extract the original key. The unwrapKey() method has the following

signature:

public Key unwrapKey(Key unwrapKey, String transformation,

 byte[] wrappedKey, String keyAlgorithm)

throws GeneralSecurityException

This method will "unwrap" or decrypt the encrypted key using the provided decryption key and

transformation. The Key returned will be of the type specified by the keyAlgorithm parameter,

however this parameter must match the actual key type that was originally wrapped.

The unwrapKey parameter should be the either the same secret key as was used to wrap the key or

the private key corresponding to the public key used to wrap the key. The transformation

parameter specifies the decryption transformation that is to be used to decrypt the key. This value

should be the same as that used to wrap the key. The wrappedKey parameter should contain the

encrypted key. The keyAlgorithm should specify the algorithm that the decrypted key is for.

A GeneralSecurityException will be thrown if the transformation parameter is invalid.

The following example will create a new random RC4 key, wrap that key with a RSA public key and

then finally unwrap it with the associated RSA private key.

KeyGenerator keyGen = KeyGenerator.getInstance(“RC4”, “SAFENET”);

Key rc4Key = keyGen.generateKey();

WrappingKeyStore wks = WrappingKeyStore.getInstance(“CRYPTOKI”);

wks.load(null, null); // initialise the KeyStore

Key publicKey = wks.getKey(“RSA_pub”, null);

byte[] encKey = Wks.wrapKey(publicKey,“RSA/ECB/PKCS1Padding”,rc4Key);

// give the encrypted key to the recipient, and unwrap it

Key privateKey = wks.getKey(“RSA_priv”, null);

Key recoveredKey = wks.unwrapKey(privateKey, “RSA/ECB/PKCS1Padding’,

 encKey);

Key Specifications

As well as supporting the relevant JCA/JCE defined KeySpec classes ProtectToolkit J includes a

number of custom provider-independent key classes for use with its KeyFactory classes. These

classes all live in the au.com. safenet.crypto.spec package:

AsciiEncodedKeySpec

Used to encode RSA, DSA or Diffie-Hellman public and private keys as ASCII strings. These strings

contain the key's integer components as hexadecimal strings separated by a full stop. For example an

RSA private key:

public_exponent.modulus.private_exponent.p.q

A public key will contain only the first two elements and a private key will contain all five. The RSA

KeyFactory can convert from this KeySpec into the provider-based key.

ProtectToolkit J Reference Guide Key Management

50

For DSA keys the format is:

y.p.q.g (private keys) x.p.q.g (public keys)

For Diffie-Hellman keys the format is:

y.p.g (private keys) x.p.g (public keys)

CASTKeySpec

Used to encode keys for the CAST algorithm. This class takes a byte array which it will use directly as

the CAST key. The array must be less than or equal to 16 bytes which is the maximum key size for a

CAST key.

IDEAKeySpec

Used to encode keys for the IDEA algorithm. This class takes a byte array and uses the first 16 bytes of

the array as the IDEA key.

RC2KeySpec

Used to encode keys for the RC2 algorithm. This class takes a byte array which it will use directly as

the RC2 key. The array must be less than or equal to 128 bytes which is the maximum key size for a

RC2 key.

RC4KeySpec

Used to encode keys for the RC4 algorithm. This class takes a byte array which it will use directly as

the RC4 key. The array must be less than or equal to 256 bytes which is the maximum key size for a

RC4 key.

AESKeySpec

Used to encode keys for the AES algorithm. This class takes a byte array which it will use directly as

the AES key. The array must be either be 16, 24 or 32 bytes.

ProtectToolkit J Reference Guide Random Number Generation

51

C H A P T E R 1 0

RANDOM NUMBER GENERATION

The Safenet provider (named “safenet”) implements a java.security.SecureRandom class

for generating random data. This implementation is known as "CRYPTOKI". Besides using a

hardware based entropy generator, one of the major benefits of this implementation is that it does not

suffer from the slow initialization problem that the Sun provided (and most other software

implementations) do.

This interface is only available under Java2.

This implementation allows access to the encryption adapter random source for both seeding and

random number generation. SafeNet's ProtectServer Internal Express (PSI-E2) adapters uses hardware

based random number generation.

Serialization of an instance of this class will not save the state of the random number generator as it is

contained within the hardware.

ProtectToolkit J Reference Guide Random Number Generation

52

THIS PAGE INTENTIONALLY LEFT BLANK

ProtectToolkit J Reference Guide Best Practice Guidelines

53

C H A P T E R 1 1

BEST PRACTICE GUIDELINES

Introduction

The purpose of this section is to outline some of the "Best Practices" application developers can

implement when developing their ProtectToolkit J based applications.

The following guidelines do not attempt to replace the vast body of literature regarding building secure

systems or implementing cryptography for security. Rather it focuses on some of the specific aspects

of the ProtectToolkit J product that are particularly relevant to building applications in a timely and

reliable way.

ProtectToolkit J Provider

The ProtectToolkit J JCA/JCE Provider provides access to the many cryptographic features of the

ProtectServer Blue and ProtectServer range of hardware.

As the provider is hardware based there are a number of differences between it and other software

based implementations. Mostly these stem from the different methods used to protect the key store

where hardware can effectively provide some level of physical protection.

Key Value Protection

Normally keys protected by the hardware will not allow their values to be revealed outside the adapter.

Thus the Key.getEncoded() interface will generally return a null value.

Key Usage Protection

Each key has an associated set of usage flags that indicate which cryptographic operations may be

performed with the key. For example, specific flags may be set to enable encryption or signature

generation. Keys in the ProtectToolkit J provider will adhere to these rules.

General ProtectToolkit J Usage Guidelines

1. Create persistent keys with the Key Management Utility (KMU) and specify their key usage

attributes appropriately.

 secret and private keys should always be sensitive

 each key should be usable for only one purpose

 use the KMU for key backups with the exportable attribute

2. Persistent key instances from the ProtectToolkit J KeyStore implementation are shareable. This

means a key lookup only needs to be performed once rather than every time a key is required.

ProtectToolkit J Reference Guide Best Practice Guidelines

54

3. Initialise the token correctly. Different applications should use different tokens.

4. Install the ProtectToolkit J provider as the highest priority or use

Security.insertProvider(SAFENETProvider(), early on in your application. This will ensure that

the SAFENET hardware SecureRandom will become the system default providing improved

quality random data and avoiding the startup performance penalty of the sun implementation.

5. Fully specify Cipher transformations. E.g. use "DES/ECB/NoPadding" instead of "DES".

ProtectToolkit J Reference Guide References

55

A P P E N D I X A
REFERENCES

FIPS PUB 42-2

Data Encryption Standard. See http://www.itl.nist.gov/div897/pubs/fip42-2.htm.

FIPS PUB 81

DES Modes of Operation. See http://www.itl.nist.gov/div897/pubs/fip81.htm.

FIPS PUB 113

Computer Data Authentication. See http://www.itl.nist.gov/div897/pubs/fip113.htm.

FIPS PUB 180-1

Secure Hash Standard. See http://www.itl.nist.gov/div897/pubs/fip180-1.htm.

FIPS PUB 186-1

Digital Signature Standard (DSS). See http://www.itl.nist.gov/div897/pubs/fip186-1.htm.

PKCS#1

RSA Encryption Standard. See http://www.rsa.com/rsalabs/pubs/PKCS/html/pkcs-1.html.

PKCS#5

Block cipher padding. See http://www.rsa.com/rsalabs/pubs/PKCS/html/pkcs-5.html.

http://www.itl.nist.gov/div897/pubs/fip42-2.htm
http://www.itl.nist.gov/div897/pubs/fip81.htm
http://www.itl.nist.gov/div897/pubs/fip113.htm
http://www.itl.nist.gov/div897/pubs/fip180-1.htm
http://www.itl.nist.gov/div897/pubs/fip186-1.htm
http://www.rsa.com/rsalabs/pubs/PKCS/html/pkcs-1.html
http://www.rsa.com/rsalabs/pubs/PKCS/html/pkcs-5.html

ProtectToolkit J Reference Guide References

56

END OF DOCUMENT

