
i 

 

ProtectToolkit J 

JCA/JCE API Overview 



ii 

 

© 2000-2014 SafeNet, Inc. All rights reserved. 

Part Number 007-008398-006 

Version 5.0 

Trademarks 

All intellectual property is protected by copyright. All trademarks and product names used or referred to are the 

copyright of their respective owners. No part of this document may be reproduced, stored in a retrieval system or 

transmitted in any form or by any means, electronic, mechanical, chemical, photocopy, recording or otherwise 

without the prior written permission of SafeNet. 

Disclaimer 
SafeNet makes no representations or warranties with respect to the contents of this document and specifically 

disclaims any implied warranties of merchantability or fitness for any particular purpose. Furthermore, SafeNet 

reserves the right to revise this publication and to make changes from time to time in the content hereof without the 

obligation upon SafeNet to notify any person or organization of any such revisions or changes. 

We have attempted to make these documents complete, accurate, and useful, but we cannot guarantee them to be 

perfect. When we discover errors or omissions, or they are brought to our attention, we endeavor to correct them in 

succeeding releases of the product. 

SafeNet invites constructive comments on the contents of this document. Send your comments, together with your 

personal and/or company details to the address below: 

SafeNet, Inc. 

4690 Millennium Drive 

Belcamp, Maryland  USA 21017 

 

Technical Support 
If you encounter a problem while installing, registering or operating this product, please make sure that you have 

read the documentation. If you cannot resolve the issue, please contact your supplier or SafeNet support. SafeNet 

support operates 24 hours a day, 7 days a week. Your level of access to this service is governed by the support plan 

arrangements made between SafeNet and your organization. Please consult this support plan for further 

information about your entitlements, including the hours when telephone support is available to you. 

 

Contact method Contact information 

Address SafeNet, Inc. 

4690 Millennium Drive 

Belcamp, Maryland  21017  

USA 

Phone United States (800) 545-6608, (410) 931-7520 

Australia and New Zealand +1 410-931-7520 

China (86) 10 8851 9191 

France 0825 341000 

Germany 01803 7246269 

India +1 410-931-7520 

United Kingdom 0870 7529200, +1 410 931-7520 

Web www.safenet-inc.com  

Support and 

Downloads 

www.safenet-inc.com/Support 

Provides access to the SafeNet Knowledge Base and quick downloads for various 

products. 

http://www.safenet-inc.com/
http://www.safenet-inc.com/Support


iii 

 

Technical Support 

Customer Portal 

https://serviceportal.safenet-inc.com 

Existing customers with a Technical Support Customer Portal account can log in to 

manage incidents, get the latest software upgrades, and access the SafeNet 

Knowledge Base. 

Revision History 

Revision Date Reason 

A 27 October 2014 Release 5.0 

 

https://serviceportal.safenet-inc.com/


ProtectToolkit J – JCA/JCE API Overview 

iv 

 

TABLE OF CONTENTS 

© 2000-2014 SAFENET, INC. ALL RIGHTS RESERVED. ....... II 

1.0 SCOPE .................................................................................................................................. 1 

2.0 INTRODUCTION .................................................................................................................... 3 

3.0 ENCRYPTION/DECRYPTION ................................................................................................. 5 

3.1 The Cipher Class .......................................................................................................................................... 5 
3.2 Cipher Input and Output Streams ................................................................................................................. 6 
3.3 SealedObject ................................................................................................................................................. 6 
3.4 Algorithm Parameters .................................................................................................................................. 7 

4.0 MESSAGE DIGESTS .............................................................................................................. 9 

5.0 MESSAGE AUTHENTICATION CODE (MAC) ..................................................................... 11 

6.0 AUTHENTICATION ............................................................................................................. 12 

6.1 Digital Signatures ....................................................................................................................................... 12 
6.2 Object Signing ............................................................................................................................................ 13 

7.0 KEY MANAGEMENT .......................................................................................................... 15 

7.1 Generating Random Keys ........................................................................................................................... 15 
7.2 Key Conversion ........................................................................................................................................... 16 
7.3 Key Agreement Protocols ........................................................................................................................... 17 
7.4 Key Storage................................................................................................................................................. 18 
7.5 Certificates.................................................................................................................................................. 20 

8.0 ERROR HANDLING AND EXCEPTIONS ................................................................................ 21 

GLOSSARY ............................................................................................................................... 23 



ProtectToolkit J - JCA/JCE API Overview                                                                                                            Scope 

1 

 

1.0 SCOPE 
 

The purpose of this document is to provide an introduction to the Java APIs that provide security and 

cryptographic services. These are known as the Java Cryptography Architecture (JCA) and  Java 

Cryptography Extensions (JCE).  

 

While reading this document, it is suggested you have both the JCA/JCE API documentation at hand. The 

JCA documentation can be found in the Java2 release or online at: 

 

http://java.sun.com/products/archive/j2se/1.3.0_05/  (or later version) 

 

JCE documentation is currently available at http://java.sun.com/products/jce/index.html.  

 

Finally, ProtectToolkit J includes a detailed reference manual detailing the specific algorithms included, and 

the various parameters they accept.  It also includes some extensions to the base JCA/ JCE API. 

  

This document assumes the reader is familiar with the Java programming language.  

http://java.sun.com/products/archive/j2se/1.3.0_05/
http://java.sun.com/products/jce/index.html


ProtectToolkit J - JCA/JCE API Overview                                                                                                            Scope 

2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

THIS PAGE INTENTIONALLY LEFT  BLANK 

 



ProtectToolkit J - JCA/JCE API Overview                                                                                                Introduction  

3 

 

2.0 INTRODUCTION 
 

The Java platform provides APIs for dealing with security and cryptographic services. The first is known as 

the Java Cryptography Architecture (JCA) and provides a framework for basic security functions such as 

certificates, digital signatures and message digests. 

 

The JCA and a default provider (the Sun provider) are included with Java 2. The Java Cryptography 

Extension (JCE) extends the JCA to provide encryption, key exchange, key generation and message 

authentication services. The Java Cryptographic Extension (JCE) is released as a standard extension to the 

Java2 platform.  

 

The JCA/ JCE do not directly provide specific implementations of the various algorithms. Rather they are 

an interface between the application and a number of specific implementations of the algorithms. Generally 

a vendor will group the algorithms they have developed into a Provider which may then be installed into 

the Java runtime environment. Once installed, an application may specifically request a particular provider's 

implementation or, if not the framework will choose an implementation from the highest priority 

Provider that implements the requested algorithm. 

  

This architecture is achieved by providing "factory classes" that are used to create object instances that 

implement a specific algorithm. Each of the factory classes has a private constructor, instances can only 

be constructed by calling a public static method which returns an instance of the desired type. When 

an algorithm is requested, the factory class will iterate through the installed providers and return the first 

implementation it finds (unless the application has requested a specific Provider). 

  

The java.security.Security class is responsible for maintaining a list of available providers. 

When this class is initialised it will read the java.security properties file (which is located at 

$JAVA_HOME/lib/security/java.security).  

 

This properties file has a list of the installed providers, ordered by preference. For example the Sun and 

Acme providers could be listed as;  

 

security.provider.1=sun.security.provider.Sun 

security.provider.2=org.acme.crypto.provider.Acme 

 

A Provider may also be installed dynamically by an application at runtime. This is achieved by using the 

Security.addProvider() method, passing the Provider instance of the vendor to be installed. For 

example:  

   Security.addProvider(new org.acme.crypto.provider.Acme()); 

 

The following packages are provided as part of the JCA:  
 

java.security  

 

Provides the interfaces for the security framework. Generally, these classes do not have public 

constructors, rather they consist of factory methods which will create Provider based 

implementations of the requested algorithms. Here you will find the KeyFactory, 

KeyPairGenerator, KeyStore, MessageDigest and Signature classes.  

 

java.security.cert  

 

The interfaces for parsing and managing certificates, in particular X.509 v3 certificates.  
 

java.security.interfaces  

 

The provider-independent interfaces for dealing with RSA and DSA public/private keys.  
 



ProtectToolkit J - JCA/JCE API Overview                                                                                                Introduction  

4 

 

java.security.spec  

 

The provider-independent interfaces for key and algorithm specifications.  

 

 

The following packages are provided as part of the JCE:  

 
 

javax.crypto  

 

The core services provided by the JCE. Here you will find the Cipher, KeyGenerator and 

Mac classes.  

 

javax.crypto.interfaces  

 

Provider-independent interfaces for Diffie-Hellman keys.  
 

javax.crypto.spec  

 

Provider independent specifications for DES, DESede, Diffie-Hellman and various other keys and 

algorithm parameters.  

 

The following is a very simple program that will encrypt the string “hello world” with a randomly generated 

key, and then decrypt the cipher text using the same key.  Note for this program to run successfully a JCE 

provider that includes the CAST128 algorithm must be installed. 

 
import javax.crypto.*; 

import javax.crypto.spec.*; 

 

public class HelloJCE 

{ 

 static final plainText = “hello world”.getBytes(); 

 

 public static void main(String args) 

 throws Exception 

 { 

  KeyGenerator keyGen = KeyGenerator.getInstance(“CAST128”); 

  keyGen.init(128); 

  Key key = keyGen.generateSecret(); 

 

  Cipher cipher =  

   Cipher.getInstance(“CAST128/CBC/PKCS5Padding”); 

  cipher.init(Cipher.ENCRYPT_MODE, key); 

  byte[] cipherText = cipher.doFinal(plainText); 

 

  IvParameterSpec param = 

   new IvParameterSpec(cipher.getIV()); 

  cipher.init(Cipher.DECRYPT_MODE, key, param); 

  byte[] text = cipher.doFinal(cipherText); 

 

  System.out.println(“decrypted text: “ + new String(text)); 

 } 

} 

 

 



ProtectToolkit J - JCA/JCE API Overview                                                                              Encryption/Decryption 

5 

 

3.0 ENCRYPTION/DECRYPTION 
 

The JCE supports encryption and decryption using symmetric algorithms (such as DES and RC4) and 

asymmetric algorithms (such as RSA and ElGamal). The algorithms may be stream or block ciphers, with 

each algorithm supporting different modes, padding or even algorithm-specific parameters.  

 

3.1 The Cipher Class 

The basic interface used to encipher or decipher data is the javax.crypto.Cipher class. The 

class provides the necessary mechanism for encrypting and decrypting data using arbitrary 

algorithms from any of the installed providers.  

 

To create a Cipher instance, use one of the Cipher.getInstance() methods. This method 

will accept a transformation string and an optional provider name. The transformation string is 

used to specify the encryption algorithm as well as the cipher mode and padding. The 

transformation is specified in the form;  

 

 "algorithm"  

 "algorithm/mode/padding"  

 

In the first instance, we are requesting the algorithm with its default mode and padding 

mechanism. The second instance fully qualifies all options. For a list of support algorithms consult 

the provider's documentation. Some common transformations are;  

 

 "RC4"  

 "DES/CBC/PKCS5Padding"  

 "RSA/ECB/PKCS1Padding"  

 

The following code will create a cipher for performing RC4 encryption or decryption, a cipher for 

doing RSA in ECB mode with PKCS#1 padding provided by the ABA provider and a cipher for 

performing DESede encryption/decryption in CBC mode with PKCS#5 padding:  

 
Cipher rc4Cipher = Cipher.getInstance("RC4"); 

Cipher rsaCipher = Cipher.getInstance("RSA/ECB/PKCS1Padding"); 

Cipher desEdeCipher = 

                Cipher.getInstance("DESede/CBC/PKCS5Padding"); 

 

Once we have a Cipher instance, we will need to initialise the Cipher for encryption or 

decryption. We will also need to provide a Key, see section 8.0 for a discussion of key 

management.  
    

Key desKey, rsaKey; 

 

desCipher.init(Cipher.ENCRYPT_MODE, desKey); 

rsaCipher.init(Cipher.DECRYPT_MODE, rsaKey); 

 

As you can see, the first value passed to the Cipher.init() method indicates whether we are 

initialising for encryption or decryption. The second argument provides the key to use during 

encryption or decryption.  

 

There are a number of other initialisation methods for providing algorithm specific parameters 

(such as Initialisation Vectors, the number of rounds to use etc.). See section 4.4 for a discussion 

on algorithm parameters.  



ProtectToolkit J - JCA/JCE API Overview                                                                              Encryption/Decryption 

6 

 

Now that our Cipher is initialised, we can start processing data. To do so we use the 

Cipher.update() and Cipher.doFinal() methods. The Cipher.update() methods 

may be used to incrementally process data. Once all the data is processed, one of the 

Cipher.doFinal() methods must be called.  

 

In the simplest usage, a single Cipher.doFinal() call may be passed all the data:  

 

   byte[] plainText = "hello world".getBytes(); 

   byte[] cipherText = desCipher.doFinal(plainText); 

 

Once the Cipher.doFinal() method has been called, the Cipher instance will be reset to 

the state it was in after the last call to the Cipher.init() method. That means the Cipher 

may be reused to encipher or decipher more data using the same Key and parameters that were 

specified in the initialisation.  

 

3.2 Cipher Input and Output Streams 

Rather than deal with the complications of buffering enciphered or deciphered data produced by 

the Cipher.update() methods, it may be desirable to use a Java Input/Output Stream type 

interface. Fortunately, the JCE provides us with such a mechanism. 

  

The javax.crypto.CipherInputStream and 

javax.crypto.CipherOutputStream are based on the Java IO filter streams. This allows 

them to process data and pass on that data to an underlying stream.  

 

To create a cipher stream, firstly create and initialise a javax.crypto.Cipher instance and 

the underlying stream and then instantiate the required stream type with these two arguments.  

 

For example, the following code fragment will create a CipherOutputStream that will 

encipher its data (using DES) and pass the result to a ByteArrayOutputStream. We can 

access the ciphertext by calling ByteArrayOutputStream.toByteArray().  

 
   Key desKey; 

   Cipher cipher = Cipher.getInstance("DES"); 

   cipher.init(Cipher.ENCRYPT_MODE, desKey); 

 

   ByteArrayOutputStream bout = new ByteArrayOutputStream(); 

   CipherOutputStream cout = 

                      new CipherOutputStream(bout,  cipher); 

   cout.write("hello world".getBytes()); 

   cout.close(); 

 

   byte[] cipherText = bout.toByteArray(); 

 

Once we can encipher and decipher data using a simple stream, interface, we can create much 

more complicated scenarios. For example the OutputStream could just as easily be a 

SocketOutputStream or we could construct an ObjectOutputStream on top of our 

cipher stream and encipher Java objects directly.  

 

3.3 SealedObject 

The javax.crypto.SealedObject class provides the mechanism to encipher a 

Serializable object. This class allows the application to encipher a Java object and then 

recover the object all through a simple interface. The SealedObject is also Serializable 

to simplify the transport and storage of the enciphered objects.  

 



ProtectToolkit J - JCA/JCE API Overview                                                                              Encryption/Decryption 

7 

 

A SealedObject can be constructed through either serialisation or by its constructor. The 

constructor is used to create a new enciphered object. The constructor's arguments are the object to 

encipher and the Cipher to use. The provided Cipher instance must be initialised for 

encryption before the SealedObject is created. This means calling a Cipher.init() 

method with Cipher.ENCRYPT_MODE as the mode, the required encryption Key and any 

algorithm parameters.  

 

The following fragment will create a new SealedObject containing the enciphered String 

"hello world":  

 
   Key desKey = ... 

   Cipher cipher = Cipher.getInstance("DES"); 

   cipher.init(Cipher.ENCRYPT_MODE, deskey); 

 

   SealedObject so = new SealedObject("hello world", cipher); 

 

To recover the original object, the SealedObject.getObject() methods may be used. 

These methods take either a Cipher or Key object. When providing the Cipher parameter, the 

instance must be initialised in the Cipher.DECRYPT_MODE mode, with the appropriate 

decryption key and the same algorithm parameters as the original Cipher. When providing a 

Key parameter, the encryption algorithm and algorithm parameters are extracted from the 

SealedObject.  

 

The following fragment will extract a SealedObject object from an ObjectInputStream 

and then recover the protected object:  

 
   ObjectInputStream oin ... 

   Key desKey = ... 

 

   SealedObject so = (SealedObject)oin.readObject(); 

   String plainText = (String)so.getObject(deskey); 

 

One important security aspect to note with this class is that it does not use a digital signature to 

ensure the object is not tampered with in its serialised form. It is therefore possible that the object 

could be altered in storage or transport without detection. Fortunately, the JCA provides the 

java.security.SignedObject mechanism which can be used in conjunction with the 

SealedObject class to avoid this problem. (See section 7.2 for a discussion on the 

SignedObject class).  

 

3.4 Algorithm Parameters 

Some cipher algorithms support parameterisation, for example the DES cipher in CBC mode can 

have an initialisation vector as an algorithm parameter and other ciphers may have a selectable 

block size or round count. The JCE provides support for algorithm-independent initialisation via 

the java.security.spec.AlgorithmParameterSpec and 

java.security.AlgorithmParameters classes.  

 



ProtectToolkit J - JCA/JCE API Overview                                                                              Encryption/Decryption 

8 

 

The java.security.spec.AlgorithmParameterSpec derived classes can be 

constructed programatically by an application. The following classes are provided by the 

JCA/JCE:  

 

java.security.spec  

DSAParameterSpec  Used to specify the parameters used with the DSA algorithm. The 

parameters consist of the base g, prime p and sub-prime q.  

javax.crypto.spec  

DHGenParameterSpec  The set of parameters used for generating Diffie-Hellman 

parameters for use in Diffie-Hellman key agreement.  

DHParameterSpec  The set of parameters used with Diffie-Hellman as specified in 

PKCS#3.  

IvParameterSpec  An initialisation vector for use with a feedback cipher. That is an 

array of bytes of length equal to the block size of the cipher.  

RC2ParameterSpec  Parameters for the RC2 algorithm. The parameters are the 

effective key size and an optional 8-byte initialisation vector (only 

in feedback mode).  

RC5ParameterSpec  Parameters for the RC5 algorithm. The parameters are a version 

number, number of rounds, a word size and an optional 

initialisation vector (only in feedback mode).  

 

Your provider may also include further classes for passing parameters to the algorithms it 

implements.  

 

The JCA also has mechanisms for dealing with the provider-dependent 

AlgorithmParameters. This class is used as an opaque representation of the parameters for a 

given algorithm and allows an application to store persistently the parameters used by a Cipher.  

 

There are three situations where an application may encounter an AlgorithmParameters 

instance:  

 

1. Cipher.getParameters()  

After a Cipher has been initialised, it may have generated a set of parameters (based on 

supplied and/or default values). The value returned by the getParameters() method 

allows the Cipher to be re-initialised to exactly the same state.  

 

2. AlgorithmParameters.getInstance()  

Rather than generating the parameters via the Cipher class, it is possible to generate them 

either based on an encoded format or an AlgorithmParameterSpec instance. To do so 

create an uninitialised instance using the getInstance method and then initialise it by 

calling the appropriate init() method.  

 

3. AlgorithmParameterGenerator.getParameters()  

Finally, a set of parameters can be generated using the 

AlgorithmParameterGenerator. Firstly, a generator is created for the required 

algorithm using the getInstance() method. Then the generator is initialised by calling 

one of the init() methods, finally to create the instance use the getParameters 

method.  

 

This class provides the concept of algorithm-independent parameter generation, in that the 

initialisation can be based on a "size" and a source of randomness. In this case the "size" value is 

interpreted differently for each algorithm.  

 



ProtectToolkit J - JCA/JCE API Overview                                                                                          Message Digests      

9 

 

4.0 MESSAGE DIGESTS 
 

The JCA provides support for the generation of message digests via the 

java.security.MessageDigest class. This class uses the standard factory class design, so to create a 

MessageDigest instance use the getInstance() method with the desired algorithm name and 

optional provider as parameters.  

 

Once created use the various update() methods to process the message data and then finally call the 

digest() method to calculate the final digest. At this point the instance may be re-used to calculate a 

digest for a new message.  

 
   MessageDigest digest = MessageDigest.getInstance("SHA"); 

 

   byte[] msg = "The message".getBytes(); 

   digest.update(msg); 

 

   byte[] result = digest.digest(); 



ProtectToolkit J - JCA/JCE API Overview                                                                                          Message Digests      

10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

THIS PAGE INTENTIONALLY LEFT BLANK



ProtectToolkit J - JCA/JCE API Overview  Message Authentication Code (MAC)      

11 

 

5.0 MESSAGE AUTHENTICATION CODE (MAC) 
 

The javax.crypto.Mac API is used to access a "Message Authentication Code" (MAC) algorithm. 

These algorithms are used to check the integrity of messages upon receipt. There are two classes of MAC 

algorithms in general, those that are based on message digests (known as HMAC algorithms) and those on 

encryption algorithms. In both cases a shared secret is required.  

 

A Mac is used in the same fashion as a Cipher. First, use the factory method Mac.getInstance() to 

get the provider implementation of the required algorithm, then initialise the algorithm with the appropriate 

key via the Mac.init() method. Then, use the Mac.update() method to process the message and 

finally use the Mac.doFinal() method to calculate the MAC for the message.  

 

To verify the message, follow the same procedure and compare the supplied MAC with the calculated 

MAC.  

 

Note that it is not necessary to use the Mac.init() method to check multiple messages if the shared 

secret has not changed. The Mac will be reset after the call to Mac.doFinal() (or a call to 

Mac.reset()).  

 
   /* 

    * on the sender 

    */ 

   Mac senderMac = Mac.getInstance("HMAC-SHA1"); 

   senderMac.init(shaMacKey); 

   byte[] mac = senderMac.doFinal(data); 

 

   /* 

    * now transmit message and mac to receiver 

    */ 

   Mac recMac = Mac.getInstance("HMAC-SHA1"); 

   recMac.init(shaMacKey); 

   byte[] calcMac = recMac.doFinal(data); 

 

   for (int i = 0; i < calcMac.length; i ++) 

   { 

      if (calcMac[i] != mac[i]) 

      { 

         /* bogus MAC! */ 

         return false; 

      } 

   } 

 

   /* all okay */ 

   return true; 

 



ProtectToolkit J, JCA/JCE API  Overview                                                                                                 Authentication 

12 

 

6.0 AUTHENTICATION 

 

6.1 Digital Signatures 

The java.security.Signature class provides the functionality of a digital signature 

algorithm. Digital signatures are the digital equivalent of the traditional pen and paper signature. 

They can be used to authenticate the originator of a document, as well as to prove that a person 

signed the document. Generally, digital signatures are based on public-key encryption which means 

that, unlike a MAC, anyone that has access to the public key (and the document) can check the 

validity of the document.  

 

The Signature interface supports generation and verification of signatures. Once a signature 

instance has been created using the Signature.getInstance() method, it needs to be 

initialised with the Signature.initSign() method for creation of a signature, or 

Signature.initVerify() method for verification of a signature.  

 

Once initialised, the document to be processed should be passed to the signature via the 

Signature.update() methods. Once the entire document has been processed, the 

Signature.sign() method may be called to generate the signature, or the 

Signature.verify() method to verify a supplied signature against a previously generated 

signature.  

 

After a signature has been generated or verified, the Signature instance is reset to the state it was 

in after it was last initialised, allowing another signature to be generated or verified using the same 

key.  

 

One such signature algorithm is "MD5 with RSA" and is defined in PKCS#1. This algorithm 

specifies that the document to be signed is passed through the MD5 digest algorithm and then an 

ASN.1 block containing the digest, along with a digest algorithm identifier, is enciphered using 

RSA.  

 

To create such a signature;  

 
   /* 

    * Assume this private key is initialised 

    */ 

   PrivateKey rsaPrivKey; 

 

   /* 

    * Create the Signature instance and initialise 

    * it for signing with our private key 

    */ 

   Signature rsaSig = Signature.getInstance("MD5withRSA"); 

   rsaSig.initSign(rsaPrivKey); 

 

   /* 

    * Pass in the document data via the update() methods 

    */ 

   byte[] document = "The document".getBytes(); 

   rsaSig.update(document); 

 

   /* 

    * Generate the signature 

    */ 

   byte[] signature = rsaSig.sign(); 

 

 



ProtectToolkit J, JCA/JCE API  Overview                                                                                                 Authentication 

13 

 

To verify the generated signature:  

 
   /* 

    * Assume this public key is initialised 

    */ 

   PublicKey rsaPubKey; 

 

   /* 

    * Create the Signature instance and initialise 

    * it for signature verification with the public key 

    */ 

   Signature rsaSig = Signature.getInstance("MD5withRSA"); 

   rsaSig.initVerify(rsaPubKey); 

 

   /* 

    * Pass in the document data via the update() methods 

    */ 

   byte[] document = "The document".getBytes(); 

   rsaSig.update(document); 

 

   /* 

    * Check the generated signature against the supplied 

    * signature 

    */ 

   if (rsaSig.verify(signature)) 

   { 

      // signature okay 

   } 

   else 

   { 

      // signature fails 

   } 

 

6.2 Object Signing 

The java.security.SignedObject provides a mechanism for ensuring that a Java object 

can be authenticated and cannot be tampered with without detection. The mechanism used is similar 

to the SealedObject in that the object to be protected is serialised and then a signature is 

attached. The SealedObject is Serializable so it may be stored or transmitted via the 

object streams.  

 

To create a SignedObject, firstly create an instance of the signature algorithm to use via the 

Signature.getInstance() method, then create the new SignedObject instance by 

providing the object to be signed, the signing key and the Signature instance. Note that there is 

no need to initialise the Signature instance; the SignedObject constructor will perform that 

function.  

 
   Signature signingEngine = Signature.getInstance( 

      "MD5withRSA"); 

   SignedObject so = new SignedObject("hello world", 

      privateKey, signingEngine); 

 



ProtectToolkit J, JCA/JCE API  Overview                                                                                                 Authentication 

14 

 

To verify a SignedObject, simply create the Signature instance for the required algorithm 

and then use the SignedObject.verify() method with the appropriate PublicKey. Again, 

there is no need to initialise the Signature instance.  

 
   Signature verifyEngine = Signature.getInstance( 

      "MD5withRSA"); 

   if (so.verify(publicKey, verifyEngine)) 

   { 

      // object okay, extract it 

      Object obj = so.getObject(); 

   } 

   else 

   { 

      // object not authenticated 

   } 

 

Note that this class only provides a mechanism for authentication and verification, it does not 

provide confidentiality (i.e. encryption). The SealedObject may be used for this purpose (see 

section 4.3). The following example combines these two classes to provide a confidential, 

authenticated, tamper-proof object:  

 
   /* 

    * sealedObj will contain the signed, enciphered data 

    */ 

   SignedObject signedObj = new SignedObject( 

      "hello world", privateKey, signingEngine); 

   SealedObject sealedObj = new SealedObject( 

      signedObj, cipher); 

 

   /* 

    * to verify and recover the original object 

    */ 

   SignedObject newObj = sealedObject.getObject(cipher); 

   if (newObj.verify(publicKey, verificationEngine)) 

   { 

      // object verified tampered 

      String str = (String)newObj.getObject(); 

   } 

   else 

   { 

      // object tampered with! 

   } 

 



ProtectToolkit J - JCA/JCE API Overview    Key Management      

15 

 

7.0 KEY MANAGEMENT 
The JCA/JCE framework manages keys in two forms, a provider-dependent format and a provider-

independent format.  

 

The provider-dependent keys will implement either the java.security.Key interface (or one of its sub 

classes) for public-key algorithms or the javax.crypto.SecretKey interface for secret-key algorithms. 

Provider keys can be generated randomly, via a key agreement algorithm or from their associated provider-

independent format.  

 

The provider-independent formats will implement the java.security.spec.KeySpec interface. 

Subclasses of this type exist for both specific key types and for different encoding types. For example, the 

java.security.spec.RSAPublicKeySpec can be used to construct an RSA public key from its 

modulus and exponent and a java.security.spec.PKCS8EncodedKeySpec can be used to 

construct a private key encoded using PKCS#8.  

 

Each Provider will supply a number of mechanisms that will create the provider-dependent keys or 

convert the provider-independent keys into provider based keys.  

 

7.1 Generating Random Keys 

The simplest mechanism to create keys for a given provider is to use their random key generators. 

Random keys are most often generated for use as "session-keys" which will be used for a given 

dialogue or session and are then no longer required. In the case of public-key algorithms, however, 

they may be generated once and then stored for later use. The JCE framework provides key 

generation via the following classes:  

 

javax.crypto.KeyGenerator  

Generation of symmetric keys (ie DES, IDEA, RC4)  

 

java.security.KeyPairGenerator  

Generation of public/private key pairs (ie RSA)  

 

For instance, to create a random 128-bit key for RC4 and initialise a Cipher for 

encryption with this key;  

 
   /* 

    * Create the key generator for the desired algorithm, 

    * and then initialise it for the required key size. 

    */ 

   KeyGenerator rc4KeyGen = KeyGenerator.getInstance("RC4"); 

   rc4KenGen.init(128); 

 

   /* 

    * Generate the key and then initialise the Cipher 

    */ 

   SecretKey rc4Key = rc4KeyGen.generateKey(); 

   Cipher rc4Cipher = Cipher.getInstance("RC4"); 

   rc4Cipher.init(Cipher.ENCRYPT_MODE, rc4Key); 

 

Here, the SecretKey returned by the KeyGenerator.generateKey() method is 

a provider-dependent key. The returned key can then be used with that provider's 

algorithms. 

  



ProtectToolkit J - JCA/JCE API Overview    Key Management      

16 

 

Some algorithms have keys that are considered weak, for example with a weak DES key 

the ciphertext may be the same as the plaintext! Generally the KeyGenerator will not 

generate those keys, however it is best to check the provider documentation for details on 

the specific algorithm.  

 

The code to generate a public/private key pair is quite similar;  

 
   KeyPairGenerator rsaKeyGen = 

KeyPairGenerator.getInstance("RSA"); 

   rsaKeyGen.initialize(1024); 

 

   KeyPair rsaKeyPair = rsaKeyGen.generateKeyPair(); 

   Cipher rsaCipher = Cipher.getInstance("RSA"); 

   rsaCipher.init(Cipher.ENCRYPT_MODE, 

rsaKeyPair.getPrivate()); 

 

7.2 Key Conversion 

Two interfaces are provided to convert between a provider-dependent Key and the provider-

independent KeySpec; java.security.KeyFactory and 

javax.crypto.SecretKeyFactory. The KeyFactory class is used for public-key 

algorithms and the SecretKeyFactory class for secret-key algorithms.  

 

An application may choose to store its keys in some way and then re-create the key using a 

KeySpec. For example, the application may contain an embedded RSA public key as two 

integers; the RSAPublicKeySpec along with a KeyFactory that can process 

RSAPublicKeySpec instances could then be used to create the provider-dependent key.  

 

Each provider will generally supply a number of KeyFactory/SecretKeyFactory classes 

that will accept the various KeySpec classes and produce Key instances that may be used with 

the provider algorithms. These factories are not likely to support all KeySpec types, so the 

provider documentation should provide the details as to what conversions will be accepted.  

 

There are a number of KeySpec classes provided by the JCA/JCE;  

 

java.security.spec  

PKCS8EncodedKeySpec  A DER encoding of a private key according to the format 

specified in the PKCS#8 standard.  

X509EncodedKeySpec  A DER encoding of a public or private key, according to the 

format specified in the X.509 standard.  

RSAPublicKeySpec  An RSA public key  

RSAPrivateKeySpec  An RSA private key  

RSAPrivateCrtKeySpec  An RSA private key, with the Chinese Remainder Theorem 

(CRT) values  

DSAPublicKeySpec  A DSA public key  

DSAPrivateKeySpec  A DSA private key  

javax.crypto.spec  

DESKeySpec  A DES secret key  

DESedeKeySpec  A DESede secret key  

PBEKeySpec  A user-chosen password that can be used with password base 

encryption (PBE)  

SecretKeySpec  A key that can be represented as a byte array and have no 

associated parameters. The encoding type is known as RAW.  



ProtectToolkit J - JCA/JCE API Overview    Key Management      

17 

 

To convert a KeySpec instance into a provider based Key, firstly create a KeyFactory or 

SecretKeyFactory of the appropriate type using the getInstance() method. Once the 

instance has been created, use the KeyFactory.generatePrivate(), 

KeyFactory.generatePublic() or SecretKeyFactory.generateSecret() 

method.  

 

In the following example we will create a Key from a KeySpec and then recover the KeySpec 

from the Key.  

 
   /* 

    * This is the raw key 

    */ 

   byte[] keyBytes = { (byte)0x1, (byte)0x02, (byte)0x03, 

      (byte)0x04, (byte)0x05, (byte)0x06, (byte)0x07, (byte)0x08 

}; 

 

   /* 

    * Create the provider independent KeySpec 

    */ 

   DESKeySpec desKeySpec = new DESKeySpec(keyBytes); 

 

   /* 

    * Create the KeyFactory to do the Key<->KeySpec translation 

    */ 

   SecretKeyFactory keyFact = KeyFactory.getInstance("DES"); 

 

   /* 

    * Create the provider based SecretKey 

    */ 

   SecretKey desKey = keyFact.generateSecret(desKeySpec); 

 

   /* 

    * Convert the provider Key into a generic KeySpec 

    */ 

   DESKeySpec desKeySpec2 = keyFact.getKeySpec(desKey, 

      DESKeySpec.class); 

 

7.3 Key Agreement Protocols 

Keys may also be generated using the javax.crypto.KeyAgreement API. This interface 

provides the functionality of a key agreement (or key exchange) protocol. For example, a Diffie-

Hellman KeyAgreement instance would allow two or more parties to generate a shared Diffie-

Hellman Key.  

 

To generate the key, it is necessary to call KeyAgreement.doPhase() for each party in the 

exchange with a Key object that represents the current state of the key agreement. The last call to 

KeyAgreement.doPhase() should have the lastPhase set to true.  

 

Once all the key agreement phases have been processed, the shared SecretKey may be 

generated by calling the KeyAgreement.generateSecret() method.  

 

The KeyAgreement API does not define how each of the parties communicates the necessary 

information for each exchange in the protocol. The required information is passed to the 

KeyAgreement.doPhase() method as a Key. This Key will generally be generated using 

either a KeyGenerator or a KeyFactory. The provider documentation will detail the specific 

steps required for a given protocol.  

 



ProtectToolkit J - JCA/JCE API Overview    Key Management      

18 

 

   /* 

    * Create the KeyAgreement instance for the required 

    * protocol and initialise it with our key.  In the 

    * case of Diffie-Hellman this would be our private 

    * key. 

    */ 

   KeyAgreement keyAg = KeyAgreement.getInstance("DH"); 

   keyAg.init(ourKey); 

 

   /* 

    * Exchange information as per the key exchange 

    * protocol.  For DH we would exchange public keys. 

    * Note since there is only two parties in this 

    * case the return value is not relevant. 

    */ 

   keyAg.doPhase(remotePubKey, true); 

 

   /* 

    * Create the shared secret-key 

    */ 

   SecretKey key = keyAg.generateSecret("DES"); 

 

7.4 Key Storage 

Once a Key has been generated you may wish to store it for future use. Generally, you'll be saving 

public/private keys so that you can reuse them at a later date in a key exchange.  

 

The java.security.KeyStore API provides one mechanism for management of a number 

of keys and certificates. There are two types of entries in a KeyStore; Key entries and 

Certificate entries. Key entries are sensitive information whereas certificates are not.  

 

As Key entries are sensitive, they are therefore are protected by the KeyStore. The API allows 

for a password, or pass phrase, to be attached to each key entry. What the actual implementation 

does with the password is not defined, although it may be used to encipher the entry. A key entry 

may either be a SecretKey, or a PrivateKey. In the case of a PrivateKey, the entry is 

saved along with a Certificate chain which is the chain of trust. The chain of trust starts with 

the Certificate containing the corresponding PublicKey and ends with a self-signed 

certificate.  

 

A certificate entry represents a "trusted certificate entry", that is a Certificate whose identity 

we trust. This type of entry can be used to authenticate other parties.  

 

To create a KeyStore instance, use the KeyStore.getInstance() method. This will 

return an empty key store which may then be populated by calling the KeyStore.load() 

method. This method accepts an InputStream instance and an optional password. Each 

individual KeyStore will treat these parameters differently, so check the provider documentation 

for details.  

 

The Sun provider supplies a KeyStore known as "JKS". This KeyStore is used by the 

keytool and jarsigner applications.  

 
   /* 

    * Create an instance of the Java Key Store (defined by Sun) 

    */ 

   KeyStore keyStore = KeyStore.getInstance("JKS"); 

 



ProtectToolkit J - JCA/JCE API Overview    Key Management      

19 

 

To add a new entry into the KeyStore, use either setCertificateEntry() or one of the 

setKeyEntry() methods. This will add the new entry with the associated alias.  

 

   char[] myPass; 
   SecretKey secretKey; 

 

   /* 

    * Store a SecretKey in the KeyStore, with "mypass" 

    * as the password. 

    */ 

   keyStore.setKeyEntry("mysecretkey", secretKey, 

                                           myPass, null); 

 

   /* 

    * assume that privateKey contains my PrivateKey 

    * and myCert contains a Certificate with the 

    * corresponding PublicKey 

    */ 

   PrivateKey privateKey; 

   Certificate myCert; 

 

   keyStore.setKeyEntry("myprivatekey", privateKey, 

                                          myPass, myCert); 

 

To extract an entry, use the getKey() method to extract a Key or getCertificate() for a 

Certificate.  

   /* 

    * recover the SecretKey 

    */ 

   SecretKey key = (SecretKey)keyStore.getKey("mysecretkey", 

                                                     myPass); 

 

   /* 

    * recover the PrivateKey 

    */ 

   PrivateKey privKey = 

         (PrivateKey)keyStore.getKey("myprivatekey", myPass); 

 

   /* 

    * recover the Certificate (containing the PublicKey) 

    * corresponding to our PrivateKey 

    */ 

   Certificate cert = keyStore.getCertificate("myprivatekey"); 

 

If the KeyStore supports persistence via the store() and load() methods, the provider 

documentation will explain what types of Key types may be stored.  

 



ProtectToolkit J - JCA/JCE API Overview    Key Management      

20 

 

7.5 Certificates 

The JCA framework provides support for generic certificates, as well as X.509v3 certificates. 

Certificates may be stored using the KeyStore API, or they may be generated from their 

encoded format (either the PEM or PKCS#7 encoding).  

 

To create a java.security.cert.Certificate instance from its encoded format, firstly 

create a java.security.cert.CertificateFactory instance of the required type (eg 

X.509). Then use the generateCertificate() or generateCertificates() methods 

to convert your InputStream into Certificate instances.  

 
   CertificateFactory cf = 

         CertificateFactory.getInstance("X.509"); 

   X509Certificate cert =  

        (X509Certificate)cf.generateCertificate(inputStream); 

 

Two useful methods of the Certificate class are getPublicKey() and verify(). The 

first of these allows access to the PublicKey of the certificate's owner and the second allows an 

application to verify that the certificate was signed using the private key that corresponds to the 

provided public key.  

 

The java.security.cert.X509Certificate class, which extends the Certificate 

class, provides methods to access the other attributes of a X.509 certificate such as the Issuer's 

distinguished name or its validity period.  

 

The keytool application provided with JDK1.2 can be used to generate certificates and store 

them in a KeyStore. Check the JDK documentation for information on how to use this 

application.  

 



ProtectToolkit J - JCA/JCE API Overview  Error Handling and Exceptions    

21 

 

8.0 ERROR HANDLING AND EXCEPTIONS 
The JCA/JCE framework includes a number of specialised exception classes:  

 

java.security  

DigestException  Thrown if an error occurs during the final computation of the digest. 

Generally this indicates that the output buffer is of insufficient size.  

InvalidAlgorithmParameter 

Exception  
Thrown by classes that use AlgorithmParameters or 

AlgorithmParameterSpec instances where the supplied 

instance is not compatible with the algorithm or the supplied 

parameter was null and the algorithm requires a non-null 

parameter.  

InvalidKeyException  Thrown by the various classes that use Key objects, such as 

Signature, Mac and Cipher when the provided Key is not 

compatible with the given instance.  

InvalidParameterException  Only used in the deprecated interfaces in the Signature class and 

the deprecated class Signer.  

KeyStoreException  Thrown by the KeyStore class when the object has not been 

initialised properly.  

NoSuchAlgorithmException  Thrown by the getInstance() methods when the requested 

algorithm is not available.  

NoSuchProviderException  Thrown by the getInstance() methods when the requested 

provider is not available.  

SignatureException  Thrown by the Signature class during signature generation or 

validation if the object has not been initialised correctly or an error 

occurs in the underlying ciphers.  

javax.crypto  

BadPaddingException  Thrown by the Cipher class (or classes which use a Cipher 

class to process data) if this cipher is in decryption mode, 

(un)padding has been requested, and the deciphered data is not 

bounded by the appropriate padding bytes.  

IllegalBlockSizeException  Thrown by the Cipher class (or classes which use a Cipher 

class to process data) if this cipher is a block cipher, no padding has 

been requested (only in encryption mode), and the total input length 

of the data processed by this cipher is not a multiple of block size  

NoSuchPaddingException  Thrown by the Cipher class by the getInstance() method 

when a transformation is requested that contains a padding scheme 

that is not available.  

ShortBufferException  Thrown by the Cipher class when an output buffer is supplied that 

is too small to hold the result. 

 



ProtectToolkit J - JCA/JCE API Overview  Error Handling and Exceptions    

22 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

THIS PAGE INTENTIONALLY LEFT BLANK



ProtectToolkit J - JCA/JCE API Overview  Glossary    

23 

 

GLOSSARY 

API  

Application Programming Interface, an interface used by an application developer to interface to a set of 

functionality provided by a third party.  

Asymmetric Cipher  

An encryption algorithm that uses different keys for encryption and decryption. These ciphers are usually 

also known as public-key ciphers as one of the keys is generally public and the other is private. RSA and 

ElGamal are two asymmetric algorithms.  

Block Cipher  

A cipher that processes input in a fixed block size greater than 8 bits. A common block size is 64 bits.  

Certificate  

A binding of an identity (individual, group, etc.) to a public key which is generally signed by another 

identity. A certificate chain is a list of certificates that indicates a chain of trust, i.e. the second certificate has 

signed the first, the third has signed the second and so on.  

Decryption  

The process of recovering the plaintext from the ciphertext.  

DES  

Data Encryption Standard as defined in FIPS PUB 46-2 which may be found at 

http://www.itl.nist.gov/div897/pubs/fip46-2.htm.  

Digital Signature  

A mechanism that allows a recipient or third party to verify the originator of a document and to ensure that 

the document has not be altered in transit.  

DSA  

Digital Signature Algorithm as defined in FIPS PUB 186 which may be found at 

http://www.itl.nist.gov/div897/pubs/fip186.htm.  

Encryption  

The process of converting the plaintext data into the ciphertext so that the content of the data is no longer 

obvious. Some algorithms perform this function in such a way that there is no known mechanism, other than 

decryption with the appropriate key, to recover the plaintext. With other algorithms there are known flaws 

which reduce the difficulty in recovering the plaintext.  

JCA  

Java Cryptography Architecture.  

JCE  

Java Cryptography Extension.  

http://www.itl.nist.gov/div897/pubs/fip46-2.htm
http://www.itl.nist.gov/div897/pubs/fip186.htm


ProtectToolkit J - JCA/JCE API Overview  Glossary    

24 

 

MAC  

Message authentication code. A mechanism that allows a recipient of a message to determine if a message 

has been tampered with. Broadly there are two types of MAC algorithms, one is based on symmetric 

encryption algorithms and the second is based on Message Digest algorithms. This second class of MAC 

algorithms are known as HMAC algorithms. A DES based MAC is defined in FIPS PUB 113, see 

http://www.itl.nist.gov/div897/pubs/fip113.htm. For information on HMAC algorithms see RFC-2104 at 

http://www.ietf.org/rfc/rfc2104.txt.  

Message Digest  

A condensed representation of a data stream. A message digest will convert an arbitrary data stream into a 

fixed size output. This output will always be the same for the same input stream however the input cannot be 

reconstructed from the digest.  

Padding  

A mechanism for extending the input data so that it is of the required size for a block cipher. The PKCS 

documents contain details on the most common padding mechanisms of PKCS#1 and PKCS#5.  

PEM  

Privacy Enchanced Mail, includes standards for certificates, see RFC1422 http://www.ietf.org/rfc/rfc1422.txt.  

PKCS  

Public Key Cryptography Standards. A set of standards (currently PKCS#1 to PKCS#15) developed by RSA 

Laboratories, see http://www.rsa.com/rsalabs/pubs/PKCS/.  

RFC  

Request for Comments, proposed specifications for various protocols and algorithms archived by the Internet 

Engineering Task Force (IETF), see http://www.ietf.org.  

RSA  

A public-key encryption algorithm, see http://www.rsa.com.  

Symmetric Cipher  

An encryption algorithm that uses the same key for encryption and decryption. DES, RC4 and IDEA are all 

symmetric algorithms.  

X.509 Certificate  

Section 3.3.3 of X.509v3 defines a certificate as: "user certificate; public key certificate; certificate: The 

public keys of a user, together with some other information, rendered unforgeable by encipherment with the 

private key of the certification authority which issued it".  

 

 

 

 

END OF DOCUMENT 

http://www.itl.nist.gov/div897/pubs/fip113.htm
http://www.ietf.org/rfc/rfc2104.txt
http://www.ietf.org/rfc/rfc1422.txt
http://www.rsa.com/rsalabs/pubs/PKCS/
http://www.ietf.org/
http://www.rsa.com/

