
 

 

ProtectToolkit-C 

Administration Guide 



ProtectToolkit C Administration Guide 

ii 

 

© 2000-2014 SafeNet, Inc. All rights reserved. 

Part Number 007-008393-006 

Version 5.0 

Trademarks 

All intellectual property is protected by copyright. All trademarks and product names used or referred to are the 

copyright of their respective owners. No part of this document may be reproduced, stored in a retrieval system or 

transmitted in any form or by any means, electronic, mechanical, chemical, photocopy, recording or otherwise without 

the prior written permission of SafeNet. 

Disclaimer 

SafeNet makes no representations or warranties with respect to the contents of this document and specifically disclaims 

any implied warranties of merchantability or fitness for any particular purpose. Furthermore, SafeNet reserves the right 

to revise this publication and to make changes from time to time in the content hereof without the obligation upon 

SafeNet to notify any person or organization of any such revisions or changes. 

We have attempted to make these documents complete, accurate, and useful, but we cannot guarantee them to be 

perfect. When we discover errors or omissions, or they are brought to our attention, we endeavor to correct them in 

succeeding releases of the product. 

SafeNet invites constructive comments on the contents of this document. Send your comments, together with your 

personal and/or company details to the address below: 

SafeNet, Inc. 

4690 Millennium Drive 

Belcamp, Maryland  USA 21017 

Technical Support 
If you encounter a problem while installing, registering or operating this product, please make sure that you have read 

the documentation. If you cannot resolve the issue, please contact your supplier or SafeNet support. SafeNet support 

operates 24 hours a day, 7 days a week. Your level of access to this service is governed by the support plan 

arrangements made between SafeNet and your organization. Please consult this support plan for further information 

about your entitlements, including the hours when telephone support is available to you. 

 

Contact method Contact information 

Address SafeNet, Inc. 

4690 Millennium Drive 

Belcamp, Maryland  21017  

USA 

Phone United States (800) 545-6608, (410) 931-7520 

Australia and New Zealand +1 410-931-7520 

China (86) 10 8851 9191 

France 0825 341000 

Germany 01803 7246269 

India +1 410-931-7520 

United Kingdom 0870 7529200, +1 410 931-7520 

Web www.safenet-inc.com 

http://www.safenet-inc.com/


ProtectToolkit C Administration Guide 

iii 

Support and 

Downloads 

www.safenet-inc.com/Support 

Provides access to the SafeNet Knowledge Base and quick downloads for various 

products. 

Technical Support 

Customer Portal 

https://serviceportal.safenet-inc.com 

Existing customers with a Technical Support Customer Portal account can log in to 

manage incidents, get the latest software upgrades, and access the SafeNet 

Knowledge Base. 

Revision History 

Revision Date Reason 

A 27 October 2014 Release 5.0 

http://www.safenet-inc.com/Support
https://serviceportal.safenet-inc.com/


ProtectToolkit C Administration Guide 

iv 

TABLE OF CONTENTS 

TABLE OF CONTENTS ..................................................................................................................................................... iv 

Introduction ..................................................................................................................................................................... 1 
Who Should Read This Manual? ................................................................................................................................... 1 
Chapter Overview .......................................................................................................................................................... 1 
Further Documentation .................................................................................................................................................. 2 

SafeNet Manuals ........................................................................................................................................................ 2 
Software .............................................................................................................................................................. 2 
Hardware ............................................................................................................................................................. 2 

SafeNet Application Integration Guides .................................................................................................................... 2 
Utility Normal Mode vs. Work Load Distribution and HA Mode .............................................................................. 2 

Configuration Items ........................................................................................................................................................ 3 
Overview ....................................................................................................................................................................... 3 
Platform-specific Details ............................................................................................................................................... 4 

Windows .................................................................................................................................................................... 4 
Example ............................................................................................................................................................... 4 

UNIX .......................................................................................................................................................................... 4 
Example ............................................................................................................................................................... 4 

Operating Mode Setup .................................................................................................................................................... 5 
Operating Mode Setup Overview .................................................................................................................................. 5 

PCI and Network Operating Modes .......................................................................................................................... 5 
Software-only Mode ................................................................................................................................................... 5 

Secure Messaging Overview ......................................................................................................................................... 6 
Messaging Mode Configuration ................................................................................................................................ 6 

Configuring Session Key Rollover ...................................................................................................................... 6 
Configuring Session Protection ................................................................................................................................. 7 

HSM Stored Security Flags ................................................................................................................................. 7 
SMPR Security Flags .......................................................................................................................................... 8 

Specifying the Network Server(s) ............................................................................................................................... 9 
Software-only Mode Configuration ......................................................................................................................... 10 

Storage Location Assignment ........................................................................................................................... 10 
Fixing Command Line Utility Low Performance .............................................................................................. 10 
Enabling Smart Card Access under UNIX ........................................................................................................ 10 

Cryptoki Configuration ................................................................................................................................................ 11 
Introduction ................................................................................................................................................................. 11 
The ProtectToolkit C Model ........................................................................................................................................ 11 

Slots and Tokens ...................................................................................................................................................... 12 
User Slots ................................................................................................................................................................. 12 
Smart Card Slots ...................................................................................................................................................... 12 
The Admin Slot......................................................................................................................................................... 12 
PKCS #11 Objects ................................................................................................................................................... 13 
Administration Objects ............................................................................................................................................ 13 
User Roles ............................................................................................................................................................... 13 
PINs and Passwords ................................................................................................................................................ 14 
PIN Retry Delay ....................................................................................................................................................... 14 

Initial Configuration .................................................................................................................................................... 15 
Preparation .............................................................................................................................................................. 15 

Setting the Admin Token PINs.......................................................................................................................... 15 
Selecting and Setting a Security Policy ............................................................................................................. 16 
Setting up Slots.................................................................................................................................................. 16 
Multiple Adapter HSMs .................................................................................................................................... 17 
Token Initialization ........................................................................................................................................... 17 

Trust Management ................................................................................................................................................... 18 
Establishing Trust Relationships ....................................................................................................................... 20 

Token Replication .................................................................................................................................................... 22 



ProtectToolkit C Administration Guide 

v 

Alternative 1 – Master Tokens Replicated to a Single Slot or List of Slots ...................................................... 22 
Alternative 2 – Token Replicated to Many Tokens ........................................................................................... 24 

Work Load Distribution Model (WLD) and High Availability (HA) ....................................................................... 25 
HSMs................................................................................................................................................................. 25 
ProtectToolkit C ................................................................................................................................................ 25 
WLD Slots ......................................................................................................................................................... 25 
Distribution Scheme .......................................................................................................................................... 26 
Token Replication ............................................................................................................................................. 26 

WLD Example .......................................................................................................................................................... 26 
Configuring WLD Slots .................................................................................................................................... 31 
Operation in WLD Mode .................................................................................................................................. 32 
Operation in HA Mode ...................................................................................................................................... 33 
HA Mode Logging ............................................................................................................................................ 34 

External Key Storage ............................................................................................................................................... 35 
Introduction ....................................................................................................................................................... 35 
Implementation.................................................................................................................................................. 36 
Configuration .................................................................................................................................................... 39 

Real Time Clock ....................................................................................................................................................... 43 
Setting the Rule for RTC Adjustment Access Control ...................................................................................... 43 

Security Policies and User Roles................................................................................................................................... 45 
Overview .................................................................................................................................................................. 45 
PKCS #11 Compliance and Security ....................................................................................................................... 46 
Typical Security Policies ......................................................................................................................................... 46 

Overview ........................................................................................................................................................... 46 
PKCS #11 Compatibility Mode......................................................................................................................... 47 
SafeNet Default Mode ....................................................................................................................................... 47 
FIPS Mode ........................................................................................................................................................ 47 
Entrust Compliant Modes .................................................................................................................................. 49 
Netscape Compliant Mode ................................................................................................................................ 49 
Restricted Mode ................................................................................................................................................ 49 

Security Flags .......................................................................................................................................................... 49 
Overview ........................................................................................................................................................... 49 
Configuring Security Flags ............................................................................................................................... 50 
Security Flag Descriptions ................................................................................................................................ 51 

Security Policy Options ........................................................................................................................................... 54 
User Roles ............................................................................................................................................................... 55 

Administration Security Officer (ASO) ............................................................................................................ 55 
Administrator .................................................................................................................................................... 56 
Security Officer (SO) ........................................................................................................................................ 56 
Token Owner (User) .......................................................................................................................................... 57 
Unauthenticated Users ....................................................................................................................................... 57 

Operational Tasks.......................................................................................................................................................... 58 
Changing a User or Security Officer PIN................................................................................................................ 58 
Secure Key Backup and Restoration ........................................................................................................................ 58 
Re-initializing a Token ............................................................................................................................................. 63 
Adding and Removing Slots ..................................................................................................................................... 64 
Connecting and Removing Smart Card Readers ..................................................................................................... 64 
Using Transport Mode to Avoid a Board Removal Tamper .................................................................................... 65 
Adjusting the HSM Clock ......................................................................................................................................... 65 
Changing Secure Messaging Mode ......................................................................................................................... 66 
Managing Session Key Rollover .............................................................................................................................. 66 
Using the System Event Log .................................................................................................................................... 66 

Viewing and Interpreting the Event Log ........................................................................................................... 66 
Purging the Event Log ....................................................................................................................................... 66 

Updating Firmware ................................................................................................................................................. 67 
Tampering the HSM ................................................................................................................................................. 67 
Installing a Functionality Module ........................................................................................................................... 68 



ProtectToolkit C Administration Guide 

vi 

Command Line Utilities Reference .............................................................................................................................. 70 
CTCERT .................................................................................................................................................................. 70 

Synopsis ............................................................................................................................................................ 70 
Description ........................................................................................................................................................ 70 
Commands ......................................................................................................................................................... 71 
Options .............................................................................................................................................................. 73 
Certificate Attribute File ................................................................................................................................... 75 
Examples ........................................................................................................................................................... 79 

CTCHECK ............................................................................................................................................................... 79 
Synopsis ............................................................................................................................................................ 79 
Description ........................................................................................................................................................ 79 
Options .............................................................................................................................................................. 81 
Diagnostics ........................................................................................................................................................ 82 
Examples ........................................................................................................................................................... 82 
See Also ............................................................................................................................................................ 83 

CTCONF .................................................................................................................................................................. 83 
Synopsis ............................................................................................................................................................ 83 
Description ........................................................................................................................................................ 84 
Options .............................................................................................................................................................. 84 

CTFM ...................................................................................................................................................................... 86 
Synopsis ............................................................................................................................................................ 86 
Description ........................................................................................................................................................ 87 
Commands ......................................................................................................................................................... 87 
Options .............................................................................................................................................................. 88 

CTIDENT ................................................................................................................................................................. 89 
Synopsis ............................................................................................................................................................ 89 
Description ........................................................................................................................................................ 89 
Commands ......................................................................................................................................................... 89 
Parameters ......................................................................................................................................................... 90 
Exit Status ......................................................................................................................................................... 91 

CTLIMITS ................................................................................................................................................................ 91 
Synopsis ............................................................................................................................................................ 91 
Description ........................................................................................................................................................ 91 
Options .............................................................................................................................................................. 91 
Commands ......................................................................................................................................................... 93 

CTKMU ................................................................................................................................................................... 94 
Synopsis ............................................................................................................................................................ 94 
Description ........................................................................................................................................................ 94 
Parameters ......................................................................................................................................................... 97 
Exit Status ......................................................................................................................................................... 99 

CTPERF .................................................................................................................................................................. 99 
Synopsis ............................................................................................................................................................ 99 
Description ...................................................................................................................................................... 100 
Options ............................................................................................................................................................ 100 

CTSTAT ................................................................................................................................................................. 103 
Synopsis .......................................................................................................................................................... 103 
Description ...................................................................................................................................................... 103 
Options ............................................................................................................................................................ 103 

GUI Utilities Reference ............................................................................................................................................... 105 
Key Management Utility ........................................................................................................................................ 105 

Compatibility Issues ........................................................................................................................................ 105 
Main KMU Interface ....................................................................................................................................... 106 
Token and Key Selection ................................................................................................................................ 107 
Toolbar Buttons ............................................................................................................................................... 107 
Logging into a Token ...................................................................................................................................... 108 
Logging Out from a Token .............................................................................................................................. 108 
Setting the User's PIN ..................................................................................................................................... 108 
Changing the PIN of the Logged on User ....................................................................................................... 109 



ProtectToolkit C Administration Guide 

vii 

Retrieving Information about a Token ............................................................................................................ 110 
Creating Keys .................................................................................................................................................. 111 
Entering a Key from Components ................................................................................................................... 117 
Editing Key Attributes..................................................................................................................................... 119 
Deleting a Key ................................................................................................................................................. 120 
Display Key Check Value ............................................................................................................................... 120 
Exporting Keys ................................................................................................................................................ 120 
Importing Keys ................................................................................................................................................ 123 

Administration Utility (GCTADMIN) .................................................................................................................... 125 
Logging In ....................................................................................................................................................... 125 
Logging Out .................................................................................................................................................... 126 
Main GCTADMIN Interface ........................................................................................................................... 126 
Slot and Token Management ........................................................................................................................... 127 
HSM Management .......................................................................................................................................... 129 

Event Log Error Types ............................................................................................................................................... 132 

PKCS #11 Attributes ................................................................................................................................................... 135 

KMU Key Check Value (KCV) Calculation .............................................................................................................. 137 
Double-length Key KCV ........................................................................................................................................ 137 

Key Migration from ProtectToolkit C V4.1 .............................................................................................................. 139 
Overview ................................................................................................................................................................ 139 

External Key Storage Application Note ..................................................................................................................... 141 
Implementation ...................................................................................................................................................... 142 
Technical Details ................................................................................................................................................... 143 

Sample EC Domain Parameter Files ......................................................................................................................... 145 
C2tnB191v1 ........................................................................................................................................................... 145 
brainpoolP160r1 ................................................................................................................................................... 146 
Hexadecimal to Decimal Conversion Table .......................................................................................................... 147 

Glossary ........................................................................................................................................................................ 149 

 

 

 

 

 



ProtectToolkit C Administration Guide 

viii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

THIS PAGE INTENTIONALLY LEFT BLANK



ProtectToolkit C Administration Guide Introduction 

1 

C H A P T E R  1   

INTRODUCTION 

ProtectToolkit C is a cryptographic service provider that implements the PKCS #11 application 

programming interface (API) as specified by RSA labs, and a lightweight, proprietary Java API to 

access these PKCS #11 functions from Java.  The PKCS #11 API, also known as Cryptoki, includes a 

suite of cryptographic services for encryption, decryption, signature generation and verification as well 

as permanent key storage.  ProtectToolkit C is compliant with PKCS #11 V 2.10. 

To provide the highest level of security, ProtectToolkit C interfaces directly to an intelligent 

cryptographic Hardware Security Module (HSM).  The HSM includes high-speed DES and RSA 

hardware acceleration as well as generic security processing. Secure key storage is also included in 

form of persistent, tamper resistant CMOS storage.  In addition, multiple adapters may be used in a 

single host computer in order to improve throughput or to provide redundancy. 

The environment under which an application can make requests for Cryptoki processing is herein 

referred to as the ProtectToolkit C Runtime. 

Who Should Read This Manual? 

This manual is primarily intended for the ProtectToolkit C Administrator.  This person is responsible 

for performing administrative tasks such as specifying the configuration, security policy and number of 

applications (or users) of ProtectToolkit C.  This configuration of ProtectToolkit C will determine the 

type of functionality and/or services that will be available to the ProtectToolkit C applications.  The 

Administrator is strongly encouraged to thoroughly read this manual before attempting any operations. 

The normal ProtectToolkit C User may gain additional insight into the structure and features of the 

ProtectToolkit C product by reading its contents, and hence this document may serve as a valuable 

reference for any user. 

This manual also provides the details for configuration of some standard PKCS #11 applications, which 

are compatible with the ProtectToolkit C product. 

Chapter Overview 

Chapter 2 describes how the ProtectToolkit C system is initially set up. The System Administrator or 

person responsible for the installation process should read this chapter, in addition to the ProtectToolkit 

C Installation Guide. 

Chapter 3 describes the ProtectToolkit C application model and then discusses the initial configuration 

of the system. This chapter is primarily intended for the Administrator; however an understanding of 

the concepts may be useful to the normal user. 

Chapter 4 discusses the various operational aspects of the system. This chapter is applicable to both 

the Administrator and normal user. 

Chapter 5 discusses different aspects that administrators must consider when selecting and setting a 

security policy for the ProtectToolkit C environment. Changes to security policy changes affect users, 

and in some cases, also depend upon the roles to which they have been assigned. 

Chapter 6 describes some of the most common operational procedures a User, Administrator or 

Security Officer may perform during normal ProtectToolkit C operation. 

Chapter 7 contains reference sections for the command line utilities provided with ProtectToolkit C.  

This chapter is applicable to both the Administrator and normal user. 



ProtectToolkit C Administration Guide Introduction 

2 

Chapter 8 contains a reference to the graphical user interface (GUI) utilities provided with 

ProtectToolkit C. This chapter is applicable to both the Administrator and normal user.  

Appendix A contains a reference to the Event Log types. 

Appendix B contains a reference to PKCS #11 attributes. 

Appendix C contains a reference to the KMU key management utility. 

Appendix D contains a reference to Key Migration from ProtectToolkit C V4.1. 

Appendix E contains a reference to External Key Storage. 

Appendix F contains samples of EC Domain Parameter files. 

Further Documentation 

SafeNet Manuals 

In addition to this administration manual the following manuals may contain relevant information. 

They are referenced in this manual when applicable. 

Software 

 ProtectToolkit C Installation Guide 

 ProtectToolkit C Programming Guide 

 ProtectSerrver HSM Access Provider Installation Guide 

Hardware 

 ProtectServer Internal Express 2 (PSI-E2) Installation Guide 

 ProtectServer External 2 (PSE2) Installation Guide 

SafeNet Application Integration Guides 

A number of integration guides are available that outline the use of SafeNet products with third party 

applications. To obtain further information, contact your local SafeNet representative. 

Utility Normal Mode vs. Work Load Distribution and HA Mode 

In this document, any references to the name of a utility without any further qualification refer to the 

utility operating in NORMAL mode. Any references to the name of a utility with the qualification 

(WLD/HA) refer to the utility operating in Work Load Distribution and High Availability Mode.  

For example ctkmu refers to the CTKMU utility operating in NORMAL mode, while, ctkmu (WLD) 

refers to the CTKMU utility operating in WLD mode. Refer to section Operation in WLD Mode  for 

further details.



ProtectToolkit C Administration Guide Configuration Items 

3 

C H A P T E R  2   

CONFIGURATION ITEMS 

Overview 

Configuration items are created and maintained on the host operating system (platform) where 

ProtectToolkit C is installed to store ProtectToolkit C configuration information. 

This chapter covers configuration items in detail as it is important that their characteristics and use be 

well understood if ProtectToolkit C is to be setup and configured successfully. 

In some cases ProtectToolkit C will automatically create configuration items. In most cases though, if a 

change controlled by a configuration item is to be made to ProtectToolkit C configuration, then that 

configuration item must be manually created and set to the value required using the information 

contained in this section. 

Configuration items may exist at any one of four configuration levels. When a configuration item is 

queried, four locations corresponding to these levels are searched in order of precedence. This is 

explained in more detail below. 

The four levels, in order of precedence, are: 

 temporary configuration 

 user configuration 

 system configuration and 

 default configuration 

Default configuration items cannot be changed, however changes to configuration items can be made at 

the system, user or temporary levels and these changes will override the corresponding values at the 

default configuration level. 

Any entries made at the temporary configuration level override any corresponding entries at the user or 

system levels and any entries at the user configuration level will override corresponding entries at the 

system level. 

The exact nature and location of these configuration areas is platform specific. On Windows systems, 

user and system configuration information is stored in the Registry. On UNIX-based systems, 

configuration files are used. Temporary configuration items are implemented using environment 

variables on both Windows and UNIX-based platforms. 

Regardless of the platform used a common convention has been followed to name configuration items. 

Understanding this naming convention will assist you to locate and change the appropriate 

configuration items when required. 

Configuration items are hierarchical in structure, with the root node always being "ET". Child nodes of 

the root represent the class of the item, and are typically product abbreviations, such as "PTKC" 

(ProtectToolkit C) or "HSM" (Hardware Security Module). Nodes under class represent the 

component, such as "LOGGER" or "SMS". Finally, nodes under component represent the 

configuration item, such as "FILE" or "MODE".  Putting it all together, configuration items are of the 

form: 

ET_<class>_<component>_<item> 



ProtectToolkit C Administration Guide Configuration Items 

4 

Platform-specific Details 

Windows 

Temporary Configuration is implemented using environment variables. Since environment variables 

are not hierarchical in nature, the hierarchy is implicitly defined by the name of the variable. 

User Configuration is the registry tree starting from 

HKEY_CURRENT_USER\SOFTWARE\SafeNet. 

System Configuration is the registry tree starting from 

HKEY_LOCAL_MACHINE\SOFTWARE\SafeNet. 

The User and System Configuration registry trees have a corresponding key for the class and 

component nodes. Entries contained in the component node key are strings whose names are of the 

form: ET_<class>_<component>_<item>. 

Example 

The name of the file where the logger library writes log information (ctlog.log) is stored in the 

Windows registry as a string value for the entry: 

ET_PTKC_LOGGER_ FILE 

This is located in the key: 

HKEY_LOCAL_MACHINE\SOFTWARE\SafeNet\PTKC\LOGGER 

UNIX 

Temporary Configuration is implemented using environment variables. Since environment variables 

are not hierarchical in nature, the hierarchy is implicitly defined by the name of the variable. 

User Configuration is a set of files located in the $HOME/.safenet directory. 

System Configuration is a set of files located in the /etc/default directory. 

The User and System Configuration files are of the form: et_<class>. Entries in the file are of the form: 

ET_<class>_<component>_<item>=<value>. 

Example 

The name of the file where the logger library writes log information (ctlog.log) is stored in the 

/etc/default/et_ptkc file as the entry: 

ET_PTKC_LOGGER_FILE=/ctlog.log



ProtectToolkit C Administration Guide Operating Mode Setup 

5 

C H A P T E R  3   

OPERATING MODE SETUP 

Operating Mode Setup Overview 

ProtectToolkit C can be used in any one of three operating modes. These are: 

 PCI Mode in conjunction with a compatible SafeNet Hardware Security Module (HSM) such as 

the ProtectServer PSI-E2 installed locally 

 Network Mode over a TCP/IP network, in conjunction with a compatible SafeNet HSM such as 

the PSE2 

 Software-Only Mode, on a local machine without access to a hardware security module, for 

development and testing purposes 

The setup steps for each of these modes are summarized below with references to further information 

in other manuals or this chapter as applicable. 

Once operating mode setup is complete proceed with Cryptoki configuration. This is covered in the 

next chapter. 

PCI and Network Operating Modes 

1 Install the hardware. 

See the installation manuals provided with the hardware for further information. 

2 Install and configure access provider software. 

Access provider software must be installed and configured to support the operating mode required. For 

full details see the ProtectServer HSM: Access Provider Installation Guide. 

It is not necessary to install access provider software when ProtectToolkit C is used in software-only 

mode for development and testing purposes. 

3 Install ProtectToolkit C. 

Install ProtectToolkit C on your computer system. Please refer to the ProtectToolkit C Installation 

Guide for further details. 

4 Configure the secure messaging system (SMS). 

Refer to the Secure Messaging Overview, Messaging Mode Configuration, and Configuring Session 

Protection sections in this chapter for further information. 

5 Establish network communication (Network Operating Mode only). 

In order to establish network communication the client must be configured to use one or more servers 

that are available on the same network. Refer to the Specifying the Network Server(s) section in this 

chapter for further information. 

Software-only Mode 

1 Install the ProtectToolkit C software development kit (SDK). 

Install the ProtectToolkit C Software Development Kit (SDK) on your computer system.  Refer to the 

ProtectToolkit C Installation Guide for further details. 



ProtectToolkit C Administration Guide Operating Mode Setup 

6 

2 Make configuration changes, if required. 

Further changes may be made to customize the installation and optimize its performance. Refer to the 

Software Only Mode Configuration section in this chapter for further information if required. 

Secure Messaging Overview 

An optional trusted channel called the Secure Message System (SMS) may be enabled. It is disabled by 

default. This system enables applications to securely communicate with HSMs over the PCI bus 

interface, or across a network. 

A trusted channel is created on-demand by the operator but may be terminated by either the HSM or 

the operator.  Either the HSM or application may be configured to require a trusted channel to be 

created before cryptographically sensitive services can be provided.  For the HSM to be compliant to 

FIPS 140-2 Level 3 operation the HSM must be configured in this way.  However it is also possible for 

the application to request and use a trusted channel even though the HSM is not configured to require 

them. 

The HSM can manage multiple simultaneous trusted channels, each of which will have its own set of 

randomly generated session keys for message encryption/decryption and message signing/verification.  

The negotiation of these session keys is based on a shared secret known by both the application and the 

HSM. 

ProtectServer uses Anonymous Diffie Hellman (ADH) secure messaging. The shared secret is a triple 

length DES key derived from Anonymous Diffie Hellman key. 

To configure and enable an SMS complete the following steps. 

1 Configure secure messaging mode. 

You may need to change the session key rollover default configuration. See the section Configuring 

Session Key Rollover below for further information. 

2 Configure session protection and enable SMS. 

The SMS is enabled by setting one or more security flags that control how the SMS functions. By 

default these flags are cleared so SMS is disabled. To enable and configure SMS see the section 

Configuring Session Protection below. 

Messaging Mode Configuration 

Configuring Session Key Rollover 

Session key rollover involves dynamically changing the keys used to perform encryption/decryption 

between the application and the hardware security module (HSM). 

Two mechanisms can be used to trigger session key rollover. 

 The first mechanism triggers session key rollover once a preset number of blocks have been 

encrypted or decrypted by the application. 

 The second mechanism triggers session key rollover after a preset number of hours have elapsed 

since a connection was established with the HSM. 

Each of these mechanisms is covered in more detail as follows. 



ProtectToolkit C Administration Guide Operating Mode Setup 

7 

Preset Number of Blocks Trigger 

This mechanism is used to trigger session key rollover once a preset number of blocks have been 

encrypted or decrypted by the application. The default value for the number of blocks is 2
32

. This 

default value can be overridden by setting the configuration item ET_PTKC_SMS_BLOCKS to the 

desired value. 

For example, on a UNIX machine, to temporarily change the key rollover trigger so that key rollover 

occurs after 10,000 blocks have been encrypted or decrypted the following shell commands would be 

used: 

$ ET_PTKC_SMS_BLOCKS=10000 

$ export ET_PTKC_SMS_BLOCKS 

This change can be made at the temporary, user or system levels on both UNIX and Windows 

platforms. Refer to the Configuration Items chapter for further details on how to go about this if 

required. 

Preset Number of Hours Trigger 

This mechanism is used to trigger session key rollover after a preset number of hours have elapsed 

since a connection was established with the HSM. The default value for the number of hours is 24. This 

default value can be overridden by setting the configuration item ET_PTKC_SMS_HOURS to the 

desired value. 

For example, on a UNIX machine, to temporarily change the key rollover trigger to occur after 4 hours 

have elapsed, the following shell commands would be used: 

$ ET_PTKC_SMS_HOURS=4 

$ export ET_PTKC_SMS_HOURS 

This change can be made at the temporary, user or system levels on both UNIX and Windows 

platforms. Refer to the Configuration Items chapter for further details on how to go about this if 

required. 

Configuring Session Protection  

When applications establish a session with a hardware security module (HSM) using ProtectToolkit C, 

secure messaging layer activation depends upon:  

 Security flag settings (the security policy) stored in tamperable memory inside the HSM by the 

administrator 

 Any additional security flag settings specified by users where they wish to increase the level of 

security used. These user specified security flag settings are stored in the Secure Messaging Policy 

Register (SMPR) on the client machine. 

Generally, the HSM stored security flag settings are sufficient so the Secure Messaging Policy Register 

is rarely used. 

NOTE: Session protection is only applied to Cryptoki functions that use a session handle returned 

from a previous call to C_OpenSession(). 

HSM Stored Security Flags 

HSM stored security flags can be set at the local machine regardless of whether the HSM is located in 

the same machine as the application (PCI mode) or remotely (network mode). In the latter case it will 

be necessary to know the “administrators password” for the server machine as this must be entered 

before any server side changes can be made. 



ProtectToolkit C Administration Guide Operating Mode Setup 

8 

The following table lists those flags that, when set for HSM storage, effect secure messaging. For 

further information about these flags please see Security Policies and User Roles. 

Flag Secure Messaging Effect 

No clear PINs Only messages sent to the HSM that contain sensitive 

data are encrypted 

Auth Protection Only messages sent to the HSM are signed 

Full Secure Message Encryption All messages sent to and from the HSM are encrypted 

Full Secure Message Signing All messages sent to and from the HSM are signed 

 

To Set HSM Stored Security Flags: 

These flags can be set using the ProtectToolkit C ctconf utility command, ctconf -fflags. Refer to 

Security Policies and User Roles for full details on security policies, setting flags and the use of this 

command. 

SMPR Security Flags 

The Secure Messaging Policy Register (SMPR) flag settings augment the HSM settings discussed 

above and are stored on the client machine by assigning configuration item values. 

As the client may access more than one HSM the SMPR can store a unique set of settings for each 

accessible HSM if required. Each HSM is identified by its serial number for SMPR storage purposes. 

The following table lists the SMPR security mode flags, their effect on secure messaging and the 

configuration item values that must be assigned in order to set them. 

Flag Secure Messaging Effect Configuration 

Item Value 

No clear PINs 
Only messages sent to the HSM that contain sensitive data 

are encrypted 
E 

Auth Protection Only messages sent to the HSM are signed S 

Auth Replies Only messages received from the HSM are signed R 

 

Set SMPR Security Flags 

1. Obtain the serial number of the HSM. 

This can be done by executing the command ctconf –a<device> from a command line. 

Replace <device> with the number of the HSM required. 

2. Create the following configuration item: 

ET_PTKC_<serial>_SMPR 

Replace <serial> with the serial number of the HSM found in step 1. 

This change can be made at the temporary, user or system levels on both UNIX and Windows 

platforms. Refer to the Configuration Items chapter for further details on how to go about this if 

required. 

3. Set one or more flags by assigning a value to the configuration item using one or more of the 

Configuration Item Value letters given in the table above. For example, if both Auth Protection 

and Auth Replies are required assign the value SR. 



ProtectToolkit C Administration Guide Operating Mode Setup 

9 

Specifying the Network Server(s) 

By default, the net client will attempt to use the local machine as its server. Default values are: 

 Server Name = 127.0.0.1 

 Server Port = 12396 

It is necessary to configure the client to use a different host by using the 

ET_HSM_NETCLIENT_SERVERLIST configuration item. Several servers may also be specified 

using this configuration item in which case the services from each server will be available seamlessly 

to the client. 

The full syntax for the ET_HSM_NETCLIENT_SERVERLIST configuration item is: 

ET_HSM_NETCLIENT_SERVERLIST=server1[:port1][server2[:port2]] 

UNIX Example 

To set the net server to the hostname ptkc.mydomain.com at the system level: 

 Open the file: /etc/default/et_hsm 

 Make the entry: et_hsm_netclient_serverlist=ptkc.mydomain.com 

Windows Example 

To set the net server to the hostname ptkc.mydomain.com at the system level: 

 Locate the registry key:  

HKEY_LOCAL_MACHINE\SOFTWARE\SafeNet\HSM\NETCLIENT 

 Assign the value ptkc.mydomain.com to the entry: 

ET_HSM_NETCLIENT_SERVERLIST 



ProtectToolkit C Administration Guide Operating Mode Setup 

10 

Software-only Mode Configuration 

After installing the ProtectToolkit C Software Development Kit (SDK) on your computer system 

further changes, as detailed in this section, may be made to customize the installation and optimize its 

performance.  

Storage Location Assignment 

The software only variant of ProtectToolkit C uses the local file system for storing keys and 

configuration information.  By default, the directory c:\cryptoki is used under Windows and 

$HOME/.cryptoki/cryptoki under UNIX.  It is possible to use a storage location other than the default 

location for your system by setting the value of the ET_PTKC_SW_DATAPATH configuration item to 

that of the path required. 

For example, on a UNIX machine, to temporarily set the location to /usr/local/cryptoki the following 

/bin/sh shell commands would be used: 

# ET_PTKC_SW_DATAPATH=/usr/local/cryptoki 

# export ET_PTKC_SW_DATAPATH 

This change can be made at the temporary, user or system levels on both UNIX and Windows 

platforms. Refer to the Configuration Items chapter for further details on how to go about this if 

required. 

Fixing Command Line Utility Low Performance 

In software only mode the time taken to detect peripherals, such as attached  smart card terminals, can 

significantly slow the execution of command line utility commands. If this proves to be an annoyance 

then peripheral detection can be disabled by creating the configuration item below and setting its value 

equal to FALSE. 

ET_PTKC_SW_DETECTPERIPHERALS 

This change can be made at the temporary, user or system levels on both UNIX and Windows 

platforms. Refer to the Configuration Items chapter for further details on how to go about this if 

required. 

Enabling Smart Card Access under UNIX 

When attempting to access a smart card reader while operating under any of the supported UNIX 

platforms in software only mode, ensure that the serial port permissions have been set to allow access 

to the required port. If this is not done, the logged on user will be unable to see the attached reader. 



ProtectToolkit C Administration Guide Cryptoki Configuration 

11 

C H A P T E R  4   

CRYPTOKI CONFIGURATION 

Introduction 

A number of steps must be taken in order for applications to operate correctly with ProtectToolkit C. 

The ProtectToolkit C environment can be extensively configured in order to allow for the wide range 

of security requirements that various applications may have. It is important therefore that these 

requirements be known when configuring ProtectToolkit so that the most suitable security settings and 

functionality for the particular applications can be chosen. 

This chapter begins with an introduction to the application and security model used by ProtectToolkit 

C. The chapter then covers the steps required to configure a system utilizing ProtectToolkit C for the 

first time. The concepts of Trust Management and Token Replication are discussed and illustrated with 

examples. Finally, the Work Load Distribution Model is explained and a configuration example is 

provided. 

The ProtectToolkit C Model 

The model for ProtectToolkit C is based on standard PKCS #11 processing as illustrated in the 

following diagram for ProtectToolkit C running in hardware mode.  It demonstrates how an application 

communicates its requests to a token via the PKCS #11 interface. 

 

Figure 1 - ProtectToolkit C Model 



ProtectToolkit C Administration Guide Cryptoki Configuration 

12 

Slots and Tokens 

In the PKCS #11 model, a slot represents a device interface and a token represents the actual 

cryptographic device.  For example, a smart card reader would represent a slot and the smart card 

would represent the token. 

ProtectToolkit C supports three different slot types: user slots, smart card slots and admin slots. These 

are described below. 

User Slots 

User slots are created by the Administrator for use with end-user applications.  Each slot automatically 

holds a User token.  All cryptographic mechanisms are supported with these tokens.  The system is 

configurable such that any number of User slots may be created.  It is also possible to specify the 

security policy setting for these slots. 

In the default configuration, a single User slot is available. You can add  more slots, as required, for the 

local configuration. There are practical limits as to how many slots you can create. HSM performance 

degrades as the number of slots increases. Creating too many slots may cause unacceptable 

performance. To ensure reasonable performance, it is recommended that you create no more than 200 

slots.. 

Smart Card Slots 

Smart card slots are automatically created and configured for each smart card reader attached to the 

external serial ports on the HSM.  The smart card tokens can be used for storage of data objects.  Their 

primary purpose is for key backup and key restoration.  In order to protect objects stored on the token 

from un-authenticated access these objects may be PIN-protected.  The smart card slots do not support 

cryptographic operations. 

When a supported smart card token is inserted into a configured smart card slot, it will become 

available to the ProtectToolkit C system.  Initially, smart card tokens are blank and require 

initialization before they can be used.  The storage format and layout of files on the tokens is 

proprietary and can store a maximum of 5 objects (up to the storage capacity of the actual token).  

Objects may be deleted; however, the storage allocated to the object is not reclaimed until the token is 

re-initialized by the Security Officer or Administrator. 

The Admin Slot 

The Admin slot is designated for the administrator and is used for configuration and administration of 

the HSM. There is only one Admin slot for each HSM. 

The Admin slot holds the Admin token and it is on this token that the administration objects reside (See 

the discussion on administration objects on the next page). 



ProtectToolkit C Administration Guide Cryptoki Configuration 

13 

PKCS #11 Objects 

As shown in Figure 1, each token may contain a number of objects.  The PKCS #11 standard allows for 

different types of objects which are classified as follows: 

 Data objects, which are defined by an application 

 Certificate objects, which represent digital certificates such as X.509, for example 

 Key objects, which can be public, private or secret cryptographic keys  

Each object in the system is comprised of a number of attributes.  These attributes describe the actual 

object as well as the access policy for that object.  For example, each object may be classified as public 

or private; this classification determines who may access the object.  A public object is visible to any 

user (or application), whereas a private object is only visible once the user is authenticated to the token 

where that object is stored. 

For a complete description of the object attributes please consult PKCS #11 Attributes. 

There is a practical limit to the number of objects that can be stored in a token. It is recommended that 

the number of tokens stored in any single token be less than 1000, and that the number of tokens stored 

on the entire HSM be less than 2000.  

Administration Objects 

In addition to the object classes defined within PKCS #11, ProtectToolkit C introduces a new set of 

objects known as administration objects. 

The administration objects represent the hardware and contain HSM configuration settings.  The 

administration objects can be queried by the application and some can be modified by an administrator.  

The default administration objects are automatically created when ProtectToolkit C initializes. 

The administration objects reside on a special token referred to as the Admin token.  This token has a 

fixed security policy. The Admin token resides only in the Admin slot on the HSM. 

User Roles 

As part of the ProtectToolkit C configuration process different user roles are assigned to those 

responsible for the application’s administration and use. 

For ProtectToolkit C there are four defined roles available.  These are: 

 Security Officer (SO) 

 Token Owner or User 

 Administration Security Officer (ASO) and 

 Administrator 

Standard PKCS #11 defines the first two of these, the Security Officer (SO) and the Token Owner or 

User.  Each slot and its associated token will have an SO and a User, each with their own respective 

PINs. 

 A Security Officer grants and revokes access to a token and assists with key backups 

 A Token Owner uses the token for the application 



ProtectToolkit C Administration Guide Cryptoki Configuration 

14 

Two additional roles are defined that are only available on the Admin token. The holders of these roles 

handle HSM level administration and management. These are the Administration Security Officer 

(ASO) and the Administrator.  These roles effectively mirror their standard PKCS #11 counterparts. 

It should be noted that the services available to the various roles are highly dependent upon the security 

policy set for the HSM.  For a complete description of these roles and the services available to each of 

them, please see Security Policies and User Roles. 

PINs and Passwords 

In general both PINs and passwords are used to authenticate users and to provide access to secured 

computer systems. Most commonly PINs are defined as 4 digit numbers in the range 0000-9999 while 

passwords may be alphanumeric and of varying length.  

NOTE: These common definitions have not been adopted in the PKCS #11 V2.10 Cryptographic 

Token Interface (Cryptoki) standard, and as ProtectToolkit C implements this standard, they do not 

apply when using this product. 

PINs, as defined in the standard (and as implemented for ProtectToolkit C), are variable length strings 

of characters selected from the ANSI C character set. In ProtectToolkit C PINs: 

 are case sensitive 

 must be between 1 and 32 characters in length 

The term password is not defined as something distinct from a PIN in Cryptoki environments. You will 

find the term used from time to time in Cryptoki related documentation instead of “PIN”, in line with 

common usage. 

PIN Retry Delay 

A brute-force search of PINs can be stopped using two approaches: 

1. Prevent logging in after a certain number of PIN failures. 

2. Enforce a time-delay between login attempts after a certain number of PIN failures. 

The time-delay approach is used for ProtectToolkit C implementations utilizing the PSI-E2 HSM. 

After the third failed PIN presentation, the device imposes a delay (incrementing in multiples of 5 

seconds) until the next presented PIN is checked. 

For example, after the third failed attempt, the device imposes a delay of 1*5 seconds, after the fourth 

the delay is 2*5=10 seconds, after the fifth, the delay is 3*5=15 seconds, and so on. 

If a PIN presentation occurs before the delay period has expired, the attempt fails with an error 

indicating that the PIN is locked. 



ProtectToolkit C Administration Guide Cryptoki Configuration 

15 

Initial Configuration 

Preparation 

In this section it is assumed that: 

 ProtectToolkit C has been successfully installed on your system 

 you can access the ProtectToolkit C utilities used to carry out configuration tasks, as discussed 

previously in this manual 

Setting the Admin Token PINs 

Following an initial installation or after a tamper event, it is necessary to introduce the Administrator 

and Administrator SO user roles by setting their initial PINs. This is done using the ctconf utility. 

 From a command prompt, type ctconf and press ENTER. 

A prompt displays for the Administration Security Officer (ASO) PIN. 

 Enter the ASO PIN and press Enter. Then, when prompted, enter this PIN again for confirmation. 

NOTE: PIN characters or asterisks (*) do not appear on screen while the PIN is being typed. For 

details of what constitutes a valid PIN see PINs and Passwords above. 

A prompt displays for the Administrator PIN. 

 Enter the Administrator PIN and press Enter. Then enter this PIN again when prompted for 

confirmation. 

 Onboard each HSM is a Real Time Clock (RTC). If the RTC is out of synchronization with the 

host system clock, a prompt is displayed to allow synchronization of the clock. To synchronize the 

RTC to the host system clock type Y and then Enter. Otherwise type N to abort. 

After successful completion of the above, HSM configuration details display. For example: 

 

Following this, the following message displays: 

 

An FM is a functionality module. For more information see Installing a Functionality Module in the 

Operational Tasks chapter. 

Finally, the utility closes and the operating system command prompt returns. 



ProtectToolkit C Administration Guide Cryptoki Configuration 

16 

Selecting and Setting a Security Policy 

A security policy is a set of security settings that control how ProtectToolkit C is allowed to function 

from a security perspective. Implementing the security policy is, without doubt, the most important 

aspect of ProtectToolkit C initial configuration. 

A number of security settings offered as a part of ProtectToolkit C can be used to implement typical 

security policies that meet certain standards or satisfy application integration requirements. 

Alternatively, custom security policies can be implemented. 

Refer to Security Policies and User Roles for full details and implementation instructions. 

Setting up Slots 

The Administrator will have to decide on the number of slots required for their particular environment.  

In its default initial configuration, ProtectToolkit C will have one User slot, one Admin slot and one 

slot for each connected smart card reader. 

As a general guide, the Administrator should create as many slots as there are applications, or users, 

that will want to perform PKCS #11 processing.  This configuration allows for individual applications 

to be completely separated from each other. 

For further information on the type of slots and tokens please refer to the Slots and Tokens section in 

the Cryptoki Configuration chapter. 

To create new user slots, use the ctconf utility with the –c switch. 

Example: 

 ctconf –c2 

Since only the Administrator is authorized to create new slots, the Administrator PIN will be prompted 

for. 

The previous command will create two new User slots each with an associated token.  To check that 

the slots were created, use the ctstat utility, which will report information on all current slots and 

tokens. 

Slots are numbered consecutively with the last or highest slot number always being the Admin slot. 

Example:  

If current configuration were as follows: 

Slot 0 Slot 1 Slot 2 

where slot 0 and 1 are user slots and 2 being the Admin slot. 

If two slots were added, the configuration would look as follows: 

Slot 0 Slot 1 Slot 2 Slot 3 Slot 4 

 

where slot 0, 1, 2 and 3 are user slots and 4 now being the Admin slot. 



ProtectToolkit C Administration Guide Cryptoki Configuration 

17 

Multiple Adapter HSMs 

When multiple adapter HSMs (such as the PSI-E2) are installed in a single machine there will be 

multiple Admin slots, one per HSM.  In this situation the slots for the second HSM will appear directly 

following the slots for the first HSM.  Thus if two HSMs were installed with their default configuration 

slot 0 and slot 2 would be user slots, slots 1 and 3 would be the Admin slots for the first and second 

HSM respectively. 

Token Initialization 

Following the creation of a slot within ProtectToolkit C, the next task is to initialize the token within 

that slot so it may be used by an application.  This initialization will assign a label and set up the 

Security Officer and User PINs for that token.  In addition to initialization of User slots, this procedure 

is also applicable to any smart card tokens used with ProtectToolkit C. 

The question of who is responsible for token initialization is dependent on the Security Policy that has 

been set for the adapter.  In the case where ‘clear PINs’ are allowed, any user deciding to take on the 

role as that token’s Security Officer can perform the token initialization.  In the case where ‘clear PINs’ 

are not allowed, only the Administrator can perform the token initialization.  For more information on 

Security Policies please see  

Security Policies and User Roles. 

To initialize a token on a particular slot, as the Administrator, the ctconf utility is used. Once a token is 

initialized it may only be re-initialized, or reset, by the token SO using the ctkmu or ctconf utility. 

Example: 

 ctconf –n1 

This example will initialize token 1 in slot 1. 

ctconf will prompt for the token label to be entered followed by a prompt for the token SO PIN to be 

entered. 

NOTE: A token initialization will destroy all objects on that token.  This is an important consideration 

when re-initializing a token that has already been used. 

Following initialization of a token, the token SO should change the PIN set by the Administrator.  This 

can be achieved with the ctkmu utility.  A description of how to change the SO PIN is given in Chapter 

6. 

The next task for the token SO is to initialize the token user PIN.  To do this the utility ctkmu is 

provided. 

Example: 
 ctkmu p –s2 

This example will initialize the user PIN on token 2.  The SO PIN will be prompted for, followed by a 

prompt for the new User PIN. 

Once both the SO and User PINs have been selected, the token is ready for use with an application.  It 

is advisable, however, for the User to now change his PIN from the one the SO assigned to him.  The 

User can achieve this by repeating the above command. 



ProtectToolkit C Administration Guide Cryptoki Configuration 

18 

Trust Management 

Trust management comes into play where a need exists to transfer secure data or keys from one HSM 

to another HSM through the process of token replication. Environments where Work Load Distribution 

(WLD) along with High levels of availability (HA) are used, are an example of such a system. Refer to 

section entitled Work Load Distribution Model (WLD) and High Availability (HA) or further details.  

Currently, trust management is supported on the Protect Server, and Protect Server – External HSMs.  

When a WLD system is configured, it is necessary to replicate tokens across those HSM User slots that 

are associated with a common WLD virtual slot. For the HSM that imports the token, it is essential that 

the token is deemed trustworthy before it is utilized; in other words, the token must not have been 

altered during transmission and the token was imported from a trustworthy source. For the HSM that 

exports the token, it is essential that the HSM that imports the token is also deemed trustworthy.  

Public key cryptography is used to establish trust between HSMs. Private keys are used for signing 

extracted information and unwrapping tokens. Public keys are used for wrapping tokens and verifying 

signed information. A RSA key-pair must be generated on the administrative token of each device. 

This key-pair is referred to as the local HSM Identity Key-Pair. The public half of the key-pair is 

termed the HSM Identity Public-Key, while the private portion is called the HSM Identity Private-Key. 

A HSM trusts another HSM (the peer HSM) when the HSM holds the HSM Identity Public-Key of the 

peer in its administrative token. This is referred to as the peer HSM Identity Public-Key. 

 

Figure 2 shows an example of a system where simple trust relationships have been established between 

HSMs.  

The arrows indicate the trust relationship. In this system, HSM A trusts HSM B. That is, HSM A holds 

the HSM Identity Public-Key of HSM B in its administrative token. However, HSM B does not trust 

HSM A. HSM B and HSM C share a relationship of mutual trust. In this system token replication could 

only be preformed between HSM B and HSM C (with either device originating the tokens) as token 

replication requires a relationship of mutual trust between HSMs. 

 

 

 

Figure 2 - Simple trust relationships 

Figure 3 shows a system where every HSM shares a relationship of mutual trust with every other 

HSM. In this scenario, token replication can be performed from any HSM to any other HSM on the 

system.  

 

 

 

 

 

HSM A HSM B HSM C 

HSM A 

HSM B HSM C 



ProtectToolkit C Administration Guide Cryptoki Configuration 

19 

Figure 3 - Relationships of mutual trust 

Typically, when token replication is performed in a WLD configuration, a HSM is selected to hold the 

master tokens and tokens are then replicated to the other HSMs. 

 Figure 4 illustrates a system in a typical WLD configuration. In this system, HSM A has been selected 

to hold the master tokens.  

The arrows indicate the relationships of mutual trust between HSM A and the other HSMs that are 

necessary for token replication to be performed. The figure also illustrates that it is not necessary to 

establish trust among the HSMs that the tokens are replicated to, in other words, no trust need be 

established among HSM B, HSM C, HSM D and HSM E.  

 

 

 

 

 

 

 

Figure 4 - Trust relationships in a typical WLD/HA configuration 

Complex trust topologies can be configured depending upon system and administrative requirements. 

Figure 5 illustrates an example of a complex trust topology. 

 

 

 

 

 

 

 

Figure 5 -  Complex trust topology 

The ctident utility provides the mechanism for establishing, maintaining and removing trust 

relationships on HSMs. In an offline environment, the ctkmu utility can be used to import and export 

the HSM Identity Public-Keys.  

The following example shows how to establish trust among HSMs. The ctident utility may be used to 

display trust relationships, check trust relationships and remove trust relationships. It may also be used 

to rollover the HSM identity keys that are used in trust management. 

HSM A 

HSM B HSM C HSM D HSM E 



ProtectToolkit C Administration Guide Cryptoki Configuration 

20 

Establishing Trust Relationships  

The following example describes how to set-up the trust relationships illustrated in Figure 6 . In this 

system HSM 0 shares a mutual trust relationship with both HSM 1 and HSM 2. No trust is established 

between HSM 1 and HSM 2. This is a typical configuration used for token replication, where the 

master tokens are located on HSM 0. The abbreviation SN in the figure refers to the serial number of 

the admin token on each device. The serial numbers are used in the example to identify the HSM 

device.  

Figure 6 - Establishing trust relationships example configuration 

Configuration 

1. Generate a list of all the slots on the system to establish the serial number of the admin 

token. The ctkmu utility may be utilized for this. The slots for each device on the system are 

assigned in the following order: User slots, Smart card slots, Administration slot. The serial 

number of the admin token is listed in brackets after the words AdminToken. In the example 

below, the serial number of the Administration token for the first device is 1197. For example: 

C:\>ctkmu l 

ProtectToolkit C Key Management Utility $Revision: 3.10.2.1 $ 

Copyright (c) SafeNet, Inc. 2006 

 

Cryptoki Version  = 2.10 

Manufacturer      = SafeNet, Inc. 

WLD_Slot_11                      (Slot 0) 

WLD_Slot_22                      (Slot 1) 

WLD_Slot_33                      (Slot 2) 

AdminToken (1197)                (Slot 3) 

<uninitialised token>            (Slot 4) 

<uninitialised token>            (Slot 5) 

<uninitialised token>            (Slot 6) 

AdminToken (1111)                (Slot 7) 

<uninitialised token>            (Slot 8) 

<uninitialised token>            (Slot 9) 

<uninitialised token>            (Slot 10) 

AdminToken (1310)                (Slot 11) 



ProtectToolkit C Administration Guide Cryptoki Configuration 

21 

2. Generate the HSM Identity Key-Pair on each device. It is necessary to generate a HSM Identity 

Key-Pair on each device participating in a trust relationship. To achieve this, the ctident utility 

with the gen command and appropriate command line parameters is used. The Administration 

Token SO pin is required to be entered for each device when using this command. In a system 

where all the HSMs are to participate in a trust relationship, the ctident gen command can be 

utilized with the all parameter. Alternatively, only those devices on the system that are 

participating in token replication can be specified by their serial number as illustrated below.   

Example: 

C:\>ctident gen sn:1197,sn:1111,sn:1310  

 

The ctident gen command also permits devices to be specified by their device positional number. 

The device positional numbers are dynamically assigned at the time that the command is invoked. 

If a device goes offline at the moment the command is invoked, the positional device number will 

move. This could result in incorrect trust relationships being established. The use of device serial 

numbers is STRONGLY recommended to avoid problems with positional device number 

reassignment. 

3. Create trust relationship from the master device to destination devices. This involves sharing 

the HSM Identity public-key of HSM 0 to HSM 1 and HSM 2. The ctident trust command is used 

to achieve this. The first parameter specifies the device to be trusted, while the second parameter is 

the list of devices that are to trust the first. The Administration Token SO pin is required to be 

entered for each device when using this command. 

Example: 

C:\>ctident trust sn:1197 sn:1111,sn:1310 

4. Create trust relationship from destination devices to master device. This involves sharing the 

HSM Identity public-keys of HSM 1 and HSM 2 with HSM 0. The ctident trust command is used 

to achieve this. In the example below, the first command line illustrates how to share the HSM 

Identity public-key of HSM 1 with HSM 0. The second command line illustrates how to share the 

HSM Identity public-key of HSM 2 with HSM 0. The Administration Token SO pin is required to 

be entered for each device when using this command. 

Example: 

C:\>ctident trust sn:1111 sn:1197 

C:\>ctident trust sn:1310 sn:1197 



ProtectToolkit C Administration Guide Cryptoki Configuration 

22 

Token Replication 

Token replication allows a user to replicate their tokens across one or more HSMs. Token replication is 

required especially when configuring a system to operate in WLD mode. Token replication is not a 

suitable mechanism to use in place of token export. 

Currently, token replication is supported on the Protect Server, and Protect Server – External HSMs.  

Token replication can only be performed on User Tokens (Smart card and Administration Slots are not 

supported). Refer to the section entitled The ProtectToolkit C Model for a description of slot types. 

Token replication can occur from any User slot to any other User slot on the same HSM or a different 

HSM. During token replication, all the objects contained within the master token as well as the master 

token label are replicated. The later is an important factor when a system is operating in WLD mode as 

the token label identifies which virtual WLD slot that the token is associated with. Refer to the section 

entitled The Work Load Distribution Model (WLD) and High Availability (HA) for further details. 

Once a token has been replicated, any objects that are created or modified on that token will not be 

automatically replicated to those tokens replicated from the same token. If a token is modified, and a 

requirement exists for consistency among tokens, then the token replication process must be repeated.  

NOTE: WLD requires token consistency, so whenever a token is modified, manual replication to all 

participating WLD tokens is mandatory. 

The ctkmu utility with the rt command is used to replicate tokens. Refer to Chapter 7 for further details 

on the ctkmu utility. The SO pin of token in the master slot and the SO pins of the tokens in the slots 

that the token is imported to must be the same. The User pin of the token in the master slot and the 

User pins of the tokens in the slots that the token is imported to must be the same. When replicating to 

an un-initialized token, the SO pin of the token is required to be entered. If the No Clear PINs flag is 

set, the User pin of the Administration token on the device importing the token is also required. Refer 

to the Security Flag Descriptions section in Chapter 5 for further details on the No Clear PINs flag. 

The ctkmu rt command utilizes slot positional numbers to identify the master slot and the destination 

slots. The slot positional numbers are dynamically assigned at the time that the command is invoked. If 

a device goes offline at the moment the command is invoked, the positional device number will be 

reassigned. This could result in the token being replicated to an incorrect slot. It is important that the 

system is stable when using this command. 

The following examples illustrates how to replicate a token from the first slot on HSM 0 (slot 0) to the 

second slot on HSM 1 (slot 5) and the second slot on HSM 2 (slot 9) and from the second slot on HSM 

0 (slot 1) to the first slot on HSM 1 (slot 4) and the third slot on HSM 2 (slot 10). 

Alternative 1 – Master Tokens Replicated to a Single Slot or List of 
Slots 

The following example illustrates token replication to a single token and to a list of tokens. This 

method is recommended for the initial configuration. 

1. Generate a list of all the slots on the system to establish the slot positional number. The ctkmu 

utility may be utilized for this. Refer to Chapter 7 for further details. For each device, slots 

positions are assigned in the following order; User slots, Smart card slots, Administration slot. For 

each slot, the token label is displayed followed by the slot positional number. In the example 

below, HSM 0 contains 3 User slots, configured with the following token labels; WLD_Slot_11 

(Slot 0), WLD_Slot_22 (Slot 1), WLD_Slot_33 (Slot 2). These are followed by the Administration 

slot (Slot 3) with serial number 1197. HSM 1 and HSM 2 each contain 3 slots with un-initialized 

tokens followed by the Administration slot. The slot positional number is used to identify the 

tokens during replication in the next step. 



ProtectToolkit C Administration Guide Cryptoki Configuration 

23 

 

Example: 

C:\>ctkmu l 

ProtectToolkit C Key Management Utility $Revision: 3.10.2.1 $ 

Copyright (c) SafeNet, Inc. 2006 

 

Cryptoki Version  = 2.10 

Manufacturer      = SafeNet, Inc. 

WLD_Slot_11                      (Slot 0) 

WLD_Slot_22                      (Slot 1) 

WLD_Slot_33                      (Slot 2) 

AdminToken (1197)                (Slot 3) 

<uninitialised token>            (Slot 4) 

<uninitialised token>            (Slot 5) 

<uninitialised token>            (Slot 6) 

AdminToken (1111)                (Slot 7) 

<uninitialised token>            (Slot 8) 

<uninitialised token>            (Slot 9) 

<uninitialised token>            (Slot 10) 

AdminToken (1310)                (Slot 11) 

 

 

 Replicate the token. The ctkmu utility with the rt command is used to replicate tokens. The 

command can take two parameters: the slot that the token is exported from and the list of slots 

that the token is imported to. Refer to Chapter 7 for further details. The SO pin of token in the 

master slot and the SO pins of the tokens in the slots that the token is imported to must be the 

same. The User pin of the token in the master slot and the User pins of the tokens in the slots that 

the token is imported to must be the same. When replicating to an un-initialized token, the SO 

pin of the token is required to be entered. If the No Clear PINs flag is set, the User pin of the 

Administration token on the device importing the token is also required. Refer to the Security 

Flag Descriptions section in Chapter 5 for further details on the No Clear PINs flag. 

 

The example shows how to replicate the master tokens from HSM 0 to HSM 1 and from HSM 0 

to HSM 2 as follows: 

 Replicate token from slot 0 to slot 5 

 Replicate token from slot 0 to slot 9 

 Replicate token from slot 1 to slot 4 and slot 10 

Example: 

C:\>ctkmu rt –s 0 –d 5  

C:\>ctkmu rt –s 0 –d 9  

C:\>ctkmu rt –s 1 –d 4,10  

 

 



ProtectToolkit C Administration Guide Cryptoki Configuration 

24 

Alternative 2 – Token Replicated to Many Tokens 

The following example illustrates token replication from a master token to many tokens. This method 

permits tokens to be replicated to other tokens that share the same token label. This method can be used 

to update token after the master token has been modified. This example illustrates the same 

configuration as in the example above. 

1. Generate a list of all the slots on the system to establish the slot positional numbers. To utilize 

this method, the token label of the slot that is to import the token must be the same as the token 

label of the master token. In this example, the tokens in HSM 1 and HSM 2 must be initialized 

with the appropriate token labels. That is, slot 5 and slot 9 must be initialized with the same token 

label as slot 0 and slot 4 and slot 10 must be initialized with the same token label as slot 1. Refer to 

the section entitled Token Initialization for further details.  

Example: 

C:\>ctkmu l 

ProtectToolkit C Key Management Utility $Revision: 3.10.2.1 $ 

Copyright (c) SafeNet, Inc. 2006 

Cryptoki Version  = 2.10 

Manufacturer      = SafeNet, Inc. 

WLD_Slot_11 (Slot 0) 

WLD_Slot_22                  (Slot 1) 

WLD_Slot_33               (Slot 2) 

AdminToken (1197)             (Slot 3) 

WLD_Slot_22            (Slot 4) 

WLD_Slot_11            (Slot 5) 

<uninitialised token>         (Slot 6) 

AdminToken (1111)                 (Slot 7) 

<uninitialised token>             (Slot 8) 

WLD_Slot_11             (Slot 9) 

WLD_Slot_22             (Slot 10) 

AdminToken (1310)                 (Slot 11) 

 

2. Replicate the tokens. The ctkmu utility with the rt command is used to replicate tokens. When 

using the all command line parameter, the master token is replicated to all tokens on the system 

that share the same token label as the master token. 

Example: 

C:\>ctkmu rt -s0 –d all 

C:\>ctkmu rt -s1 –d all 

 



ProtectToolkit C Administration Guide Cryptoki Configuration 

25 

 Work Load Distribution Model (WLD) and High Availability (HA) 

High levels of scalability, availability, reliability and increased throughput can be easily achieved by 

ensuring there is no restriction on the number of HSMs that can work in union. In addition, the 

application can be relieved from its own load sharing processing to focus on its primary tasks by 

enabling the built-in configurable WLD mode. A high availability/load balancing setup provides a 

reliable solution and boosts overall performance. 

Work Load Distribution (WLD) 

Load Distribution is a design approach where work is balanced across a system by transferring units of 

work among processing modules during execution. The demand placed on any particular processing 

module is reduced by distributing the work to multiple processing modules within the system. In a well 

balanced system, this results in an increase in the overall throughput of processing tasks. 

There are a number of integral components within a system which deploys load distribution. In a 

SafeNet system, the load distribution scheme implemented is termed Work Load Distribution and 

works as follows. Within ProtectToolkit C, a distribution engine portions the requests for work, which 

it then distributes to an appropriate HSM to perform. The distribution engine implements a distribution 

scheme to determine which HSM is selected. The tokens that are utilized within the scheme must be 

replicated across the HSMs, as appropriate to the system design. A good system design should address 

throughput requirements, resource portioning and fault tolerance/disaster recovery. The ctident utility 

provides the mechanism to establish trust between HSMs that share tokens. The ctkmu utility provides 

the mechanism to replicate a token once trust has been established. 

High Availability (HA) 

Enterprises have requirements to maintain their services and keep them up and running with a high 

degree of reliability to provide the highest level of security. By providing redundancy and availability 

in services, High Availability (HA) constitutes a critical feature.  

Within ProtectToolkit C, the HA feature is implemented in the Cryptoki library), and is a capability to 

keep track of the commands sent to a session so that it can re-establish a new session by simply 

replaying these commands in case of session failure. This approach offers the best solution to achieve 

transparent fail-over. The HA feature requires the support of the WLD system to manage failed HSMs 

and allocate new sessions to them, i.e. you cannot have HA without WLD. 

HSMs 

A WLD/HA system may consist of any number of PSI-E2 or any number of PSE2 HSMs. The use of 

PSI-E2 and PSE2 HSMs concurrently is not supported. 

ProtectToolkit C 

For Work Load Distribution/High Availability to be enabled ProtectToolkit C must be configured to 

operate in WLD or HA mode. Refer to section Operation in WLD Mode and Operation in HA Mode 

for further details. 

When applications are using the ProtectToolkit C interface in WLD/HA mode, the system of physical 

HSMs appears as a single virtual HSM. ProtectToolkit C achieves this through the use of virtual WLD 

slots. When an application wishes to make use of a WLD slot, it does so via the standard PKCS #11 

function calls. The distribution engine distributes the session over those physical HSM slots that are 

associated with the WLD slot.  

WLD Slots 

A WLD Slot is a virtual PKCS #11 slot. Associated with this slot may be several (but at least one) 

‘real’ HSM slots, possibly located across multiple devices. Each WLD slot must be configured by the 

user. Refer to section Configuring WLD Slots for further details. For a physical HSM slot to be 

associated with a WLD slot it must share the same token label as the WLD slot. Each WLD slot 

token label must be unique.  The distribution engine uses the token label for determining the 

underlying physical HSM slots on which to load share.  



ProtectToolkit C Administration Guide Cryptoki Configuration 

26 

NOTE: The HA system cannot support more than 16 slots and hence it is required that an administrator 

limits the WLD slot numbers to be less than 16 (from 00 to 15 inclusive). 

Distribution Scheme 

The distribution of application requests is performed on a PKCS #11 session basis. When an 

application opens a session to a WLD slot, the distribution engine uses a distribution scheme to select 

the initial physical HSM slot to be used for servicing the open session request. Once the session has 

been opened, all other requests performed on that session are routed to the initially selected physical 

HSM slot. When an application opens subsequent sessions, the distribution engine randomly selects a 

physical HSM slot from those with the least number of sessions. 

As multiple applications may be using the distribution engine, the distribution scheme ensures that slots 

are not ‘victimized’ because of their position in the scheme. For example, if multiple applications are 

started one at a time, and each application requests a single session on the same WLD slot, the 

randomized nature of the distribution scheme will ensure an even distribution of sessions across the 

available physical HSM slots. 

Token Replication 

ProtectToolkit C provides tooling to support replication of token information to other SafeNet HSMs in 

a protected form. The ctident utility provides the mechanism to establish trust between HSMs that 

share tokens. The ctkmu utility provides the mechanism to replicate a token once trust has been 

established. Refer to sections Trust Management and Token Replication for further details.  

Token replication must be performed by the user at configuration time. The WLD model works on a 

static configuration.  

CAUTION: Ensure that the tokens in WLD are always consistent. The distribution engine does not 

check or ensure that the physical HSM tokens associated with a particular WLD token are consistent. If 

the state of the tokens is inconsistent or incorrect, inappropriate keys could be used. This could occur 

without notice and without incident.  

WLD Example 
This section illustrates how to setup a system for Work Load Distribution. The system in the example 

contains 3 remote HSMs with ProtectToolkit C running on a Windows platform. The example 

illustrates how to configure 3 virtual WLD slots.  

Figure 7, details the resulting configuration that is established in the example. To any application or 

utility operating in WLD mode, the system of physical HSMs appears as a single virtual HSM that is 

accessible via virtual WLD slots. As illustrated in the figure, any application or utility that accesses the 

system does so through the Cryptoki library. When an application or utility is configured to operate in 

WLD mode the slots made accessible to them by the Cryptoki Library are only the WLD virtual slots. 

An application or utility configured to operate in WLD mode cannot access the HSM slots directly.  

The associations between the virtual WLD slots and the physical HSM slots in this configuration are 

shown by the arrows. For example, WLD Slot 11 is associated with User Slot 0 on HSM 0, User Slot 5 

on HSM 1 and User Slot 9 on HSM 2. The system configuration is as follows. 

 

 

 

 



ProtectToolkit C Administration Guide Cryptoki Configuration 

27 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 - Example of WLD configuration 

WLD Slot 11 

TL: WLD_Slot_11 

SN: 1011 

WLD Slot 22 

TL: WLD_Slot_22 

SN: 1022 

WLD Slot 33 

TL: WLD_Slot_33 

SN: 1033 

Slot 0  (user)  

TL: WLD_Slot_11 

Slot 1 (user) 

TL: WLD_Slot_22 

Slot 2 (user) 

TL: WLD_Slot_33 

Slot 3 (admin) 

SN:1197 

Slot 6 (user) 

Slot 7 (admin) 

SN:1111 

Slot 8 (user) 

Slot 9 (user) 

TL: WLD_Slot_11 

Slot 10 (user) 

TL: WLD_Slot_22 

Slot 11 (admin) 

SN:1130 

Cryptoki 

Application 

(WLD Mode) 

Utility 

(WLD Mode) 

HSM Physical Slots 

WLD Virtual Slots 

Physical Slots 

H

S

M

 

0 

H

S

M

 

1 

H

S

M

 

2 

Cryptoki 

Utility 

(Normal Mode) 

Slot 4 (user) 

TL: WLD_Slot_22 

Slot 5 (user) 

TL: WLD_Slot_11 



ProtectToolkit C Administration Guide Cryptoki Configuration 

28 

WLD Slot Associated HSM User Slots Token Label 

WLD Slot 11 Slot 0 (HSM 0) 

Slot 5 (HSM 1)  

Slot 9 (HSM 2) 

WLD_Slot_11 

 

WLD Slot 22 Slot 1 (HSM 0) 

Slot 4 (HSM 1) 

Slot 10 (HSM 2) 

WLD_Slot_22 

 

WLD Slot 33 Slot 2 (HSM 0) WLD_Slot_33 

As illustrated in Figure 7, each WLD slot shares the same token label as the HSM slots that are 

associated with it. In the figure, the characters TL are an abbreviation for the token label. For example 

WLD Slot 22 shares the token label WLD_Slot_22 with the HSM User slots that are associated with it. 

That is, Slot 1, Slot 4 and Slot 10. 

In Figure 7, the characters SN are an abbreviation for the serial number of the token. It is necessary to 

be aware of the Admin token serial numbers when establishing the configuration for WLD operation. 

Each WLD slot must be configured with a serial number that is allocated by the user.  

During configuration, the utilities must be able to access the HSMs slots directly. They are initially 

configured to operate in NORMAL mode as shown by the boxes at the bottom of the figure. After the 

configuration is complete, those applications and utilities that need to access the system in WLD mode 

must be configured to operate in WLD mode. 

Configuration 

1. Establish Network Communication. Set the environment variable 

ET_HSM_NETCLIENT_SERVERLIST  with a list of the IP addresses of the HSMs in the order 

HSM0, HSM1, HSM2. Refer to section titled Specifying the Network Server(s) for further 

details. 

2. Set the Library Mode to NORMAL. The HSM slots must be accessible to set up the system. 

For the HSM slots to be accessible, the utilities which access them must operate in NORMAL 

mode. This is achieved by setting the Cryptoki Library mode to NORMAL. Refer to the 

Operation in WLD Mode section for further details. 

3. Initialize Admin Tokens and Security Policy. If a HSM has not been initialized, the Admin 

token and Security Policy for each HSM must be configured. Refer to the Setting the Admin 

Token PINs and Selecting and Setting a Security Policy sections for further details. 

4. Create User Slots. Create User slots for each HSM, as described below. Refer to the Setting up 

Slots section for further details. 

User Slots HSM 

Slot 0 

Slot 1 

Slot 2 

0 

Slot 4 

Slot 5 

Slot 6 

1 

 

Slot 8 

Slot 9 

Slot 10 

2 



ProtectToolkit C Administration Guide Cryptoki Configuration 

29 

5. Create Master Tokens. In this example the master tokens are created on HSM 0 and 

replicated to HSM 1 and HSM 2. The master tokens could be created on any HSM User slot 

that is associated with the WLD slot and then replicated to the other HSMs. As HSM 0 has 

slots associated with all the WLD slots used in this example, it was selected as the HSM to 

hold the master tokens. 

Configure the tokens for each of the slots according to the following table. Refer to section 

entitled Configuring WLD Slots for further details. 

HSM 0 User Slot Token Label 

Slot 0 WLD_Slot_11 

Slot 1 WLD_Slot_22 

Slot 2 WLD_Slot_33 

6. Create Keys, Certificates, Data, HW Objects on Master Tokens. It is necessary to create 

any objects that are contained within the master tokens before the token is replicated. Refer to 

the section entitled Token Replication for further details. 

7. Establish Trust. For token replication to be performed from the HSM holding the master 

tokens to another HSM, both HSMs must have a trust relationship with the other HSM. Refer 

to section Trust Management for further details.  

As the master tokens are located on HSM 0 and are to be duplicated to HSM 1 and HSM 2, 

establish mutual trust relationships between 

 HSM 0 and HSM 1   

 HSM 0 and HSM 2 

8. Replicate Tokens. Once trust is established the tokens can be replicated. Refer to section 

Token Replication for further details. Replicate the master tokens from HSM 0 to HSM 1 and 

HSM 2 as follows: 

Master Token Replication 

WLD_Slot_11 Replicate token from User slot 0 (HSM 0) to User slot 5 (HSM 1) 

 Replicate token from User slot 0 (HSM 0) to User slot 9 (HSM 2) 

WLD_Slot_22 Replicate token from User slot 1 (HSM 0) to User slot 4 (HSM 1) 

 Replicate token from User slot 1 (HSM 0) to User slot 10 (HSM 2) 

 

9. Configure WLD Slots. WLD slots are configured via environment variables at either the 

temporary, user or system level. Refer to the section entitled Configuring WLD Slots for 

further details. In this example WLD slots are configured at the system level: 

 Locate the registry key:  

HKEY_LOCAL_MACHINE\SOFTWARE\SafeNet\PTKC\WLD 

 Make the following assignments:  

 

Variable Assignment 

ET_PTKC_WLD_SLOT_11 WLD_Slot_11,1011,WLD Slot: 11 

ET_PTKC_WLD_SLOT_22 WLD_Slot_22,1022,WLD Slot: 22 



ProtectToolkit C Administration Guide Cryptoki Configuration 

30 

ET_PTKC_WLD_SLOT_33 WLD_Slot_33,1033,WLD Slot :33 

 

10. Set the Library Mode to WLD. WLD mode is configured via an environment variable at 

either the temporary, user or system level. To any application or utility operating in WLD 

mode is set, the HSM system appears as a single virtual HSM with a collection of WLD 

virtual slots. The HSM physical slots are not accessible to applications or utilities operating in 

WLD mode. Refer to section Operation in WLD Mode for further details. 

11. Check the WLD Slot Configuration. Run the ctkmu (WLD  mode) utility to view the slots 

available on the system. Only the WLD virtual slots should be visible. Any HSM physical slot 

on the system which has not been associated to a WLD virtual slot will no longer be 

accessible.  

Example: 

C:\>ctkmu l 

ProtectToolkit C Key Management Utility $Revision: 3.10.2.7 $ 

Copyright (c) SafeNet, Inc. 2006 

 

Cryptoki Version  = 2.10 

Manufacturer      = SafeNet, Inc. 

WLD_Slot_11                      (Slot 11) 

WLD_Slot_22                      (Slot 22) 

WLD_Slot_33                      (Slot 33) 

 



ProtectToolkit C Administration Guide Cryptoki Configuration 

31 

Configuring WLD Slots 

If ProtectToolkit C is to operate in WLD Mode, virtual WLD slots must be configured.   

The environment variables of the format ET_PTKC_WLD_SLOT_n specify the configuration 

parameters for the WLD slots. It is mandatory that an ET_PTKC_WLD_SLOT_n environment variable 

is configured for every WLD slot. 

In the ET_PTKC_WLD_SLOT_n environment variable name, n defines the Slot Number. The Slot 

Number is an integer in the range 0 to 99.  The Slot Numbers allocated within an application must be 

unique. 

The format of these variables is as follows: 

<WLDTokenLabel>[,[<WLDTokenSerial#>][,<WLDSlotDescription>]] 

Where: 

<WLDTokenLabel> is mandatory and is the PKCS #11 Token Label for this WLD 

Token and is also used to identify the HSM Tokens to be used for 

WLD. The <WLDTokenLabel> should be unique within the 

complete list of WLD Slot Configurations. 

 <WLDT

okenSeri

al#> 

is optional, and is the PKCS #11 Token Serial Number for this 

WLD Token, with the default being the WLD Slot Number, i.e. n 

from the configuration variable name. 

 <WLDSl

otDescri

ption> 

is optional, and is the PKCS #11 Slot Description for this WLD 

Slot, with the default being “WLD Slot:#”, where # is the WLD 

Slot number, i.e. n from the configuration variable name. 

The following shows the conceptual configuration for three virtual slots. The entire list of WLD Slots 

will be visible by any application that is using this WLD configuration.  

UNIX  

Under UNIX variants, the variable name and value are stored in the file “et_ptkc” in the directory 

/etc/default and/or $HOME/.safenet, depending upon choosing the system or user location respectively. 

Example: 

To configure WLD slots at the system level: 

 Open the file: /etc/default/et_ptkc 

 Make the following entries: 

ET_PTKC_WLD_SLOT_0=WLD Token 0,1002,PIN generation slot 

ET_PTKC_WLD_SLOT_5=WLD Token 5 

ET_PTKC_WLD_SLOT_6= WLD Token 6,,Password generation slot 

NOTE: For WLD Slot 5, ProtectToolkit C will default the PKCS #11 Token Serial Number to 5, and 

the PKCS #11 Slot Description “WLD Slot:5”. For WLD Slot 6, the PKCS #11 Token Serial Number 

will default to 6. 



ProtectToolkit C Administration Guide Cryptoki Configuration 

32 

Windows  

Under Win32, the variable name and value are stored in the HKLM and/or HKCU registry, in the key 

SOFTWARE\SafeNet\PTKC\WLD, depending upon choosing the system or user location respectively.  

Example: 

To configure WLD slots at the system level: 

 Locate the registry key:  

HKEY_LOCAL_MACHINE\SOFTWARE\SafeNet\PTKC\WLD 

1. Assign the ET_PTKC_WLD_SLOT_n variables the values shown in the UNIX example above. 

Operation in WLD Mode 

If ProtectToolkit C is to operate in WLD Mode, the Cryptoki Library mode must be configured.   

The environment variable ET_PTKC_GENERAL_LIBRARY_MODE specifies the mode that the 

Cryptoki Library operates in. This variable controls whether the WLD model or the normal PKCS #11 

model is applied to slot and token usage. Refer to the section entitled The Work Load Distribution 

Model (WLD) for further details. 

This variable can have values of NORMAL or WLD or HA. If this variable is not defined, or contains 

an invalid value, then ProtectToolkit C will operate in the normal PKCS #11 mode. 

The HSM system appears to any application or utility operating in WLD mode as a collection of WLD 

virtual slots. The HSM physical slots are not accessible to applications or utilities operating in WLD 

mode. 

 

While establishing the configuration it may be advisable to configure WLD mode via the temporary 

configuration parameter then when configuration is stable set the environment variable at the user or 

system configuration level.  

 

It is possible to have a number of applications running in WLD mode and a number of applications 

running in NORMAL mode on the same platform. In this case, WLD mode will need to be set in both 

temporary environment variables and at either the user or system level appropriately. For example, if 

three applications are to operate in WLD mode and one application is to operate in NORMAL mode, 

then it is advisable that WLD mode is set at the user or system level and that NORMAL mode is set in 

environment variable operating in the context of the application which uses it. Refer to Overview for 

further details.  

 

If, after configuration, any changes need to be made to the system, the Library mode must be set to 

NORMAL so that the utilities are able to access the HSM slots directly. 

A simple example an how to configure a basic WLD system. 

Assume the label of the tokens participating in the WLD is “TokName”and there is two PSE2’s with 

the address 192.168.1.100 and 192.168.1.101 

Set these configuration items (for details see Chapter 2 Configuration Items) 

ET_HSM_NETWORK_SERVERLIST=192.168.1.100 192.168.1.101 

ET_PTKC_WLD_SLOT_0=TokName 

ET_PTKC_GENERAL_LIBRARY_MODE=WLD 

 

 



ProtectToolkit C Administration Guide Cryptoki Configuration 

33 

Operation in HA Mode 

If ProtectToolkit C is to operate in HA Mode, the Cryptoki Library is provided a capability to keep 

track of the commands sent to a session so that it can re-establish a new session, in case of session 

failure, by simply replaying these commands. 

ProtectToolkit C HA mode provides the following functionality: 

 Detect that a session has terminated because of HSM failure and automatically establish a new 

session on a remaining HSM. 

 After an HSM failure is detected, the feature will periodically attempt to automatically bring the 

HSM back on line. 

 Restart an object search and step the search up to the point of failure. 

 Restart a Encrypt, Decrypt, Sign, Verify, SignRecover, VerifyRecover and Digest operation and 

replay the Update operations (up to a certain limit of data length). 

 Create a log entry to notify significant events 

 Recover session objects that were created by: 

 C_CopyObject 

 C_DeriveKey 

 C_UnwrapKey 

 C_GenerateKey * 

 C_GenerateKeyPair * 

NOTE: Ramdomly generated keys cannot be recovered if they are lost after they have been used in a 

cryptographic operation (otherwise inconsistent results may be generated). 

The environment variable ET_PTKC_GENERAL_LIBRARY_MODE specifies the mode that the 

Cryptoki Library operates in. This variable controls whether the WLD mode and HA features are 

enabled. Refer to the section entitled Work Load Distribution Model (WLD) and High Availability 

(HA) for further details. 

This variable can have values of NORMAL, WLD, or HA. If this variable is not defined, or if it 

contains an invalid value, then ProtectToolkit C will operate in the normal PKCS #11 mode. 

The environment variable ET_PTKC_HA_RECOVER_DELAY represents the number of minutes to 

wait after detecting a failed HSM before attempting to reconnect to the failed HSM. The recovery is 

not attempted if the value is zero. 

The environment variable ET_PTKC_HA_RECOVER_WAIT enables the HA feature to poll and 

attempt recovery if an HSM has failed. This variable can have values of YES or NO and is valid only if 

the HA feature is enabled using the variable ET_PTKC_GENERAL_LIBRARY_MODE=HA. 

The library will issue a log entry in the following circumstances  

When a HSM failure is detected and the library recovers that session the following message is 

generated:- 

HSM Failure detected: hsmIdx=1, hsmSlotId=0 

If the application performs operations such that the library is not capable of recovering the session in 

event of a HSM failure then following warning is generated (one the first occurrence only): 

Session potentially not recoverable: <reason description> 



ProtectToolkit C Administration Guide Cryptoki Configuration 

34 

If ET_PTKC_HA_RECOVER_DELAY and ET_PTKC_HA_RECOVER_WAIT are setup so that the 

library will try to reconnect a lost HSM then the following log entry is generated at each attempt: 

Found HSM Dead ","HSM  Failed" 

Example 

The following is a simple example illustrating how to configure a basic WLD system. 

Assume the label of the tokens participating in the WLD is “TokName”and there is two PSE2’s with 

the address 192.168.1.100 and 192.168.1.101 

Set these configuration items (for details on how see Chapter 2 Configuration Items) 

ET_HSM_NETWORK_SERVERLIST=192.168.1.100 192.168.1.101 

ET_PTKC_WLD_SLOT_0=TokName 

ET_PTKC_GENERAL_LIBRARY_MODE=HA 

ET_PTKC_HA_RECOVER_DELAY =120 

ET_PTKC_HA_RECOVER_WAIT =YES 

 

HA Mode Logging 

When the library is operating in HA mode it will generate log messages on certain events. 

The operator can configure the output log channel used to with the following configuration  

Configuration Name Possible Values 

ET_PTKC_HA_LOG_CHANNEL Unix Platforms 

0 – 7 syslog LOG_LOCAL0-7 

8 – stdout 

(Default 0) 

Windows Platforms 

0 – system Event Log 

1 – stdout 

2 – stderr 

(Default 0) 

ET_PTKC_HA_ LOG_NAME Application name – default “ptk_cryptoki” 

 

The HA feature will generate the following log messages. 

Message Type Meaning 

Session potentially not 

recoverable: <desc> 

Warning Application has performed an operation that makes the session 

unrecoverable. The <desc> field will describe the type of 

operation. Only one message of this type is generated per 

C_Initialize/C_Finalize session. 

HSM Failure detected 

hsmIdx=<>, 

hsmSlotId=<> 

Error A session has failed due to a HSM failure and the HA has 

attempted a session recovery. The hsmIdx is the zero based 

index of the failing HSM as specified by the 

ET_HSM_NETCLIENT_SERVERLIST or in the order the 

PSI-E2 HSMs are detected. This is the same order as reported 

by hsmstate utility. 

Found HSM Dead:HSM  

Failed 

Error This message is generated only when 

ET_PTKC_HA_RECOVER_DELAY and 

ET_PTKC_HA_RECOVER_WAIT are enabled. 

It indicates that the library has seen a HSM has been failed and 

is holding off all application threads while it attempts to 

recover the lost HSM. 

 



ProtectToolkit C Administration Guide Cryptoki Configuration 

35 

External Key Storage 

Introduction 

The secure memory available on ProtectServer HSMs is limited to 4MB.  

The maximum number of keys (by type and size) that can be stored is limited by available memory 

only. 

Applications in which secure memory requirements exceed those stated above can utilize the External 

Token Support Library (ExtToken) to overcome this limitation. ExtToken facilitates secure, external-

to-the-HSM storage for token objects. ExtToken manages external token support transparently to host 

applications. Host applications can utilize standard PKCS#11 function calls to access and manipulate 

token objects as though the token objects were stored on the HSM.  

The ExtToken library is available with the ProtectToolkit C product (PTK-C) and is a part of the 

standard installation of the PTKcprt package incorporated in the PTK-C product release. The ExtToken 

library is supported on Windows only. 

 

ExtToken supports the secure external storage of token objects for the purpose of RSA signing, 

checking certificates, DES key exchange and DES encryption of transaction messages, to name a few. 

To reduce the processing overhead introduced in the secure and external storage of token objects, the 

HSM utilizes internal cache memory to store the most recently utilized token objects. The number of 

token objects stored in cache is configurable by the user. 

The ProtectServer HSMs support the use of secure external token object storage and the storage of 

token objects in user slots simultaneously. 



ProtectToolkit C Administration Guide Cryptoki Configuration 

36 

Implementation 

The following figure illustrates how external key storage is achieved on the host system and HSM.  

 
 

Figure 8 - External Key Storage 

PKCS#11 applications interface to the ExtToken library via standard PKCS#11 function calls. The 

ExtToken library makes use of another PKCS#11 provider, the Cryptoki library. The Cryptoki library 

is responsible for enforcing security policies and storing all data not related to the token objects of an 

external token. All cryptographic processing is performed on the standard Cryptoki library. The 

Cryptoki Library interfaces to local HSMs via the PCI driver and remote HSMs via the Netserver 

Driver. 

A DAPTER / 

HSM  

Cache 

H OST 

S YSTEM 

PKCS # 11  A PPLICATION 

ExtToken Library 

  
P K C S # 1 1   

F u n c t i 
o n s 

P K C S # 1 1   

F u n c t i o 
n s 

PCI Driver  /  
NetServer Driver 

C USTOM  API 

Cryptoki Library 

External ,  Secure  
Object Store  

( slot  0 ) 

Load External ,  
SecureToken Objects 

public private 

User Token 
( slot  0 ) 

Key used for wrapping  
public external objects 

Key used for wrapping  
private external objects 

Cache storage for  
external objects 

  



ProtectToolkit C Administration Guide Cryptoki Configuration 

37 

ExtToken achieves secure external storage by using two master keys. These master keys are used to 

transparently wrap and unwrap the external objects. One of these keys is for protecting public objects, 

and the other is for protecting private objects. These master keys are DES2 keys and will be stored in 

slot 0. The token in slot 0 is automatically treated as an external token. The relevant objects (the 

external token data object and the two master keys) are automatically generated, if they are missing. 

As token objects are created via the ExtToken library, they are stored in the External, Secure Object 

Store, residing on the host system. The External Secure Object Store is divided so that objects wrapped 

by public keys are stored separately to objects wrapped by private keys. When these external objects 

are referenced by an application, the ExtToken library automatically loads them into the standard 

Cryptoki library. Any operations on a non-external token are passed on to the standard Cryptoki library 

for processing. All externally stored objects reside in the token in slot 0. The externally stored objects 

share the same logical slot (slot 0) as the master keys although they are physically stored in separate 

locations. 

The HSM utilizes internal cache memory to store the most utilized token objects. The number of token 

objects stored in cache is configurable by the user. During operation, the token objects are loaded into 

cache one at a time. If this limit is reached, then the least used object is unloaded from cache.  

Key back up can be achieved simply by storing the master keys on a smart card and compressing the 

files utilized by the Secure Object Store using SafeNet ProtectPack. 

Performance 

Performance overhead is introduced when storing objects externally. The overhead is introduced by the 

need to unwrap objects. The CTPERF utility (provided with the PTK-C installation) can be used to 

determine performance on individual systems. As an indication, 109 keys/ second can be unwrapped 

using a DES3 key. As previously discussed, the HSM utilizes internal cache memory to store the most 

recently utilized token objects in an effort to reduce this processing overhead. The environment 

variable ET_PTKC_MAXLOADED allows the user to configure the maximum number of token 

objects stored in cache. However, there is also a processing overhead involved in managing the keys 

stored in cache. This overhead increases linearly as the number of items stored in cache increases. 

Systems must be individually tuned for maximum performance depending upon patterns of key usage 

by the host application and by taking into consideration the tradeoff between the processing overhead 

involved in unwrapping keys and the processing overhead involved in managing the cache.  

Mechanisms Underlying ExtToken 

ExtToken library treats an underlying token as an external token if it contains a data object with the 

label "ExtToken". To be functional, the underlying token must also contain two DES2 keys (one public 

and one private) with the label "ExtToken". Both will have the CKA_WRAP and CKA_UNWRAP 

attribute set to TRUE. For security reasons, CKA_ENCRYPT and CKA_DECRYPT are set to FALSE. 

 

The CKA_VALUE attribute of the ExtToken data object is of the form "file:<file_name>", where 

<file_name> is the base name of the files that manage the token objects of the external token. 

There are two files per external token. 

 The Object Data Store (ODS) contains the token objects of the external token, wrapped under its 

corresponding master key (public objects using the public master key; private objects with 

private master key) using the SafeNet vendor defined mechanism 

CKM_WRAPKEY_DES3_CBC. This mechanism wraps both the object value and attributes in 

the created cryptogram. 

 The Object Reference Table (ORT) contains an index of the token objects stored in the ODS and 

the KVCs of the master keys of the external token. 

PKCS#11 requires the CKA_EXTRACTABLE attribute set to TRUE for any object to be wrapped 

using a key which has CKA_WRAP set to TRUE. As a result, the ExtToken library transparently sets 

the CKA_EXTRACTABLE attribute to TRUE for all token objects on an external token. 



ProtectToolkit C Administration Guide Cryptoki Configuration 

38 

When an application acquires an object handle to a token object on an external token, the related 

cryptogram is read from the ODS file, and unwrapped into the underlying token as a session object. 

If allowed, the token in slot ID 0 is automatically treated as an external token. The relevant objects (the 

external token data object and the two master keys) are automatically generated, if they are missing. 

Known Limitations 

The ExtToken library does not protect against multiple processes updating the external token files 

concurrently. When an application starts, the ORT is cached. If a second application modifies the ORT 

by manipulating token objects on the external token, the cache of the first application will be 

inconsistent. The results are undefined.  

For performance reasons, the attributes in the template passed to C_FindObjectsInit() function should 

be limited to:  

 CKA_TOKEN (If present, must be true. If missing, assumed to be true - that is can only find 

token objects). 

 CKA_LABEL 

 CKA_CLASS 

 CKA_KEY_TYPE 

 CKA_PRIVATE 

Session objects can be used in an external token, so long as they are generated or created. Other 

attributes in the template are supported, but they may have a negative effect on the application 

performance. This negative effect can be countered by using as many attributes from the above list as 

possible, and limiting such operations to application initialization. 

Only objects with the CKA_EXTRACTABLE attribute set to TRUE can be imported to an external 

token. 

It is not possible to set the SafeNet vendor defined CKA_EXPORT attribute to TRUE on an external 

token object. 

It is not possible to set the CKA_TRUSTED attribute to TRUE on an external token object.  

The ORT and ODS files are susceptible to growth. The space associated with the cryptogram of deleted 

objects in the ODS is not reused. One way to reclaim this space is to use the CTKMU utility to backup 

all the objects to a file, rename/delete the existing ORT and ODS files, then restore from the backup. 

If an application uses one session to access all objects on an external token, the HSM may run out of 

resources. As this is related to the size and number of objects, it is not possible to state the upper limit 

supported by SafeNet HSMs. One example of such an application is ctkmu. This means that it is 

possible to have so many objects on an external token that it is not possible to back them up. This can 

be rectified by adjusting the value of ET_PTKC_EXTTOKEN_MAXLOADED to a value which suits 

your application/environment. 

The SafeNet implementation of JCA/JCE (ProtectToolkit J) uses one session per KeyStore. An 

application which uses the same KeyStore to access a large number of keys runs the risk of consuming 

all HSM resources (see point 7). A work-around is to use a new KeyStore object when locating keys. 

This does not introduce a significant performance overhead. 

Smartcards and the Admin Token cannot be used as external tokens. 

External Key Storage cannot be utilized in conjunction with WLD. 



ProtectToolkit C Administration Guide Cryptoki Configuration 

39 

Configuration 

There are a number of files named cryptoki.dll provided as a part of the PTK-C installation. This 

design was utilized so that PCKS#11 applications always link to a library called cryptoki.dll. The 

following table shows the location of cryptoki.dll files and their purpose. The ID field identifies the 

Cryptoki library and is used in discussions that follow. 

 

Path  Purpose ID 

C:\Program Files\SafeNet\ProtectToolkit C 

Runtime 

Cryptoki library used for runtime 

applications 

1 

C:\Program Files\SafeNet\ProtectToolkit C 

Runtime\extToken 

ExtToken library used for runtime 

applications 

2 

C:\Program Files\SafeNet\ProtectToolkit C 

SDK\bin\logger 

Logger library used during application 

development 

3 

C:\Program Files\SafeNet\ProtectToolkit C 

SDK\bin\hsm 

Cryptoki library used during 

application development when 

communicating to HSMs 

4 

C:\Program Files\SafeNet\ProtectToolkit C 

SDK\bin\ExtToken 

ExtToken library used for application 

development 

5 

C:\Program Files\SafeNet\ProtectToolkit C 

SDK\bin\sw 

Cryptoki library used during 

application development in software 

only mode 

6 

 

As both the ExtToken library and a Cryptoki library are named cryptoki.dll and utilized in an 

implementation that requires external key storage, environment variables are used to indicate which 

library is linked to which software component. As indicated in Figure 8, PKCS#11 applications link to 

the ExtToken library. The ExtToken Library in turn links to a Cryptoki library. The following steps 

detail how this can be achieved.  

 

Configuration for Application Development 

1. Locate the current cryptoki.dll in use.  

 

The current Cryptoki library in use is determined by the Path environment variable. The first 

folder named in the Path environment variable that contains a cryptoki.dll file indicates the path to 

the current Cryptoki library. Refer to the table above for folder locations.  

NOTE: Record for use in step 3 the path of the folder containing the current cryptoki.dll. 

2. In the Path environment variable, insert the path to the ExtToken library, so that this folder 

appears before any other folders containing cryptoki.dll files. This is typically C:\Program 

Files\SafeNet\ProtectToolkit C SDK\bin\ExtToken. 



ProtectToolkit C Administration Guide Cryptoki Configuration 

40 

3. Configure the ET_PTKC_EXTTOKEN_PKCS11LIB environment variable.  

ET_PTKC_EXTTOKEN_PKCS11LIB is the fully qualified file path to the original 

cryptoki.dll located in step 1.  

Typically this should be achieved by:  

 Creating or editing the registry key  

 HLKM (or HKCU)\SOFTWARE\SafeNet\PTKC\EXTTOKEN. 

 Creating a string value named ET_PTKC_EXTTOKEN_PKCS11LIB. 

  Setting the string to the fully qualified path of the original cryptoki.dll.  

To specify the PTK-C SDK (PCI and network modes) Cryptoki library (Id 4), typically, 

ET_PTKC_EXTTOKEN_PKCS11LIB should be set to  

C:\Program Files\SafeNet\ProtectToolkit C SDK\bin\hsm\cryptoki.dll. 

4. Configure the ET_PTKC_EXTTOKEN_PATH environment variable in the registry key HLKM(or 

HKCU)\SOFTWARE\SafeNet\PTKC\EXTTOKEN. ET_PTKC_EXTTOKEN_PATH is the fully 

qualified directory path that determines where ExtToken stores it's data files. These data files will 

contain the encrypted key material. The default value is "C:\ETExtToken". 

5. Configure the ET_PTKC_EXTTOKEN_MAXLOADED environment variable in the registry key 

HLKM(or HKCU)\SOFTWARE\SafeNet\PTKC\EXTTOKEN. 

ET_PTKC_EXTTOKEN_MAXLOADED is the maximum number of objects which will be 

loaded to the underlying token at one time. If this limit is reached, then the least used object is 

unloaded from the underlying token. The default value is 100. 

Checking the Configuration 

The steps listed previously should result in a configuration where the utilities provided in the SDK 

folders provide a view of the HSM deploying the ExtToken functionality. These utilities should be 

utilized for the management of external key storage.  

In this configuration, the utilities installed under the Runtime folder do not utilize the ExtToken library 

and can be used to verify correct operation. 

1. Open a DOS Command Window  in the SDK bin folder. This should typically be C:\Program 

Files\SafeNet\ProtectToolkit C SDK\bin. This Window is referred to as Command Prompt(1) in 

later steps.  

2. Open a DOS prompt in the Runtime folder. This should typically be C:\Program 

Files\SafeNet\ProtectToolkit C Runtime. This Window is referred to as Command Prompt(2) in 

later steps. 

3. At Command Prompt(1) enter the command ctkmu l –s0.  

 

This command is generally utilized to display a list of the objects contained in slot 0. When used 

with the ExtToken functionality, this command additionally serves to initialize the mechanism that 

provides the external key storage functionality in the HSM. In a HSM where the ExtToken 

mechanism has not been initialized, this results in the creation of a number of objects on the HSM 

and the creation of the secure storage files on the Host.  

4. Verify the creation of ExtToken mechanism on the HSM.  

5. At Command Prompt(2) enter the command ctkmu l –s0.  

Three additional objects should have been created with the label ExtToken. The first object is a 

Data object containing information relating to the configuration of ExtToken. Two secret keys are 

created; one key is for private objects and the other key is for public objects. These keys are only 

visible when the utility utilizes the Cryptoki Library. When the utility utilizes the ExtToken 

Library only the externally stored keys are visible. 



ProtectToolkit C Administration Guide Cryptoki Configuration 

41 

6. Verify the creation of the Storage Files on the Host computer.  

The ET_PTKC_EXTTOKEN_PATH determines the location of the storage files. This is typically 

C:\ETExtToken. Refer to step 4 above. Check that the folder has been created and contains a .ord 

file and a .ort file.  

Configuration for Runtime Operation 

In the standard installation folder hierarchy for the runtime software components, the utilities and the 

cryptoki.dll file are located in the same folder.  

If a cryptoki.dll file is located in the same directory as the utilities, the utilities make use of this library, 

otherwise a utility located via the path environment variable is used. As this configuration requires the 

utilities to use the ExtToken library (Id 2) the Runtime Cryptoki library (Id 1) must be removed from 

the folder containing the utilities.  

1. Move the Runtime Cryptoki Library from its current location (typically in folder C:\Program 

Files\SafeNet\ProtectToolkit C Runtime (Id 1)) into a new sub-folder under this folder called hsm 

(typically C:\Program Files\SafeNet\ProtectToolkit C Runtime\hsm). 

2. In the Path environment variable, insert the path to the ExtToken library, so that this folder appears 

before any other folders containing cryptoki.dll files. This is typically C:\Program Files\SafeNet\ 

ProtectToolkit C Runtime\ExtToken. 

3. Configure the ET_PTKC_EXTTOKEN_PKCS11LIB environment variable. 

ET_PTKC_EXTTOKEN_PKCS11LIB is the fully qualified file path to the original cryptoki.dll 

located in step 1. Typically this should be achieved by creating or editing the registry key  

HLKM(or HKCU)\SOFTWARE\SafeNet\PTKC\EXTTOKEN, creating a string value named 

ET_PTKC_EXTTOKEN_PKCS11LIB and setting it to the fully qualified path to the original 

cryptoki.dll (typically C:\Program Files\SafeNet\ProtectToolkit C Runtime\hsm\cryptoki.dll). 

4. Configure the ET_PTKC_EXTTOKEN_PATH environment variable in the registry key HLKM(or 

HKCU)\SOFTWARE\SafeNet\PTKC\EXTTOKEN. ET_PTKC_EXTTOKEN_PATH is the fully 

qualified directory path that determines where ExtToken stores its data files. These data files will 

contain the encrypted key material. The default value is "C:\ETExtToken".  

5. Configure the ET_PTKC_EXTTOKEN_MAXLOADED environment variable in the registry key 

HLKM(or HKCU)\SOFTWARE\SafeNet\PTKC\EXTTOKEN. 

ET_PTKC_EXTTOKEN_MAXLOADED is the maximum number of objects which will be 

loaded to the underlying token at one time. If this limit is reached, then the least used object is 

unloaded from the underlying token. The default value is 100. 

Checking the Configuration 

1. Open a DOS prompt in the Runtime folder. This should typically be C:\Program 

Files\SafeNet\ProtectToolkit C Runtime. 

2. Set the ET_PTKC_EXTTOKEN_PKCS11LIB environment variable to point to the directory 

containing the original cryptoki.dll file (C:\ Program Files\SafeNet\ProtectToolkit C Runtime\hsm 

in this example). 

3. Enter the command ctkmu l –s0. This command is generally used to display a list of the 

objects contained in slot 0. When used with the ExtToken functionality, this command additionally 

serves to initialize the mechanism that provides the external key storage functionality in the HSM. 

In a HSM where the ExtToken mechanism has not been initialized, this results in the creation of a 

number of objects on the HSM and the creation of the secure storage files on the Host.  

4. Verify the creation of the Storage Files on the Host computer. The 

ET_PTKC_EXTTOKEN_PATH determines the location of the storage files. This is typically 

C:\ETExtToken. Refer to step 4 above. Check that the folder has been created and contains a .ord 

file and a .ort file.  



ProtectToolkit C Administration Guide Cryptoki Configuration 

42 

Creating Externally Stored Objects 

The utilities typically located in either Program Files\SafeNet\ProtectToolkit C Runtime (for runtime 

installation) or C:\Program Files\SafeNet\ProtectToolkit C SDK\bin (for SDK installation) can now be 

utilized to create keys that are stored externally. Slot 0 is used for externally stored keys. For example, 

the command  ctkmu c -s0 -z1024 -nexternal1 -aX -trsa  creates an RSA key pair in 

external storage. 

 

Back-up and Restore 

1. The simplest method for backing up keys is to zip the secure external storage files and to export 

the objects keys utilized in the ExtToken mechanism. SafeNet’s ProtectPack can be used to 

compress the files. As the files are already in an encrypted format encryption need not be applied 

when compressing the files. These files are located in the folder indicated by the 

ET_PTKC_EXTTOKEN_PATH environment variable and have the extensions .ort and .ods. 

2. To access the objects used in the ExtToken mechanism, the Cryptoki Library (Id 1 or 4) must be 

used. When the utilities are used with the Cryptoki Library, the physical slots are made accessible 

and therefore the objects that underlie the ExtToken mechanism are accessible. To enable the 

utilities to use the Cryptoki Library, in the Path environment variable, insert the path to the 

Cryptoki library, so that this folder appears before any other folders containing cryptoki.dll files. 

For Runtime operation, this is typically C:\Program Files\SafeNet\ ProtectToolkit C Runtime\hsm 

(if the previous configuration steps were followed). For SDK, this is typically C:\Program 

Files\SafeNet\ProtectToolkit C SDK\bin\hsm. 

3. At a DOS command prompt, enter the command ctkmu l –s0. Three objects should be listed 

with the label ExtToken. The first object is a Data object containing information relating to the 

configuration of ExtToken. Two secret keys are created; one key is for private objects and the 

other key is for public objects.  

4. Export the objects in slot 0 onto Multiple Custodian smartcards. The following example illustrates 

how to do this with two smartcards, where the smartcard reader is located in slot 1.  

ctkmu x –s0 –c1  

5. When restoring keys, the Cryptoki Library (Id 1or 4) must be used (see step2). To restore keys 

after tampering the HSM, uncompress the secure external storage files into the folder indicated by 

the ET_PTKC_EXTTOKEN_PATH environment variable. Import the secret keys from the 

smartcards. The following example illustrates how import the keys if exported in the manner 

described above. 

ctkmu i –s0 –c1  

6. To make use of the ExtToken Library the system must be re-configured to use the ExtToken 

Library for Application Development or for Runtime Operation as discussed previously. 



ProtectToolkit C Administration Guide Cryptoki Configuration 

43 

Real Time Clock  

The HSMAdmin API is provided which allow applications to access the Real Time Clock (RTC). The 

API gives an application the capability to access and adjust the time, the RTC status and access 

statistics regarding the effective adjustment and the number of times the RTC has been adjusted. 

The CTCONF utility provides the capability for an administrator to configure adjustment access 

control for the RTC. This gives an administrator the capability to control the delta amount and the 

number of times the RTC can be adjusted within a configurable period of time. The CTCONF utility 

does this via two command line options: one that sets the rule for adjustment access control and the 

second that enables/disables adjustment access control. The CTCONF utility description provides full 

details regarding the use of these command line options. 

Setting the Rule for RTC Adjustment Access Control 

The RTC Adjustment Access Control Rule specifies the guard parameters which control modification 

of the RTC. If modification of the RTC is attempted outside of these guard parameters it will be failed. 

The following examples illustrate how to use the utility to set guard parameters. The table below 

indicates the parameter settings as follows. 

Parameter Meaning 

secs Total amount of deviation (in no. of seconds) within a guard duration. Range 1≤ 

secs ≤ 120 

count Total number of adjustments that can be made within the guard duration. Range 

0≤ count. 0 indicates an unlimited number of adjustments 

days The guard duration in number of days. Range 1≤ days ≤ 12 

   

Example 1: 

For example, if applications accessing the RTC should not need to alter the RTC by more than 12 

seconds, but can make as many adjustments as needed within a period of 1 day, the following 

command could be used to set the rule for RTC Adjustment Access Control.  

ctconf -–rtc-adj-access-control-rule=12:0:1 

Example 2: 

For example, if this rule should then be modified so that the number of days in the guard duration 

should be extended to 4, the following command could be used so that the other access control rule 

parameters are not modified.  

ctconf -–rtc-adj-access-control-rule=::4 

The current settings for the access control rule are displayed via the ctconf –v command. 



ProtectToolkit C Administration Guide Cryptoki Configuration 

44 

Enabling/Disabling RTC Adjustment Access Control 

RTC Adjustment Access Control can be enabled once the RTC Adjustment Access Control Rule has 

been set. When RTC Adjustment Access Control is enabled, the functions provided by the HSMAdmin 

API (refer to the ProtectToolkit C Programmers Guide) are governed by the RTC Adjustment Access 

Control Rule. By disabling RTC Adjustment Access Control, unlimited adjustments to the RTC may be 

performed.  

Example 1: 

The following command line enables access control.  

ctconf -–rtc-adj-access-control=1 

When access control is disabled, the parameters passed via the HSMADM_GetRtcAdjustAmount and 

HSMADM_GetRtcAdjustCount function calls are not valid. CTCONF may be specified with both the -

-rtc-adj-access-control-rule and --rtc-adj-access-control command line parameters simultaneously. The 

RTC Adjustment Access Control Rule is given precedence over the RTC Access Control command.  



ProtectToolkit C Administration Guide Security Policies and User Roles 

45 

C H A P T E R  5   

SECURITY POLICIES AND USER ROLES 

Overview 

This chapter discusses different aspects that administrators must consider when selecting and setting a 

security policy for the ProtectToolkit C environment. There are numerous areas that can affect 

operational security and it is important to develop an understanding of the various security features and 

how they may affect ProtectToolkit C performance and security during runtime operations. 

A security policy is a set of security settings that control how ProtectToolkit C is allowed to function 

from a security perspective. For example, whether PINs may be passed across the host interface in an 

unencrypted form or whether a soft tamper (erase all internal secure memory) should occur as part of a 

firmware upgrade. 

Organizations are free to create unique security policies to satisfy their own needs or they may adopt 

policies, defined externally by standards bodies or other organizations, to meet their security 

requirements. 

A number of security settings offered as a part of ProtectToolkit C can be used to implement typical 

security policies that meet certain standards or satisfy application integration requirements. These can 

be utilized where appropriate or any other custom security policy can be implemented. The options 

available are fully discussed in this chapter and implementation instructions given. 

If you are implementing a security policy to satisfy application integration requirements other relevant 

information may be available. See the section SafeNet Application Integration Guides in Chapter 1 for 

further details. 

It should be noted that the level of compliance with the PKCS #11 standard will vary from policy to 

policy. In general, a greater level of compliance equates to a lower level of security. See the section 

PKCS #11 Compliance and Security below for further information. 

How security policy changes affect users will, in some cases, also depend upon the roles to which they 

have been assigned. This is because some security policy settings have effects that are user-role-

specific. Please consult the User Roles section later in this chapter for more information. 

ProtectToolkit C security policies are implemented by setting or clearing security flags to switch on or 

off particular functionality. A security policy might be implemented by setting a single security flag. In 

other cases more than one flag must be set. 



ProtectToolkit C Administration Guide Security Policies and User Roles 

46 

PKCS #11 Compliance and Security 

ProtectToolkit C may be configured to be highly compliant with the PKCS #11 standard. This is 

achieved by using the security policy PKCS #11 Compatibility Mode. If a greater level of security is 

required then an alternate standard or custom security policy may be adopted. These and all other 

typical security policies are discussed in the next section. 

By default (after initial HSM installation or following a tamper event) the ProtectToolkit C security 

policy applying is SafeNet Default Mode. This mode offers a greater level of security than is afforded 

when operating in PKCS #11 Compatibility Mode while at the same time affording a greater level of 

compliance with the PKCS #11 standard over other possible security policy implementations. 

For further information about how the SafeNet Default Mode differs from PKCS #11 Compatibility 

Mode and the related security issues, see the section PKCS #11 Compatibility Mode on page 47. 

As a general guide, the above discussion is summarized in the following table. 

Security Policy PKCS #11 

Compliance Level 

Security Level 

PKCS #11 Compatibility Mode High Low 

SafeNet Default Mode Medium Medium 

Other security policies Low High 

 

Typical Security Policies 

Overview 

A number of typical security policies that are designed to meet standards or satisfy application 

integration requirements are offered as a part of ProtectToolkit C and can be utilized where 

appropriate. In this section the following typical security policies are described.  

 PKCS #11 Compatibility Mode 

 SafeNet Default Mode 

 FIPS Mode 

 Entrust Compliant Modes 

 Netscape Compliant Mode and 

 Restricted Mode 

The ctconf command line utility is used to implement the policies by setting security flags. The 

specific commands to be used are also given in each case. 

Security flags are discussed in detail in the Security Flags section later in this chapter. 

Optionally with some of the typical security policies, security setting flags may be changed to change 

security behavior without invalidating the policy. See the section Security Policy Options later in this 

chapter for further information. 

For the complete ctconf command reference see the CTCONF section in Command Line Utilities 

Reference. 



ProtectToolkit C Administration Guide Security Policies and User Roles 

47 

PKCS #11 Compatibility Mode 

Allows the following mechanisms to behave as the PKCS #11 v2.20 standard requires. 

CKM_CONCATENATE_BASE_AND_KEY 

CKM_CONCATENATE_BASE_AND_DATA 

CKM_CONCATENATE_DATA_AND_BASE 

CKM_EXTRACT_KEY_FROM_KEY 

Warning 

Use of this security policy compromises security. If a skilled attacker manages to introduce software 

into the host system they can exploit vulnerabilities that these mechanisms, when operating in PKCS 

#11 Compatibility Mode, allow. 

ctconf Command 

 ctconf –fp 

SafeNet Default Mode 

By default (after initial HSM installation or following a tamper event) the ProtectToolkit C security 

policy applying is SafeNet Default Mode. This mode offers a greater level of security than is afforded 

when operating in PKCS #11 Compatibility Mode while at the same time affording a greater level of 

compliance with the PKCS #11 standard over other possible security policy implementations. 

For further information about how the SafeNet Default Mode differs from PKCS #11 Compatibility 

Mode and the related security issues, see the section PKCS #11 Compatibility Mode above. 

ctconf Command 

 ctconf –f0 

FIPS Mode 

ProtectToolkit C and the ProtectServer HSM have been certified to Federal Information Processing 

Standard (FIPS) 140-1 level 3. The FIPS certification assures users that an independent third party has 

verified that the product meets the high levels of security specified by the standard. 

NOTE: ProtectToolkit C and the HSM can function outside the scope of this accreditation.  Therefore, 

to guarantee that the HSM functions in FIPS mode, ensure that the correct configuration is set using the 

ctconf command given below. 

The attributes of the FIPS Mode security policy are:  

 No public cryptographic operations.  

NOTE: RSA and other public key processing can still occur. The setting implies that 

cryptographic services cannot be performed by unauthenticated users.  

 No clear PINs allowed 

 Authentication protection turned on 

 Security policy locked to prevent any change 

 Tamper before upgrade. 

 Only allow FIPS-approved algorithms 



ProtectToolkit C Administration Guide Security Policies and User Roles 

48 

FIPS Mode Operational Restrictions 

All RSA operations performed under FIPS mode will only be carried out if the specified key has a 

modulus of 1024 bits or greater. Any attempt to use or create an RSA key smaller than 1024 bits while 

running in FIPS mode will result in a CKR_KEY_SIZE_RANGE error. The following mechanisms 

will be affected by the key size limitation when running in FIPS mode: 

CKM_RSA_PKCS_KEY_PAIR_GEN  

CKM_RSA_X9_31 KEY_PAIR_GEN  

CKM_KEY_WRAP_SET_OAEP  

CKM_RSA_PKCS  

CKM_RSA_PKCS_OAEP  

CKM_RSA_X_509  

CKM_SHA1_RSA_PKCS  

CKM_SHA224_RSA_PKCS  

CKM_SHA256_RSA_PKCS  

CKM_SHA384_RSA_PKCS  

CKM_SHA512_RSA_PKCS  

CKM_SHA1_RSA_PKCS_TIMESTAMP  

All DSA operations performed under FIPS mode will only be carried out if the specified key has a 

modulus of 1024 bits or greater. Any attempt to use or create a DSA key smaller than 1024 bits while 

running in FIPS mode will result in a CKR_KEY_SIZE_RANGE error. The following mechanisms 

will be affected by the key size limitation when running in FIPS mode:  

CKM_DSA_KEY_PAIR_GEN  

CKM_DSA_PARAMETER_GEN  

CKM_DSA  

CKM_DSA_SHA1  

CKM_DSA_SHA1_PKCS  

ctconf Command 

ctconf –fF (equivalent to ctconf –faclntu) 



ProtectToolkit C Administration Guide Security Policies and User Roles 

49 

Entrust Compliant Modes 

Entrust Compliant Mode 1 

The Entrust Compliant Mode 1 may be used to implement the specific security profile required by 

Entrust Authority version 5.x software. 

Ctconf Command 

 ctconf –fe 

Entrust Compliant Mode 2 

The Entrust Compliant Mode 2 may be used to implement the specific security profile required by 

Entrust Authority version 6.x and Entrust Security Manager version 7.x software. 

Ctconf Command 

 ctconf –fc 

Netscape Compliant Mode 

ProtectToolkit C is compatible with the Netscape/iPlanet range of products.  In particular, the HSM 

has been tested with the following products: 

 iPlanet Certificate Management System 4.1/4.2 

 Netscape Enterprise Server 4.1 

 Netscape Communicator 4.5 or later 

Placing the HSM in this mode is achieved by setting the No Public Cryptography flag to enabled. 

Ctconf Command 

 ctconf –fc 

Restricted Mode 

In Restricted Mode the HSM requires all users to identify themselves before cryptographic services are 

available.  This security policy will also prevent any clear PINs or sensitive key material from passing 

through the PCI bus interface of the HSM. It does not however, require each individual request to the 

HSM to be signed. 

Ctconf Command 

 ctconf –fcnl 

Security Flags 

Overview 

Once a policy has been selected it is implemented in ProtectToolkit C by configuring security flags. 

Security flags control particular security settings. One or more of these flags can be set to create 

custom security policies or to implement the typical security policies described in the previous section. 



ProtectToolkit C Administration Guide Security Policies and User Roles 

50 

Configuring Security Flags 

Security flags are configured using the ctconf command line utility. 

The command syntax is as follows: 

ctconf –fflags 

Multiple flags may be set simultaneously. For example, the command: ctconf –ftu would set both the t 

and the u flags. 

When flags are set, any flags set previously are cleared. 

Set flags = 0 to clear all the flags. This places the device in SafeNet Default Mode (Default <No flags 

set>). See the Typical Security Policies section SafeNet Default Mode, above, for more information 

about this security policy. 

Use other flags values to set flags as follows: 

To set flag: Use flags value: 

Auth Protection u 

DES Keys Even Parity Allowed d 

Entrust Ready e 

FIPS Algorithms Only a 

FIPS Mode F 

Full Secure Messaging Encryption N 

Full Secure Messaging Signing U 

Increased Security Level i 

Mode Locked l 

No Clear PINs n 

No Public Crypto c 

Pure PKCS11 p 

Tamper Before Upgrade t 

User-specified ECC DomainParameters 

Allowed 

E 

Each of these flags is fully described in the next section. 

For the complete ctconf command reference, see the CTCONF section in.Command Line Utilities 

Reference. 



ProtectToolkit C Administration Guide Security Policies and User Roles 

51 

Security Flag Descriptions 

The security settings indicated by each of the security flags are described below. A mapping of 

security flags to the typical security policies described in this manual is given in the next section 

Security Policy Options. 

Auth Protection 

The Auth Protection (Authentication/Session Protection) flag, when set, indicates that secure 

messaging authentication between applications and the HSM is being enforced for certain messages 

sent from applications to the HSM. Effected messages are those that are critical or messages that might 

otherwise contain sensitive information. These messages must be digitally signed so that they can be 

verified by the HSM. 

By enabling this setting applications will operate in a more secure manner, however this will also have 

the effect of decreasing HSM performance. This is due to the increased operations required to sign and 

verify each request message. 

DES Keys Even Parity Allowed 

The Des Keys Even Parity Allowed permits creation of DES, DES2 and DES3 keys that have even 

parity. Creation of a DES key and DES key components with even parity is permitted if this flag is set. 

Entrust Ready 

The Entrust Ready (Entrust Compliant) flag, when set, indicates that: 

 When a mechanism is queried that does not exist an empty mechanism structure is returned 

 When a token is initialized with the C_InitToken command the SO PIN is not required 

 A user that is already logged in is permitted to log in again 

 When using the C_SignFinal command the size of the message authentication code (MAC) 

returned can be controlled, even if the mechanism is not one of the general length MAC 

mechanisms specified in the PKCS #11 standard 

 When using the C_WrapKey function, if the CKA_extractable attribute is not specified then it 

defaults to true so wrapping is allowed 

FIPS Algorithms Only 

The FIPS Algorithms Only (Only Allow FIPS Approved Algorithms) flag, when set, indicates that 

non-FIPS approved algorithms are disabled. 

The algorithms that are approved by FIPS are: AES, Triple-DES, DSA, RSA, ECDSA, HMAC-SHA-

1, HMAC-SHA-256, HMAC-SHA-384, HMAC-SHA-512, SHA-1, SHA-256, SHA-384, SHA-512, 

Triple-DES MAC. 

Refer to the Typical Security Policies section FIPS Mode, above, for further information. 

NOTE:  For the list of FIPS approved algorithms for individual products please check the FIPS 

product certification. 



ProtectToolkit C Administration Guide Security Policies and User Roles 

52 

FIPS Mode 

The FIPS Mode (FIPS 140-1 Mode or FIPS 140-2 Mode) flag, when set, indicates that the following 

composite flags are set. 

 FIPS Algorithms Only 

 No Public Crypto 

 Mode Locked 

 No Clear PINs 

 Tamper Before Upgrade 

 Auth Protection 

Instead of specifying each of these flags individually when using the ctconf utility to put a HSM into 

FIPS Mode, the FIPS Mode flag can be specified as a shortcut. 

Refer to the entries for the composite flags and the Typical Security Policies section FIPS Mode for 

further information. 

Full Secure Messaging Encryption 

The Full Secure Messaging Encryption flag, when set, indicates that: 

 User PINs or other sensitive information cannot be passed across the host interface in an 

unencrypted form. 

 Secure messaging encryption is enabled so that every message is encrypted in both directions 

between the application and the HSM. 

 Certain functions that would otherwise result in the clear transmission of sensitive data are 

disabled 

 The creation of any keys with the CKA_SENSITIVE attribute set to false is not permitted. 

Note that the Full Secure Messaging Encryption flag is similar to the No Clear PINs Allowed flag 

except that every message is encrypted in both directions between the application and the HSM.  The 

key used for the message encryption is generated using the PKCS #3 Diffie-Hellman Key Agreement 

Standard. 

By enabling this setting the applications will operate in a more secure manner, however this will also 

have the effect of decreasing HSM performance. This is due to the increased operations required to 

encrypt and decrypt each request and response message. 

Full Secure Messaging Signing 

The Full Secure Messaging Signing flag, when set, indicates that secure messaging authentication 

between applications and the HSM is being enforced for every message, in both directions, between 

the application and the HSM. All messages must be digitally signed so that they can be verified by the 

HSM. 

Note that the Full Secure Messaging Signing flag is similar to the Auth Protection flag except that 

every message, in both directions, between the application and the HSM is digitally signed and 

verified.  The key used for the message signing is generated using the PKCS #3 Diffie-Hellman Key 

Agreement Standard. 

By enabling this setting applications will operate in a more secure manner, however this will also have 

the effect of decreasing HSM performance. This is due to the increased operations required to sign and 

verify each request and response message. 

Increased Security Level 

The Increased Security Level flag, when set, indicates that: 



ProtectToolkit C Administration Guide Security Policies and User Roles 

53 

 The mechanism CKM_EXTRACT_KEY_FROM_KEY is disabled. 

 Changing the CKA_MODIFIABLE attribute from False to True while using the C_CopyObject 

command is not permitted. 

Mode Locked 

The Mode Locked (Lock Security Mode) flag, when set, indicates that this flag (or any other security 

flag) cannot be modified. A new security policy can only be implemented after a tamper operation has 

been performed. 

No Clear PINs 

The No Clear PINs (No Clear PINs Allowed) flag, when set, indicates that: 

 User PINs or other sensitive information cannot be passed across the host interface in an 

unencrypted form. 

 Secure messaging encryption is enabled for requests to the HSM that are critical or for those 

requests that might otherwise contain sensitive information. 

 Certain functions that would otherwise result in the clear transmission of sensitive data are 

disabled. 

 The creation of any keys with the CKA_SENSITIVE attribute set to false, is not permitted. 

No Public Crypto 

The No Public Crypto flag, when set, indicates that no user can perform a cryptographic operation 

without having first authenticated themselves. 

When this flag is set, each token in the system will have the PKCS #11 CKF_LOGIN_REQUIRED 

flag set to indicate that applications must authenticate before operations are allowed.  Note that this 

security flag does not affect the Admin token which always requires authentication for access. 

NOTE: This flag does not imply that public key cryptography is not allowed. Setting this flag will not 

prevent RSA processing. 

Pure PKCS11 

The Pure PKCS11 flag, when set, indicates that the following mechanisms will behave as the PKCS 

#11 v2.20 standard requires. 

CKM_CONCATENATE_BASE_AND_KEY 

CKM_CONCATENATE_BASE_AND_DATA 

CKM_CONCATENATE_DATA_AND_BASE 

CKM_EXTRACT_KEY_FROM_KEY 

Warning 

Setting this flag compromises security. If a skilled attacker manages to introduce software into the host 

system they can exploit vulnerabilities that these mechanisms, when operating with this flag set, allow. 



ProtectToolkit C Administration Guide Security Policies and User Roles 

54 

Tamper Before Upgrade 

The Tamper Before Upgrade flag, when set, indicates that a soft tamper (erasure of all HSM internal 

secure memory) will occur when any of the following operations are undertaken. 

 Firmware upgrade 

 FM download 

 FM disable operation 

User Specified ECC DomainParameters Allowed 

The User Specified ECC DomainParameters Allowed, when set, indicates that ECC Public and Private 

keys may be generated and stored within the HSM which have Domain Parameters other then the set 

of named curves built into the HSM.  

 

Security Policy Options 

Optionally with some of the typical security policies, security flags may be changed to change security 

behavior without invalidating the policy. 

The following table details the mandatory and optional security flag settings for each of the typical 

security policies. 

Security Policies 

Impact of Security Flags on Policies   

a c d e i l n N p t u U E 

PKCS #11 Compatibility 

Mode 





x  



























SafeNet Default Mode   x          

FIPS Mode   x 



 








 






Entrust Compliant Mode 1 
1 

  x 







 








  

Entrust Compliant Mode 2 
2 

  x 







 








  

Netscape Compliant Mode   x 







 








  

Restricted Mode   x 



 












  

1 When using Entrust Authority version 5.x 
2 When using Entrust Authority version 6.x and Entrust Security Manager version 7.x 

Key 

a FIPS Algorithms Only 

c No Public Crypto 

d       DES Keys Even Parity Allowed 

e Entrust Ready  

i Increased Security Level 

l Mode Locked 

     The security flag must be set. If cleared the 

security policy is invalidated. 

     The security flag must be cleared. If set the 

security policy is invalidated. 

  Optional. Setting or clearing the security 

flag will not invalidate the security policy. 



ProtectToolkit C Administration Guide Security Policies and User Roles 

55 

n No Clear PINs 

N Full Secure Messaging Encryption 

p Pure PKCS11 

t Tamper Before Upgrade 

u Auth Protection 

U Full Secure Messaging Signing 

E User Specified ECC Parameters 

 

User Roles 

As part of the ProtectToolkit C configuration process different user roles are assigned to those 

responsible for application administration and use. 

For ProtectToolkit C there are four defined roles available.  These are: 

 Security Officer (SO) 

 Token Owner or User 

 Administration Security Officer (ASO) and 

 Administrator 

Standard PKCS #11 defines the first two of these, the Security Officer (SO) and the Token Owner or 

User.  Each slot and its associated token will have an SO and a User, each with their own respective 

PINs. 

 A Security Officer grants and revokes access to a token and assists with key backups 

 A Token Owner uses the token for the application 

Two additional roles are defined that are only available on the Admin token. The holders of these roles 

handle HSM level administration and management. These are the Administration Security Officer 

(ASO) and the Administrator.  These roles effectively mirror their standard PKCS #11 counterparts. 

It should be noted that the services available to the various roles are highly dependent upon the 

security policy set for the HSM.  The following sections give a complete description of these roles and 

the services available to each of them. 

Administration Security Officer (ASO) 

This is the user who knows and can present the Admin Token SO PIN. The ASO’s main role is to 

introduce the Administrator to the module. The following services are available to the ASO: 

 Set the initial Administrator PIN value (ASO cannot change it later) 

 Set the CKA_TRUSTED attribute on a Public object 

 Set the CKA_EXPORT attribute on a Public object 

 Exercise cryptographic services with Public objects 

 Create, destroy, import, export, generate and derive Public objects 

 Can change his/her own PIN 



ProtectToolkit C Administration Guide Security Policies and User Roles 

56 

Administrator 

This is the user who knows and can present the Admin Token User PIN. The following services are 

available to the Administrator: 

 Set or Change Real Time Clock (RTC) value 

 Read the System Event Log 

 Purge a full System Event Log 

 Configure the Transport Mode feature 

 Specify the Security Policy of the HSM 

 Create new ProtectToolkit C Slots/Tokens and specify their Labels SO PINs and minimum PIN 

Length 

 Initialize smart cards and specify their Labels and SO PINs 

 Destroy individual ProtectToolkit C Slots/Tokens 

 Erase all HSM Secure Memory including all PINs and User Keys 

 Perform Firmware Upgrade Operations 

 Manage Host Interface Master Keys 

 Exercise cryptographic services with Public objects on the Admin Token 

 Exercise cryptographic services with Private objects on the Admin Token 

 Create, destroy, import, export, generate and derive Public objects on the Admin Token 

 Create, destroy, import, export, generate and derive Private objects on the Admin Token 

 May change his/her own PIN 

Security Officer (SO) 

Many users may be assigned this role. There will be one per user slot. The SO has the following 

abilities: 

 Set the initial User PIN value (SO cannot change it later) 

 Reset (re-initialize) the Token (destroys all keys and the User PIN on the Token) and set a new 

Label 

 Set the CKA_TRUSTED attribute on a Public object 

 Set the CKA_EXPORT attribute on a Public object 

 Exercise cryptographic services with Public objects 

 Create, destroy, import, export, generate and derive Public objects 

 May change his/her own PIN 



ProtectToolkit C Administration Guide Security Policies and User Roles 

57 

Token Owner (User) 

Many users may be assigned this role. There will be one per user slot. The user has these abilities: 

 Exercise cryptographic services with Public objects 

 Exercise cryptographic services with Private objects 

 Create, destroy, import, export, generate and derive Public objects 

 Create, destroy, import, export, generate and derive Private objects 

 May change his/her own PIN 

Unauthenticated Users 

Public (unauthenticated) access is allowed to HSMs.  Because authentication applies to tokens, a user 

may be simultaneously authenticated to one token while accessing another token without 

authentication. 

NOTE: The services available to unauthenticated users are heavily dependent on the security policy 

implemented. 

Unauthenticated users have these abilities: 

 Exercise status querying services 

 Authenticate to a Token 

 If ‘No Clear PINs’ is not set, they may initialize User or Smart Card Tokens and specify their 

Labels and SO PINs 

 If token flag CKF_LOGIN_REQUIRED is FALSE, they can create, destroy, import, export, 

generate, derive and use Public objects on the token 

 If token flag CKF_LOGIN_REQUIRED is FALSE, they can exercise cryptographic services with 

Public objects 

 If ‘Authentication Protection’ is not set, they can exercise the digesting services 

 Force session terminate, restart HSM by running either the hsmreset or e8kreset utility 

 



ProtectToolkit C Administration Guide Operational Tasks 

58 

C H A P T E R  6   

OPERATIONAL TASKS 

This chapter describes some of the most common operational procedures a User, Administrator or 

Security Officer may perform during normal ProtectToolkit C operation. 

The procedural steps described herein assume that ProtectToolkit C has been installed and configured 

for normal runtime usage.  This chapter also frequently refers to various command line utilities that can 

be referenced for further detail in the Command Line Utilities Reference chapter.. Many of these 

functions can also be achieved with the GUI based tools, which are detailed in the GUI Utilities 

Reference chapter. 

Changing a User or Security Officer PIN  

At certain stages of ProtectToolkit C usage it may be necessary to change the User or SO PIN on a 

particular token.  The appropriate user may perform a PIN change at any stage and on any token. 

To perform a PIN change, the command line utility ctkmu is used. 

Example: 

ctkmu p –s2 –O 

The above will attempt to change the SO PIN on slot 2. 

The current SO PIN will be prompted for and the new PIN will have to be entered and confirmed. 

ctkmu p –s1 

The above will attempt to change the token user PIN on slot 1. 

The current user PIN will be prompted for and the new PIN will have to be entered and confirmed. 

NOTE: This command is also used to initialize the User PIN. When this command is executed and the 

User PIN is un-initialized the SO PIN will be prompted for and the initial User PIN may be entered. 

Secure Key Backup and Restoration 

For the purpose of conveniently transferring sensitive keys to other machines or for off-site storage and 

subsequent recovery, ProtectToolkit C allows for keys to be backed up to disk files or smart cards. 

Encrypted parts may also be written to the screen. 

Determining Backup Requirements 

There are no set rules within ProtectToolkit C that dictate which keys should be backed up. The task of 

deciding which keys require backup is up to the individual key owner. 

As a guideline, keys that would generally be backed up are those that cannot be re-created or easily 

reconstructed by other means.  These may include generated key values or long keys that may have 

been manually entered by multiple custodians. 

Not all keys can be backed up since certain key attribute values have to be set in order to allow the 

backup. The setting of key attributes is therefore an important consideration when creating keys 

suitable for backup operations and is covered in the Key Attributes section later in this chapter. 



ProtectToolkit C Administration Guide Operational Tasks 

59 

Available Backup and Recovery Methods 

There are two different methods that may be used to backup a key. These are: 

 The multiple custodians method where a key is split into multiple shares and then distributed to 

multiple custodians. The shares are encrypted (wrapped) by a second key called the wrapping key 

which is selected at random. 

 The single custodian method where the key to be backed up is encrypted (wrapped) by a second 

key called the wrapping key that is specifically chosen. 

Once encrypted, the key is then stored on the backup medium. 

Key Splitting Scheme Selection 

If it is decided to split a key into multiple shares, then the scheme to split the key must be selected. It is 

possible to split the key in such a way that the original key may only be recovered with the co-

operation of either: 

 all the custodians using the standard scheme, or 

 any of the custodians, with a user specified minimum number being required, using the N of M 

scheme
1
 

If the N of M scheme is used then not all the custodians are required to recover the key. An additional 

advantage is that should a smart card become corrupted the key can still be recovered. When a 

corrupted card is encountered during an import operation it will be rejected. A prompt will then display 

for another card to enable the import operation to continue. 

A Typical Key Backup and Recovery Scheme 

An overall backup scheme would typically combine the multiple custodians and single custodian 

methods.  In this scenario, a wrapping key (KWRAP) would be generated and then backed up using the 

multiple custodians method. The KWRAP key would then be used to back up other keys using the 

single custodian method. 

This key backup scheme is illustrated in Figure 9. 

                                                           

1
  As defined in A. Shamir – How to Share a Secret, Communications of the ACM, Vol 22, no. 11, 

November 1979, pp 612-613. 



ProtectToolkit C Administration Guide Operational Tasks 

60 

 

Figure 9 - A typical key backup and recovery scheme 

Key Attributes 

As mentioned previously, it is important to ensure that appropriate attributes are selected for keys so 

that these keys may be used for their desired purpose, while remaining compatible with the key backup 

scheme that is to be implemented. 

The standard PKCS #11 method for performing key backup requires that a key that is used to backup 

another key (the wrapping key) has the CKA_WRAP attribute set to true. Further, it requires that the 

key to be backed up (the extractable key) have the CKA_EXTRACTABLE attribute set to true. Since 

these attributes may be chosen arbitrarily by the application, this implies that once a key is marked as 

extractable any wrapping key may be used to back it up. Thus, it is possible for an attacker to introduce 

a known value wrapping key, backup the target extractable key and then decrypt it offline. 

To combat this situation, ProtectToolkit C introduces an alternate key backup method. This extension 

allows for the backup key to have the CKA_EXPORT attribute set to true and the key to be backed up 

to have the CKA_EXPORTABLE attribute set to true.  In this case the wrapping key is known as an 

export key and the key to be backed up as an exportable key. The difference between this pair of 

attributes and the previous pair is that only the Security Officer may set the CKA_EXPORT attribute to 

true. 

The key backup procedures described below work equally for the PKCS #11 standard attributes or the 

extension ProtectToolkit C attributes.  It is, however, recommended that the extension method be 

implemented in order to mitigate the threat described above.   

NOTE: When the export/exportable procedure is used with split custodian the token Security Officer 

must be present in order to create the custodian export keys. 

Also, the CKA_EXPORT attribute of any key is set to false when the key is imported.  Therefore, after 

it is restored, it cannot be used again and the user should create a new export key to create a new 

backup batch of exportable keys. 

Prior to key backup, it must be ensured that the keys selected for backup have the correct attributes set 

in order to allow the export. The following table details the key attribute settings required. Also shown 

are the attribute settings required to enable use of a key as a key wrapping key. 



ProtectToolkit C Administration Guide Operational Tasks 

61 

Attribute Key Wrapping Key Key designated for backup 

CKA_MODIFIABLE FALSE - 

CKA_SENSITIVE TRUE - 

CKA_WRAP TRUE - 

CKA_EXPORT TRUE  - 

CKA_UNWRAP
3 

TRUE - 

CKA_EXTRACTABLE - TRUE
1 

CKA_EXPORTABLE -  TRUE
1 

CKA_DERIVE FALSE - 

CKA_ENCRYPT FALSE - 

CKA_DECRYPT FALSE
2 

- 

CKA_SIGN FALSE - 

CKA_VERIFY FALSE - 

 

1
 The user should choose only one of these attributes.  There are two pairs of attributes that must match, 

CKA_EXPORT and CKA_EXPORTABLE and/or CKA_WRAP and CKA_EXTRACTABLE for the 

Key Wrapping Key and Key designated for backup, respectively. 

2
 Wrapping keys should not be available for decryption; otherwise the wrapped key may be decrypted 

directly exposing the sensitive key material. 

3
 Note that the CKA_IMPORT attribute can be used in place of the CKA_UNWRAP attribute. 

CKA_IMPORT is similar to the standard CKA_UNWRAP attribute. It is used to determine if a given 

key can be used to unwrap encrypted key material.  The important difference between these attributes 

and their standard counterparts is that if CKA_IMPORT is set to True and CKA_UNWRAP attribute is 

set to False, then the only unwrap mechanism that can be used is CKM_WRAPKEY_DES3_CBC.  

With this combination, the error code CKR_MECHANISM_INVALID will be returned for all other 

mechanisms. 

The command line tool ctkmu and the GUI tool gctkmu can be used for both creating keys and 

changing their attributes.  Further details on these utilities and key generation may be found in Chapter 

7 and Chapter 8 respectively. In addition, details regarding key attributes may be found in Appendix B. 

Key Backup Procedure 

Prior to attempting a key backup please ensure that you have: 

 a valid key that can be backed up 

 if backing up to smart cards, a smart card reader connected 

 sufficient initialized and erased smart cards or disk space to back up the required data 

The rules applying to key backup are as follows: 

 Attempting a key backup without specifying a wrapping key will result in a multiple custodian 

backup using a random key to smart cards only. 

 When a wrapping key is specified, the unwrapping key used to import a key must be the same as 

the wrapping key that was used to export it. 

 When using the ctkmu command line utility, the standard scheme will be used by default for 

multiple custodian key backups unless the “-M” parameter is specified. When “-M” is specified, 

the N of M scheme is used. 



ProtectToolkit C Administration Guide Operational Tasks 

62 

See the Available Backup and Recovery Methods section above for further information regarding the 

methods mentioned here. 

Key backup and restore is accomplished using either the command line utility ctkmu or the GUI utility 

gctkmu. These utilities can backup and restore keys from either a disk file or one or more smart cards. 

Please refer to Chapter 7 and Chapter 8 for the complete ctkmu and gctkmu references respectively. 

The following examples use the ctkmu command line utility. See the section Exporting Keys within the 

Key Management Utility (KMU) section in GUI Utilities Reference for the procedure when using the 

KMU GUI utility. 

Example 1: Using a Wrapping Key 

ctkmu x –s2 –nMyDES2 –wMyWRAP1 fwrapkey.bin 

In this example, the key with the label “MyDES2” on slot 2 will be encrypted (wrapped) with the key 

labeled “MyWRAP1”.  The backup data will be written to the disk file named “wrapkey.bin”.  This 

operation will prompt for the User PIN. 

Example 2: Using Multiple Custodians and the Standard Key Splitting Scheme 

ctkmu x –s2 –nMyWRAP1 –c4 

In this example, the key labeled “MyWRAP1” on slot 2 will be backed up to smart cards in slot 4 using 

the multiple custodians method and the standard scheme.  This means that the key is split in such a 

way that the original key may only be recovered with the co-operation of all the custodians.  

The operation will prompt for the User PIN and the number of custodians required (minimum of 2). 

Each custodian will be prompted to enter and confirm a PIN. The PIN is then used to protect the key 

component on the smart card. 

Example 3: Using Multiple Custodians and the N of M Scheme 

ctkmu x –s2 –nMyWRAP1 –c4 -M 

This example is the same as Example 2 with the addition of the “-M” parameter. Specifying this 

parameter causes the N of M scheme to be used. This means that the key is split in such a way that the 

original key may be recovered with the co-operation of any of the custodians with a user specified, 

minimum number of custodians (N) being required out of the total (M). 

In addition to the prompts described in Example 2, an additional prompt displays for the minimum 

number of custodians required to recover the key (N) (minimum of 2, maximum equal to the total 

number of custodians specified (M)). Note that N cannot be set equal to M. 

See the Available Backup and Recovery Methods section above for further information regarding the N 

of M scheme if required. 



ProtectToolkit C Administration Guide Operational Tasks 

63 

Key Restore Procedure 

The task of restoring keys that have been backed up is essentially a reversal of the above-mentioned 

procedures. When attempting to restore or import key data, note the following: 

 When restoring a key held by multiple custodians, all custodians (if the standard key slitting 

scheme was used) or the minimum number of custodians (N of M scheme) will have to present 

their smart card so that the individual key shares can be re-combined to form the original key. 

 When restoring a key held by a single custodian, the same wrapping key must first be available on 

the token that was used to encrypt the key. 

Example 1: Single Custodian Key Recovery 

ctkmu i –s2 –wMyWRAP1 fwrapkey.bin 

In this example a key will be imported to the token in slot 2 from a disk file named “wrapkey.bin”. It 

will be decrypted (unwrapped) with the wrapping key “MyWRAP1”.  This operation will prompt for 

the User PIN. 

Example 2: Multiple Custodian Key Recovery 

ctkmu i –s2 –c4 

This example will import a key to slot 2 from smart cards held by multiple custodians. When prompted, 

each custodian must insert their smart card, in turn, in the smart card reader designated as slot 4.  

Custodians will also be prompted for their PIN. This process continues until sufficient shares have been 

assembled to enable reconstruction of the key.  This operation will prompt for the User PIN. 

NOTE: The command used to recover keys shared between multiple custodians is the same, regardless 

of which scheme was used (standard or N of M) to split the key. See Available Backup and Recovery 

Methods for further information regarding the schemes. 

Re-initializing a Token 

The re-initialization of a token is generally performed when the objects contained on that token are no 

longer being used or the owner of those objects is no longer available to access them.  After re-

initialization the token may be re-used for a different application. 

The re-initialization of a token can only be performed by the slot Security Officer. 

NOTE: Re-initialization of a token will erase all objects and user data contained on that token and set a 

new user PIN. 

Example: 

ctkmu t –s1 

This example will re-initialize the token on slot 1 and initialize it with a new User PIN and a new label.  

This operation will prompt for the slot SO PIN.  



ProtectToolkit C Administration Guide Operational Tasks 

64 

Adding and Removing Slots 

The task of adding or removing slots to or from ProtectToolkit C is the Administrator’s responsibility.  

To accomplish this, the administration utility ctconf is used. 

NOTE: It is not possible to add slots using CTCONF while other ProtectToolkit C applications are 

running.  

Adding Slots 

When adding slots, new slots will have no effect on existing slots. 

Example: 

 ctconf –c2 

 This example will add 2 slots to the current configuration.  The Administrator’s PIN will be prompted 

for. 

After the addition of slots, all smart card and the admin slot numbers will automatically re-adjust.  Each 

token in the newly created slots will also require initialization as described in Chapter 4. 

Removing Slots 

When removing slots from ProtectToolkit C, consideration has to be paid to the fact that either the user 

or some other entity may be accessing a token within that slot.  Removal of a slot should only be 

undertaken after ensuring that the contained token and objects are no longer in use. 

Example: 

 ctconf –d2 

This example will permanently remove slot 2 from ProtectToolkit C.  The Administrator PIN will be 

prompted for. 

Connecting and Removing Smart Card Readers 

NOTE: The smart card slot detection behavior is changed in ProtectToolkit C version 3.10 and newer. 

In order to speed up the application start up, the last detected smart card reader information is cached. 

If  a change occurs in the attached smart card readers, the user must tell the system to query for changes 

in peripheral devices explicitly. This is valid for both connecting and removing smart card readers.  

The command “ctconf -q” or “ctconf --query” can be used to perform a full device scan on all available 

serial ports. Alternatively, a system reboot, or a HSM reset (using the HSM specific tooling – for 

example, “e8kreset” for the ProtectServer ) will cause ProtectToolkit C to initiate a full detection cycle 

on the next application startup. 



ProtectToolkit C Administration Guide Operational Tasks 

65 

Using Transport Mode to Avoid a Board Removal Tamper  

The transport mode is a facility that allows the HSM hardware to be removed from the host system PCI 

bus without causing a board removal tamper condition.  A board removal tamper will remove all 

sensitive material from the HSM including the HSM configuration, all keys and certificates. 

It is the Administrator’s responsibility to set the required transport mode on the HSM. 

To accomplish this, the command line utility ctconf is used with the –m option. 

Example:  

 ctconf –m2 

The numeric value following the –m switch will set the transport mode to one of the following: 

0 No Transport Mode – to be applied when HSM is installed and configured.  This 

mode will tamper the HSM if removed from the PCI Bus. 

1 Single Transport Mode – HSM will not be tampered after removal from the PCI bus.  

HSM will automatically change to No Transport Mode the next time the HSM is reset 

or power is removed and restored. 

2 Continuous Transport Mode – HSM will not be tampered by being removed from 

the PCI bus. 

NOTE: The transport mode does not disable the tamper response mechanism entirely.  Any attempt to 

physically attack the HSM will still result in a tamper response. 

Adjusting the HSM Clock 

Due to host system and HSM timing differences, such as clock drifts, it may become necessary, at 

certain stages, to adjust the internal time on the HSM hardware. Only the Administrator can perform 

this task. 

Note that the HSM clock value cannot be specified directly.  It is only possible to synchronize the HSM 

clock with the host system clock. 

To adjust the HSM clock: 

1. Verify or set the correct system host time as per your host operating system. 

2. From a command prompt, type the following: 

ctconf –t 



ProtectToolkit C Administration Guide Operational Tasks 

66 

Changing Secure Messaging Mode 

See Changing Secure Messaging Mode in the Operating Mode Setup section. 

Managing Session Key Rollover 

See Configuring Session Key Rollover in ADH Mode in the Operating Mode Setup section. 

Using the System Event Log 

Viewing and Interpreting the Event Log 

ProtectToolkit C maintains a system event log in order to provide a means of tracking serious hardware 

or consistent operational faults, tamper events and self-test error information. 

Each time a self-test fails, an unexpected event occurs at run-time or a tamper occurs, information 

about the event is recorded to the event log. There can be up to 1024 events in the event log. 

Event records are written sequentially and chronologically.  If the date and time of a later entry in the 

log is stating an earlier time than an entry preceding it, it indicates that the real time clock or audit 

information has been altered. 

See Appendix A for a complete list of the possible error code values generated by HSM firmware that 

may be recorded in the event log. 

To view the event log: 

From a command prompt, type the following: 

ctconf -e 

Purging the Event Log 

When the event log is full, the HSM will no longer store new event records. The event log will then 

need to be purged. 

Note that the event log cannot be purged until it is full. 

To purge the event log: 

From a command prompt, type the following: 

ctconf -p 



ProtectToolkit C Administration Guide Operational Tasks 

67 

Updating Firmware 

The ProtectToolkit C firmware that operates on the HSM hardware can be upgraded to newer versions 

via a secure upgrade facility.  The firmware upgrade can only be performed by the ProtectToolkit C 

administrator and is achieved by using the ctconf command line utility.  This facility will only allow 

the HSM to be upgraded to firmware versions that have been digitally signed by SafeNet. 

NOTE: Depending on the security policy in place, the HSM may perform a soft-tamper before the 

upgrade process is executed.  This tamper will erase all key and configuration data on the HSM.  Please 

see Security Policies and User Roles for more information on security policies. 

Firmware upgrades are distributed in the form of a digitally signed file. 

Prior to performing a firmware upgrade, ensure that you have performed the following: 

 All important user data and keys have been backed up 

 The current HSM configuration has been noted 

 All applications using the HSM have been closed 

The upgrade of the HSM firmware is performed by typing the following at a command line prompt: 

ctconf –gfilename 

where filename refers to the name of the firmware upgrade file.  Entry of the Administrator password 

will be required during this operation. 

Success or failure of the firmware upgrade will be displayed on screen.  

Following an upgrade, normal operation of ProtectToolkit C may be resumed. 

Tampering the HSM 

The tampering of the HSM may be necessary at the end of its lifecycle or any other security sensitive 

event that requires all stored data to be immediately destroyed. 

A tamper formats the secure memory of the HSM and thereby erases all configuration and user data. 

Due to the highly destructive nature of this action, only the Administrator may tamper the HSM.  It 

also requires that all sessions have been closed and that no user is accessing the HSM. 

To tamper the HSM: 

From a command prompt, type the following: 

ctconf –x 

The Administrator will then be prompted for their PIN and to confirm the action.  

NOTE: The above action cannot tamper the HSM while other applications are active.  This command 

will indicate if the tamper operation was successful. 



ProtectToolkit C Administration Guide Operational Tasks 

68 

Installing a Functionality Module 

The SafeNet Protect Series HSMs support development of custom functionality which can affect how 

the internal processing of the hardware is performed.  

Functionality modules can be developed with the aid of a Functional Module development kit, which 

can be purchased separately from SafeNet.  

Functionality modules are distributed in conjunction with a certificate so that their identity can be 

verified. This certificate will need to be placed in the admin token by the administrator. 

NOTE: Before proceeding, please ensure that your firmware supports FM functionality. You can 

check this by typing “ctconf” from a command prompt. If you have an older version of the firmware, 

you can upgrade it by contacting SafeNet. 

To install a functionality module: 

Assuming you have the verification certificate for the fm in a file called certname.cert and the fm in a 

file called fmfile.fm... 

From a command prompt, type the following: 

ctfm   i -lcertname –ffmFile.fm 

 



ProtectToolkit C Administration Guide Operational Tasks 

69 

THIS PAGE INTENTIONALLY LEFT BLANK 

 



ProtectToolkit C Administration Guide Command Line Utilities Reference 

70 

C H A P T E R  7   

COMMAND LINE UTILITIES REFERENCE 

CTCERT 

Certificate Management Utility for the ProtectToolkit C environment. 

Synopsis 

ctcert c [-s<slot>] [-i<slot>] [-c<label> | -k] [-t<type>] [-z< bits>][-x< name>]  

[-b <YYYYMMDDhhmmss[Z]>] [-e <YYYYMMDDhhmmss[Z]>]  

[-d <duration<h|d|m|y>>] [-C<curve_name>] [-S<mechanism>] -l<label> 

ctcert i [-s<slot>] [-f<file>] -l<label> 

ctcert l [-s<slot>] 

ctcert r [-s<slot>] [-k] [-t<type>] [-z< bits>] [-f< name>] [-S<mechanism>]  

-l<label> 

ctcert t [-s<slot>] -l<label> 

ctcert x [-s<slot>] [-f< name>] -l<label> 

Description 

The ctcert utility provides basic support for the creation of X.509v3 certificates using the 

ProtectToolkit C product. With this tool it is possible to: 

 Generate both self signed certificates and certificates signed with a specified CA key. 

 Generate PKCS #10 certificate requests. 

 List certificates, certificate requests, and key objects that exist in a specified slot. 

 Import certificates (PEM format). 

 Export certificates (PEM format). 

 Mark certificates as trusted 

NOTE: When operating in WLD/HA mode, this utility should only be utilized to view the 

configuration. Any changes to the configuration should be made when operating in NORMAL mode. 

Refer to the Operation in WLD Mode and Operation in HA Mode sections for further details. 



ProtectToolkit C Administration Guide Command Line Utilities Reference 

71 

Commands 

Command Description 

c Generate Certificate This command is used to generate X.509v3 certificates. 

When generating certificates with ctcert, a number of 

different approaches can be used. These approaches and the 

minimum options required are listed below: 

Generate new keys and self sign 

ctcert  c  -k  -l<label>  [options ...] 

Generate new keys and sign with a CA key  

ctcert  c  -c<label>  -k  -l<label>  [options 

...] 

Use existing keys and self sign 

ctcert  c  -l<label>  [options ...] 

Use existing keys and sign with a CA key 

ctcert  c  -c<label>  -l<label>  [options ...] 

When using the Generate Certificate command, one of the 

above combinations of the options ‘-c’, ‘-k’, ‘-l’ must be 

used. All other options are optional as indicated and facilitate 

finer control over the default actions of ctcert. Please refer 

below for detailed description of each option. 

When the -l<label> option is used without the -k (generate 

new key pair) option, the <label> refers to the label for an 

existing PKCS #10 certificate request or an existing public 

key. Ctcert first searches for a certificate request with a 

matching label and if found uses it to generate the certificate. 

If a certificate request does not exist, ctcert searches for a 

public key with a matching label and if found uses it to 

generate a certificate. Otherwise ctcert reports an error. 

i Import Certificate or 

Certificate Request 

This command is used to import a new certificate or 

certificate request object onto the HSM. The object to be 

imported is PEM encoded and contained in a text file. To 

verify that the object is PEM encoded, the first line in the 

text file should contain one of the following strings. 

“----BEGIN CERTIFICATE----“ 

“----BEGIN CERTIFICATE REQUEST----“ 

The -l<label> option specifies the label for the certificate or 

certificate request object once it has been imported. 

l List Certificates, 

Certificate Requests, 

and Keys 

This command will list the certificates, certificate requests 

and keys that exist on the specified token. 

   

   

 

 

 

  



ProtectToolkit C Administration Guide Command Line Utilities Reference 

72 

Command Description 

r Generate Certificate 

Request 

This command is used to generate a certificate request from 

either an existing key pair or a newly generated key pair. For 

an existing key pair the -l<label> option specifies the label 

of the public key. The private key is identified by using the 

CKA_ID attribute which should be the same for key pairs. 

This is the default behavior for keys generated by 

ProtectToolkit C. If the public key contains a value for the 

CKA_SUBJECT attribute, then it will be used for the 

certificate request object’s subject distinguished name. If this 

attribute does not exist then ctcert will prompt for this 

information. 

If a new key pair is being generated then the -l<label> 

option specifies the label for the new key pair and ctcert will 

prompt for the certificate request objects subject 

distinguished name. The new certificate request objects label 

will also be set to <label>. 

t Set Trusted 

Certificate 

This command will set the CKA_TRUSTED attribute on the 

specified certificate on the token. 

The SO is the only user who can set this attribute. The 

command will prompt for the current SO PIN of the token. 

x Export Certificate or 

Certificate Request 

This command is used to export a certificate or certificate 

request object in a PEM encoded format. The PEM encoding 

is written to standard output, or the file specified with the –

f<file> option. 

The -l<label> option specifies the object to export. If a 

certificate object with a matching label exists, it will be 

exported, otherwise a search will be made for a certificate 

request with a matching label. 

 



ProtectToolkit C Administration Guide Command Line Utilities Reference 

73 

Options 

The following options may be used with the various commands as indicated in the Synopsis. 

Option Description 

-b <YYYYMMDDhhmmss[Z]> --cert-begin=<YYYYMMDDhhmmss[Z]> 

Specifies the begin time (notBefore) for a Certificate. The Z implies 

the time specified is GMT, otherwise Local time is assumed and 

converts to GMT.  

This option is only valid for the Generate Certificate Command (c), 

and must be used with either the -b<YYYYMMDDhhmmss[Z]> or 

-d<duration<h|d|m|y>> option. 

–c<label> --ca-label=<label>  

Specifies a label that identifies a CA (private) key used to sign a 

newly generated certificate.  

The <label> can be a label for a certificate that is associated with the 

CA key, or  it can be the label of the private key itself.  

This option is only valid for the Generate Certificate Command (c). 

-C<curve_name> --curve-name=<label> 

Specifies which curve to use. Valid values are: 

 P-192 (also known as prime192v1 and secp192r1) 

 P-224 (also known as secp224r1) 

 P-256 (also known as prime256v1 and secp256r11) 

 P-384 (also known as secp384r1) 

 P-521 (also known as secp521r1) 

 c2nb191v1 

 c2tnb191v1e 

 or any valid Domain Parameters object label 

 If -tec is specified, the –C parameter must be included in the 

command otherwise ctcert will exit with an error message. 

-d <duration<h|d|m|y>> --cert-duration=<duration<h|d|m|y> 

Specifies the duration of a Certificate. Must specify one of: h - hours, 

d - days, m - months, y - years.  

May be used with the –b<YYYYMMDDhhmmss[Z]> option.  

If the -b option is not provided it defaults to start from now.  

This option is only valid for the Generate Certificate Command (c). 

-e <YYYYMMDDhhmmss[Z]> --cert-end=<YYYYMMDDhhmmss[Z]> 

Specifies the end time (notAfter) for a Certificate.  

The Z implies the time specified is GMT, otherwise Local time is 

assumed and converts to GMT.  

This option is only valid for the Generate Certificate Command (c), 

and must be used with the –b<YYYYMMDDhhmmss[Z]> option. 

  



ProtectToolkit C Administration Guide Command Line Utilities Reference 

74 

Option Description 

–f< name> --import-file=< name> 

Specifies a text file that contains a PEM encoding of a certificate or 

certificate request object.  

This option is only valid with the Import Command (i), Export 

Command (x) or Generate Certificate Request Command (r). 

–h, -? --help 

Display usage information  

–i<slot> --ca-slot=<slot> 

Specifies the slot containing the CA signing key identified by the –

c<label> option. If the –i<slot> option is not used then the CA key is 

assumed to be in the slot identified by the –s<slot> option. If this 

latter option is not used then the CA key is assumed to exist in slot 0. 

 

If the CA signing key has the CKA_SIGN attribute set to FALSE and 

the CKA_SIGN_LOCAL_ATTRIBUTE set to TRUE, then the CA 

signing key must reside in the same slot as the certificate it is signing. 

 

This option is only valid when the –c option is used. 

–k --key-gen 

Specifies that a new key pair be generated. The -l<label> option 

specifies the label for the new keys. A key pair with the same label 

must not already exist. 

–l<label> --label=<label> 

Depending on the command and other options, this option specifies a 

label for a new or an existing certificate request or public key object. 

Refer to the description of each command for more details. 

–s<slot> --slot=<slot> 

Specifies the slot: 

 in which, a new key pair and a certificate or certificate request 

will be generated; or 

 into which, a certificate or certificate request will be imported; or 

 from which, keys, certificates and certificate requests will be 

listed; or 

 that contains the certificate or certificate request to be exported. 

-S<mechanism> --sig-hash-alg=<rsa_sign_alg> 

Specifies the RSA signing algorithm for certificate request or 

certificate generation. Valid mechanisms are: 

 SHA1 

 SHA224 

 SHA256 

 SHA384 

 SHA512 

The default is SHA1. If this option is applied to a DSA or EC key pair 

and is not SHA1, ctcert will exit with an error message.  

NOTE: ECDSA is used for a certificate and EC is used for a key pair. 

  



ProtectToolkit C Administration Guide Command Line Utilities Reference 

75 

Option Description 

–t<type> --type=<type> 

Use with the –k option to specify the key type that should be 

generated. The valid key types are rsa, rsax931, ec, and dsa. The 

default is rsa. 

If –tec is specified, the –C parameter must be included in the 

command, otherwise ctcert will exit with an error message. 

–x< name> --attribute-file=< name> 

Specifies a text file that contains certain certificate attributes and 

extensions. For details on the attributes and extensions supported and 

the format of this file refer to the Certificate Attribute/Extension File 

section below.  

 

This option is only valid with the Generate Certificate command (c). 

–z<bits> --size=<bits> 

Use with the –k option to specify the new key size in bits. The default 

key size is 1024 bits. 

  

  

Certificate Attribute File 

The certificate attribute file allows the user to specify certain certificate attributes including extensions 

that should be used when generating a new certificate. The supported attributes and extensions are: 

 Certificate label 

 Certificate serial number 

 Certificate issuer distinguished name 

 Certificate subject distinguished name 

 Certificate policies extension with support for a certification practice statement (CPS) or  a user 

notice 

 Certificate key usage extension 

The format for specifying an attribute or extension is: 

 < tag>   {  <value> , <value> , ... } 

White space is ignored throughout the file, except where it occurs within a <value> string. 

The valid <tags> are: 

 label 

 serialnumber 

 issuer 

 subject 

 certificatepolicies 

 keyusage 



ProtectToolkit C Administration Guide Command Line Utilities Reference 

76 

The following sections describe the allowed values for each of these tags. 

Option Description 

Tag – label 

 

This tag defines the certificate’s label and is different to the label 

specified by the -l<label> option. This latter label refers to the key 

pair for which the certificate is being generated. If this tag is missing 

in the certificate attribute file, then the certificate label will default to 

the one specified with the -l<label> option. 

The label can be any string of ASCII characters. If the label contains 

multiple words then white space between the words is maintained. If a 

new line is encountered between words it is replaced by a space. The 

following example demonstrates how to use this tag. 

 label { Test Certificate } 

Tag – serialnumber 

 

This tag defines the certificates serial number. However, to ensure 

uniqueness, it is only used if the signing key does not have the usage 

count attribute defined. If this attribute is defined then the current 

value of the usage count is used as the certificate’s serial number. If 

the usage count attribute is not defined and the serial number is not 

defined in the certificate attribute file, then ctcert will prompt for this 

information. 

The following example illustrates the correct use of this tag: 

 serialnumber { 999999 } 

Tag – issuer 

Tag - subject 

These tags define the issuer and subject distinguished names and are 

defined by a set of name/value pairs. The format for an issuer or 

subject distinguished name is: 

issuer | subject 

{ 

 CN=<string> , 

 OU=<string> , 

 O=<string> , 

 C= <string> 

} 

The meaning of each name component in each name/value pair is as 

follows: 

CN – Common Name 

OU – Organizational Unit Name 

O – Organization Name 

C – Country Name  

The following example illustrates a well formed issuer distinguished 

name: 

issuer   

{ 

 CN=any string , 

 OU=Testing , 

 O=safenet ,  

C=AU  

} 

 



ProtectToolkit C Administration Guide Command Line Utilities Reference 

77 

Option Description 

NOTE: White space is ignored except when it appears between 

multiple words that constitute the value component of a name/value 

pair. In the above example, the space between “any string” in the 

common name component is preserved. 

For the subject distinguished name tag there exist two special strings 

that can be assigned to the CN (Common Name) component of the 

subject distinguished name. These special strings are “serialno” and 

“unique”. 

When the serialno string is used, ctcert will replace the serialno 

string with the HSMs serial number. This can be used to distinguish 

certificates that belong to specific HSMs.   

When the unique string is used, ctcert appends the current value of 

the signing key’s usage count to the HSM serial number and replaces 

the unique string with this value. Thus the unique string will be 

replaced with a string of the form nnnn-xx where nnnn is the HSM 

serial number and xx is the signing key’s usage count. 

Tag – certificatepolicies 

 

This tag identifies a certificate policies extension that defines the 

policy under which this certificate was issued.  The format of a 

certificate policy extension entry is: 

certificatepolicies  

{  

 oid=oid_string ,   

 [critical | noncritical  , ]  

 [unotice=”<string>” , ]  

 [cps=”<string>” ] 

} 

The certificate policy is identified by an object identifier (OID) and 

may contain one of the  policy qualifiers cps or unotice. The cps 

qualifier string is the URI of the Certification Practice Statement that 

relates to this policy, and the unotice qualifier is a string that is 

included in the certificate as a user notice that relates to the certificate 

policy. Both the cps and unotice strings are composed of printable 

ASCII characters. An object identifier (OID) is defined by a series of 

numerical labels separated by periods. For example the OID that 

identifies a key usage extension within an X.509v3 certificate is 

written as: 

 id-ce-keyusage OBJECT IDENTIFIER ::= { 2.5.29.15 } 

The critical / noncritical keywords are used to indicate whether this 

certificate policy extension is critical or not. By default the certificate 

policy extension is not marked critical. Multiple certificate policy 

extensions may be defined in the certificate attribute/extension file. 

The following example illustrates a well formed certificatepolicies 

extension: 

certificatepolicies 

{ 

 oid=1.2.3.45.6.8 , 

 unotice=Test string, 

 critical 

} 

  



ProtectToolkit C Administration Guide Command Line Utilities Reference 

78 

Option Description 

Tag – keyusage 

 

This extension is used to restrict the usage of the public key in the 

certificate. The format of the keyusage entry is: 

keyusage 

{ 

 <key usage string> , 

 [ <key usage string> , ] 

 [ critical  |  noncritical , ] 

} 

The <key usage strings> conform to those defined in RFC2459 and 

acceptable values are: 

 digitalSignature 

 nonRepudiation 

 keyEncipherment 

 dataEncipherment 

 keyAgreement 

 keyCertSign 

 cRLSign 

 encipherOnly 

 decipherOnly 

 

The critical / noncritical keywords are used to indicate whether this 

key usage extension is critical or not. By default the key usage 

extension is marked critical.  

An example of a well formed keyusage extension is: 

keyusage 

{ 

 digitalSignature , 

 keyCertSign 

} 

 



ProtectToolkit C Administration Guide Command Line Utilities Reference 

79 

Examples 

Example 1 Generate new DSA keys with label “Test” and self sign. This command will 

prompt for the subject distinguished name.  

 ctcert  c  -k  -lTest  -tdsa 

Example 2 

 

Generate new RSA keys with label “Test” and key size 512 bites,  sign with a 

key that has the label “CA Key”. 

 ctcert  c  -c”CA Key”  -k  -lTest –z512 

Example 3 Generate a new ECDSA certificate, a EC key pair, and self-sign using the P-

192 curve: 

ctcert c  –tec –CP-192 –lecdsaCert1 –k 

NOTE: Use ECDSA for a certificate and EC for a key pair. 

Example 4 Use existing keys with label “Test” and use certificate attribute file. 

ctcert  c  -lTest  -x certificate_file.txt 

Example 5 Use existing keys with label “Test” and sign with a key with that has the label 

“CA Key”. 

ctcert  c  -c”CA Key”  -lTest 

Example 6 Use existing certificate request with a label “Test Cert” and sign with a key 

that has the label “CA Key”. 

ctcert  c  -c”CA Key”  -l”Test Cert”  

Example 7 To create a new certificate request with the label “User” and generate new 

keys (RSA is default) 

ctcert  r  -k  -lUser 

Example 8 To export a previously generated certificate request as a PEM object and store 

this in the file name mycert.txt. 

ctcert x  –lUser -fmycert.txt 

 

CTCHECK 

SafeNet Cryptoki provider status enquiry utility. 

Synopsis 

ctcheck  [ -a, --all ] [ -b string, --device-details=string ] 

[ -d device, --device=device ] [ -f x | s, --format=x | s ] 

[ -g string, --global-details=string ] [ -h, --help ] [ -n, --number ] 

[ -N, --noglobals ] [ -s char, --separator=char ] [ -V, --version ] 

 

Description 

ctcheck lists the status of SafeNet Protect Server devices (actually of SafeNet Cryptoki providers) in 

machine readable format. This could be used for example, in automatic monitoring of the health and 

activity level of the devices. 

The devices can be local hardware or remote depending on which Cryptoki provider is used. Normally, 

the Cryptoki provider is specified by the file pointed to by the symbolic link: 

/opt/safenet/protecttoolkit5/ptk/libcryptoki.so 



ProtectToolkit C Administration Guide Command Line Utilities Reference 

80 

If local hardware is used then the device driver package must be installed and running (check it with 

the hsmstate/e8kstate(1m) command). If a remote Cryptoki is used then its IP address must be given 

with the CT_SERVER environment parameter. 

The exact information which is printed is controlled by the command line options. The globals are 

always printed unless the -N is given. The default is to print the most interesting parameters (use the -h 

option to see exactly what is output in the default case). The globals and per-device details are 

controlled separately by simple lists of desired parameters. For example, to output just the device serial 

numbers, the battery status and the initialization status, you would use a string like this with the --

device-details option: 

serialnumber~batterystatus~deviceinitialised 

Output format is either in XML format or as a ~ (tilde) separated list. The XML format should be self-

documenting. 

The tilde output format (see EXAMPLES) is as follows: 

 Lines starting with '#' are comments and identify the fields in the following lines. 

 The first non-comment line is the global information. 

 Each subsequent non-comment line represents one device. 

 Each line of information is a simple list of values each separated by the ~ (tilde) character (or as 

specified with the --separator option) 

NOTE: When operating in WLD/HA mode, this utility should only be utilized to view the 

configuration. Any changes to the configuration should be made when operating in NORMAL mode. 

Refer to the Operation in WLD Mode and Operation in HA Mode sections for further details. 



ProtectToolkit C Administration Guide Command Line Utilities Reference 

81 

Options 

The following options are supported: 

Option Description 

-a --all  

Print all device information (overrides -b options) 

-b string --device-details=string 

string specifies what device information to output. string is a ~ (tilde) delimited list of 

parameters to output. Enclose the string in "inverted commas" or 'apostrophes' to avoid 

interpretation of the separator characters by the shell.  

Parameters available: 

 serialnumber - Serial number of device 

 model - Device model 

 devicerevision - Revision of device 

 firmwarerevision - Revision of firmware on device 

 ptkcrevision - Revision of ProtectToolkit C on device 

 deviceinitialised - 0 or 1. 0 may mean tampered. 

 slotcount - Number of slots on a device. 

 totalpublicmemory - Total secure memory - bytes or 'UNAVAILABLE'. 

 freepublicmemory - Available secure memory - bytes or 'UNAVAILABLE'. 

 freememory - Device's heap space (RAM) available - bytes or ‘UNAVAILABLE'. 

 securitymode - 32-bit value or 'Default (No flags set)' 

 transportmode - 32-bit value or 'None' 

 batterystatus - LOW or GOOD 

 eventlogfull - 0 or 1. 

 fmsupport - 0 or 1 

 batch - Device batch 

 dateofmanufacture - hh:mm:ss DD/MM/YYYY 

 clocklocal - hh:mm:ss DD/MM/YYYY (TimeZone) 

 pcbversion - Revision of PCB of device 

 fpgaversion - Revision of FPGA of device 

 externalpins - 32 bit value of external pin status 

 eventlogcount - Number of entries in log 

 fmlabel - Label of the FM inside the device 

 fmversion - Version of the FM inside the device 

 fmmanufacturer - Manufacturer of the FM inside the device 

 fmbuildtime - Build time of the FM inside the device 

 fmfingerprint - Fingerprint (hex string) identifying the FM image) of the FM 

 fmromsize - Amount of ROM the FM is occupying or 'UNAVAILABLE' 

 fmramsize - Amount of static RAM the FM is using or 'UNAVAILABLE' 

 fmstatus - 'Enabled', 'Disabled', 'No FM' or 'ERROR' 



ProtectToolkit C Administration Guide Command Line Utilities Reference 

82 

Option Description 

-d device --device=device 

Just print details for device number device (the first device is number 0) 

-f x | s --format=x | s 

Output format: x for XML, s for separator (default) 

-g string --global-details=string 

string specifies what global information to output. string is a ~ (tilde) delimited list of 

parameters to output. Enclose the string in "inverted commas" or 'apostrophes' to avoid 

expansion by the shell. Parameters available: 

 devicecount - Number of active devices. 

 applicationcount - Number of applications currently using Cryptoki or 

'UNAVAILABLE' 

 totalsessioncount - Number of sessions open on all devices. 

-h --help 

Display usage information. 

-n --number 

Just print the number of devices 

-N --noglobals 

Don't print the global information 

-s char --separator=char 

Separator for output (default is ~ (tilde)) 

-V --version 

Print the program version 

 

Diagnostics 

The program returns 1 if errors are encountered, else 0. 

Examples 

The default case: 

ctcheck 

# global info: devicecount~applicationcount~totalsessioncount~ 

1~1~0~ 

# device info: serialnumber~model~devicerevision~firmwarerevision... 

1267~8000:PL450~G~1.35.02~3.10~1~1~1046528~1025264~11291712~ 



ProtectToolkit C Administration Guide Command Line Utilities Reference 

83 

Default XML output: 

ctcheck -fx 

<?xml version="1.0" encoding="UTF-8"?> 

<cryptoki> 

        <devicecount>1</devicecount> 

        <applicationcount>UNAVAILABLE</applicationcount> 

        <totalsessioncount>0</totalsessioncount> 

        <devicecount>1 

        <applicationcount>1 

        <totalsessioncount>0 

        <device> 

                <serialnumber>1267</serialnumber> 

                <model>8000:PL450</model> 

                <devicerevision>G</devicerevision> 

                <firmwarerevision>1.35.02</firmwarerevision> 

                <ptkcrevision>3.10</ptkcrevision> 

                <deviceinitialised>1</deviceinitialised> 

                <slotcount>1</slotcount> 

                <totalpublicmemory>1046528</totalpublicmemory> 

                <freepublicmemory>1025264</freepublicmemory> 

                <freememory>11291712</freememory> 

                <securitymode>Default (No flags set)</securitymode> 

                <transportmode>None</transportmode> 

                <batterystatus>GOOD</batterystatus> 

                <eventlogfull>0</eventlogfull> 

                <fmsupport>1</fmsupport> 

        </device> 

</cryptoki> 

No globals, XML output, only list serial number and battery status: 

ctcheck -Nf x -b  "serialnumber~batterystatus" 

<?xml version="1.0" encoding="UTF-8"?> 

<cryptoki> 

        <device> 

                <serialnumber>1267</serialnumber> 

                <batterystatus>GOOD</batterystatus> 

        </device> 

</cryptoki> 

See Also 

An awk(1) script called ctalarm(1m) is distributed with this program (not available for Windows) that 

post-processes the output of ctcheck(1m), decides if parameters are within site-specific limits and 

prints out an appropriate message. If parameters are not within limits, then notices, warning or alarms 

can be raised as appropriate. The script must be customized to the needs of the monitoring software 

being used and is provided as an example. 

CTCONF 

Configuration utility for the ProtectToolkit C environment. 

Synopsis 

ctconf  [-a<device>] [-b<name >] [-c<slots>] [-d<slot>] [-e] [-f<flags>] [-g<file>]  



ProtectToolkit C Administration Guide Command Line Utilities Reference 

84 

[-h] [-i<file>] [-j<file>] [-k<file>] [-l] [-m<mode>] [-n< slot >] [-p] [-q]  

[-r<slot>] [-s] [-t] [-v] [-x] [--rtc-adj-access-control-rule = [secs]:[count]:[days]]  

[--rtc-adj-access-control = 0|1] 

Description 

The ctconf utility is used to configure the operating parameters for ProtectToolkit C. 

By default, ctconf will report configurable settings for the first device found. Some options are only 

applicable to either the hardware or software implementation of ProtectToolkit C. 

NOTE: When operating in WLD/HA mode, this utility should only be utilized to view the 

configuration. Any changes to the configuration should be made when operating in NORMAL mode. 

Refer to the Operation in WLD Mode and Operation in HA Mode sections for further details. 

Options 

The following options are supported: 

Option Description 

–adevice --device-number=<device>  

Use the admin token on the specified device 

–bname --fm-cert=<name>  

FM validation certificate 

–cslots --create-slots=<slots>  

Create slots new User slots 

–dslot --delete-slot=<slot> 

Delete and remove User slot with ID slot. (You cannot delete the admin slot.) 

–e --event-log 

Prints the event log on stdout 

–fflags Configures security flags. Security flags are used to implement security policies. 

 Multiple flags may be set simultaneously. For example the command: ctconf –ftu 

would set both the t and the u flags. 

 When flags are set, any flags set previously are cleared. 

Setting flags = 0  

Clears all the flags and places the device in SafeNet Default Mode (Default <No flags 

set>). This security policy is described in the Typical Security Policies section 

SafeNet Default Mode. 

Use other flags values to set flags as follows: 

a FIPS Algorithms Only 

c No Public Crypto 

d            DES Keys Even Parity Allowed 

e Entrust Ready 

F FIPS Mode (equivalent to –faclntu) 

i Increased Security Level 

l Mode Locked 

n No Clear PINs 

N Full Secure Messaging Encryption 

p Pure PKCS11 



ProtectToolkit C Administration Guide Command Line Utilities Reference 

85 

Option Description 

t Tamper Before Upgrade 

u Auth Protection 

U Full Secure Messaging Signing 

E User Specified EC Parameters allowed 

Each of these flags is fully described in the Security Flag Descriptions section. 

–gfile --upgrade-fw=<file> 

Upgrade firmware with file 

–h --help 

Display usage information 

–ifile --integrity-fw=<file> 

Verify the authenticity/integrity of a firmware file by specifying its filename. 

–jfile --download-fm=<file>  

Download FM module file 

–kfile --validate-fm=<file>  

Validate FM module file 

–lfmid --delete-fm 

--disable-fm 

--fmid=<fmid> 

Disable/delete an FM module. <fmid> specifies the FM ID in hex format. 

–mn --mode=<n> 

Set the transport mode for the HSM. The following transport modes can be set with n: 

0 No Transport Mode – will tamper the HSM if it is removed from the PCI 

Bus.  This is the default mode. 

1 Single Transport Mode – HSM will not be tampered by being removed 

from the PCI Bus. HSM will automatically change to No Transport Mode 

the first time an application calls C_Initialize() after an HSM reboot. 

2 Continuous Transport Mode – HSM will not be tampered by being 

removed from the PCI Bus. 

–nslot --init-token=<slot> 

Initialize the token in the specified slot 

–p --purge-log 

Purge event log. Note that a purge cannot be done until the event log is full. 

–q --query 

Query peripheral devices. Check all available serial ports, and attempt to activate 

drivers for the connected devices. 

–rslot --reset-token=<slot> 

Reset existing token in specified slot 

–s --fm-info  

Display FM module information 

–t --time-set 

Sets the HSM clock to the same value as the host system. This command is only valid 

when the RTC Status is either HSMADM_RTC_UNINITIALIZED or 



ProtectToolkit C Administration Guide Command Line Utilities Reference 

86 

Option Description 

HSMADM_RTC_STAND_ALONE. 

Refer to the ProtectToolkit C Programmers Guide (in the Appendix titled 

HSMAdmin.h Library Reference) for further details. 

–v  --verbose 

Display extended status information 

–x --tamper 

This will cause the Key Store memory on the HSM to be erased (as if tampered) and 

made ready for re-initialization.  

The –x option is only available on hardware-based ProtectToolkit C implementations. 

--rtc-adj-access-

control-rule= 

[secs]:[count]:[da

ys] 

This option sets the rule for RTC Adjustment Access Control. The RTC Adjustment 

Access Control Rule specifies the guard parameters which control modification of the 

RTC.  

If modification of the RTC is attempted outside of these guard parameters it will fail.   

secs total amount of deviation (in no. of seconds) within a guard duration.  

Range 1≤ secs ≤ 120. 

count total number of adjustment that can be made within the guard duration.  

Range 0≤count. 0 denotes that unlimited adjustments can be made. 

days          the guard duration in number of days. Range 1≤ days ≤ 12.  

The separator ‘:’ is a compulsory argument. However, the values for secs, count and 

days can be NULL. A NULL equates to no modification. 

For example:  

 ctconf --rtc-adj-access-control-rule=12:0:1 

 ctconf --rtc-adj-access-control-rule=12:: 

 ctconf --rtc-adj-access-control-rule=::4 

The current settings for the RTC Adjustment Access Control Rule are displayed via 

the CTCONF –v command. 

--rtc-adj-access-

control=0|1 

RTC Adjustment Access Control can be enabled once the RTC Adjustment Access 

Control Rule has been set.  

When RTC Adjustment Access Control is enabled, the functions provided by the 

HSMAdmin API (refer to the ProtectToolkit C Programmers Guide) are governed by 

the RTC Adjustment Access Control Rule.  

By disabling RTC Adjustment Access Control, unlimited adjustments to the RTC 

may be performed.  

CTCONF may be specified with both the --rtc-adj-access-control-rule and --rtc-adj-

access-control command line parameters simultaneously.  

The RTC Adjustment Access Control Rule is given precedence over RTC Adjustment 

Access Control The current settings for RTC Adjustment Access Control are 

displayed via the ctconf –v command. 

 

CTFM 

Functionality Module Management utility for the ProtectToolkit C environment. 

Synopsis 

ctfm  d [-a<device> | -A] 



ProtectToolkit C Administration Guide Command Line Utilities Reference 

87 

ctfm i [-a<device> | -A] [–c<certFile>] -l<certLabel> -f<fmFile> 

ctfm q [-a<device> | -A] 

ctfm v [-a<device> | -A] [–c<certFile>] -l<certLabel> -f<fmFile> 

Description 

The ctfm utility is designed for the ProtectToolkit C administrator and is used to manage functionality 

modules on Protect Server or Protect Host devices (HSMs). 

With this tool it is possible to: 

 Load a new FM (if an FM is already loaded then it is overwritten) 

 Delete an FM so it becomes inactive 

 Query the status of an FM (if any) 

 Verify an FM file is correctly signed 

In each case the operation may apply to all HSMs or an individually specified HSM. 

By default, ctfm will report the FM state for the first device found. 

The device Administrator PIN and Admin SO PIN must be initialized in order for these commands to 

run. The ctfm utility will prompt the operator for new PINs if it detects the PINs are not initialized. 

When the commands are executed they may require the Admin PIN or Admin SO PIN of the HSM. 

When they are required the utility will prompt the operator for the values (unless the values have 

already been previously entered during the execution of the same command). 

Event log entries are created when FMs are loaded or disabled. In order to create event logs correctly 

the HSM RTC should be initialized. If the ctfm utility detects that the RTC is not initialized, after 

alerting the operator and gaining approval to do so, it will initialize the HSM RTC to match the system 

clock. 

In order to load an FM, a trusted certificate must be present in the Admin Token of the HSM. Usually 

a PEM encoded certificate file is provided with the FM image file. If the utility detects that the 

certificate is not already present in the Admin token the utility will import the certificate from the file 

into the device’s Admin token and set it to Trusted. 

NOTE: When operating in WLD/HA mode, this utility should only be utilized to view the 

configuration. Any changes to the configuration should be made when operating in NORMAL mode. 

Refer to the Operation in WLD Mode and Operation in HA Mode sections for further details. 

Commands 

Command Description 

d Delete FM 

This command is used to delete an FM so it becomes inactive on all or on an 

individual HSM. 

 

i Import FM 

This command is used to Load a new FM onto all or an individual HSM (if an FM 

is already loaded then it is overwritten). Existing FMs do not need to be disabled 

 



ProtectToolkit C Administration Guide Command Line Utilities Reference 

88 

Command Description 

prior to executing this command. 

The command looks on the Admin Token of the device for a certificate label equal 

to the certLabel parameter. If the certificate object is present then the utility will 

ensure the certificate is set to Trusted. 

If the certificate object is not present then the utility will attempt to create a 

Trusted certificate from the contents of the certFile. 

If the certFile parameter is not provided the utility will assume the filename is the 

certLabel with .cert appended. For example, if the certificate label is myfm then the 

utility will search for a file named myfm.cert. 

The device Administrator PIN (and possibly the Admin SO PIN) will be required. 

q Query FM Status 

This is the default command and is used to query the status of an FM (if any) on all 

or an individual HSM. 

Use this command to obtain the name, version information and disable status of an 

FM or to see if an FM is loaded at all. 

No PINs are required to perform this operation. 

 

v Verify an FM Signature 

This command is used to verify that an FM file has been signed correctly without 

attempting to download the FM. 

The device Administrator PIN will be required. 

The behavior of the certLabel and certFile parameters is the same as is described 

for the Import FM command above. 

 

 

Options 

The following options are supported: 

Option Description 

–adevice --device-number=<device>  

Use the admin token on the specified device The first device is numbered 0. If this 

option is absent then the first device is implied. 

-A --all-devices 

Apply command to all available devices. 

–ccertFile --fm-cert-file=<certFile> 

FM validation certificate filename. 

–ffmFile --fm-file=<fmFile> 

Name of file holding a new FM. 

-h,-? --help 

Display usage information. 

–lcertLabel --fm-cert-label=<certLabel> 

FM validation certificate object label. 

 



ProtectToolkit C Administration Guide Command Line Utilities Reference 

89 

 

CTIDENT 

CTIDENT is a utility for establishing and maintaining trust between devices within the ProtectToolkit 

C environment. 

Synopsis 

ctident gen [-b] [-f] [-o <pin>] <targets> 

ctident trust [-b] [-f] [-o <pin>] <targets> <peers> 

ctident remove [-b] [-o <pin>] <targets> <peers> 

ctident list [-b] [-t <types>] [-a] <targets> 

ctident check [-b] <targets> 

 

Description 

The ctident utility is used for establishing trust between devices. This includes operations performed 

by the administrative token SO to establish the trust as well as operations that can be performed by any 

user to verify trust relationships. 

A device trusts another peer when the device holds the HSM Identity public-key of the peer in its 

administrative token. 

NOTE: When operating in WLD/HA mode, this utility should only be utilized to view the 

configuration. Any changes to the configuration should be made when operating in NORMAL mode. 

Refer to the Operation in WLD Mode and Operation in HA Mode sections for further details. 

Commands 

When specifying the command, the user need only supply the minimum number of characters to 

uniquely distinguish the command. 

Command Description 

check The check key command 'check' is used to check HSM Identity keys for 

consistency on the devices specified by the <targets> parameter. Any anomalies will 

be reported. 

This command ensures that the peer keys match the device private key they represent, 

and ensures that all key objects have been created with appropriate security attributes.  

gen The generate key command 'gen' is used to generate the HSM Identity key-pair on 

the devices specified by the <targets> parameter. 

If a device already has an identity key a key will not be generated and a warning will 

be issued, unless the -f parameter is used to force key re-generation. When a key is 

re-generated, the existing key is destroyed BEFORE the new key has been generated 

to avoid any inconsistencies that could occur with multiple keys. 

To complete this command, ctident requires the SO PIN of the administrative token. 

The -o parameter can be used to supply a default SO PIN. Since multiple devices can 

be targeted with this command, differing PINs may be required for each device.  

When a default PIN is not provided or if the current PIN is incorrect, the PIN will be 

prompted for. The batch mode -b parameter can be used to disable PIN prompting. 

list The list key command ‘list’ is used to list summary information for HSM Identity 



ProtectToolkit C Administration Guide Command Line Utilities Reference 

90 

Command Description 

keys located on the devices specified by the <targets> parameter. 

The –t parameter restricts the types of keys listed. By default all HSM Identity key 

types are listed. 

The –a parameter lists all of the non-sensitive attributes for each key. 

remove The remove key command 'remove' is used to remove HSM Identity keys from the 

devices specified by the <targets> parameter. 

The <peers> parameter specifies the peer device keys to remove. If the serial number 

format is used to identify peers, the peer device need not be available for the 

command to succeed since peer keys are identified by device serial number. 

If the <peers> parameter specifies the value local, the devices own local HSM 

Identity key-pair is removed. This is the only way to have ctident remove a devices 

own HSM Identity key-pair. 

To complete this command, ctident requires the SO PIN of the administrative token. 

The -o parameter can be used to supply a default SO PIN.  Since multiple devices can 

be targeted with this command, differing PINs may be required for each device. 

When a default PIN is not provided or if the current PIN is incorrect, the PIN will be 

prompted for.  The batch mode -b parameter can be used to disable PIN prompting. 

trust The trust key command 'trust' is used to add peer HSM Identity public-keys to the 

devices specified by the <targets> parameter. 

The <peers> parameter specifies one or more peer devices to trust. 

If a device already has a trusted identity key for a peer, the new key will not be 

trusted and a warning will be issued, unless the -f parameter is used to force the trust. 

When forcing trust, the existing peer key is destroyed BEFORE the new key is 

created to avoid any inconsistencies that could occur with multiple keys. 

Before trusting a key a number of checks are performed; the public key is checked to 

ensure it matches the device private key, and both the public and private key objects 

are checked to ensure they have been created with appropriate security attributes. 

To complete this command, ctident requires the SO PIN of the administrative token. 

The -o parameter can be used to supply a default SO PIN. Since multiple devices can 

be targeted with this command, differing PINs may be required for each device. 

When a default PIN is not provided or if the current PIN is incorrect, the PIN will be 

prompted for. The batch mode -b parameter can be used to disable PIN prompting. 

   

Parameters 

Option Description 

<targets> Specifies a comma separated list of device numbers. The modifier, sn:<serial> 

allows device serial numbers to be specified as opposed to device positional numbers.  

The special value all denotes all devices. 

<peers> Specifies a comma separated list of peer device numbers. The modifier, sn:<serial> 

allows device serial numbers to be specified as opposed to device positional numbers. 

The special value all denotes all devices other than the specific target device on 

which the command is currently being performed on.  The special value local affects 

the devices own local HSM Identity key-pair and only has effect with the remove 

command. 

-a --attributes 

Output all non-sensitive attributes of a key. 



ProtectToolkit C Administration Guide Command Line Utilities Reference 

91 

Option Description 

-b --batch 

Batch mode.  Do not prompt for anything, including PINS. If the required 

information was not supplied on the command line ctident will report an error. 

-f --force 

Force the command, even if the key already exists. 

-o <pin> --so-pin=<pin> 

Specifies the security officer (SO) PIN. Use of this operation is a security risk due to 

the tools command line being visible in the systems process list. 

-t <types> --type=<types> 

Specifies a comma separated list of key types. The available key types are: 

 priv — local private keys 

 pub — local public keys 

 peer — peer public keys 

 all — all key types 

 

Exit Status 

The ctident utility will return a zero(0) exit status when successful. A non-zero exit status is returned 

on an error. Warnings are not treated as errors. 

CTLIMITS 

CTLIMITS is a utility for establishing and managing usage limits on cryptographic keys within the 

ProtectToolkit C environment. 

Synopsis 

ctlimits ct [-U<usertype>] -k <keyspec> [-m<message>] 

-S<serial_no> -t<tok_label> -l<target_label> -i<key_id> 

[-d<days>] [-L<limit>] [-s<date>] [-e<date>] [-c<cert_file_name>] 

filename 

ctlimits pt [-U<usertype>] [-O <objtype>] -k <keyspec> [-i<key_id>] filename 

ctlimits up [-U<usertype>] [-O <objtype>] -k <keyspec> [-i<key_id>]  

[-C<count>] [-L<limit>] [-s<date>] [-e<date>] [-c<cert_file_name>] 

ctlimits vk [-U<usertype>] [-O <objtype>] -k <keyspec> [-i<key_id>] 

 

Description 

The ctlimits utility is used to set and/or modify the usage limitation attributes of cryptographic objects 

within the ProtectToolkit C environment. 

The utility will gracefully recognize older firmware and report meaningful error message. 

Options 

Option Description 



ProtectToolkit C Administration Guide Command Line Utilities Reference 

92 

Option Description 

-U <user> --usertype=<user> 

User type creating ticket – may be either ‘SO’ or ‘USER’ (default) 

-k <keyspec> --keyspec=<keyspec> 

Specification of a key. The format used is TokenLabel(pin)/KeyLabel, 

where the pin is optional and TokenLabel may specify slot by number 

For example: 

-k MyToken(1234)/MyKey (Pin 1234) or 

-k MyToken/MyKey (no Pin - utility may prompt for pin) 

-k SLOTID=2/MyKey 

-O <objtype> --objtype=<objtype> 

Object type of the key. May be “secret_key”, “certificate”, “public_key”, or 

“private_key”. The default is “private_key”. 

-m <message> --message=<message> 

Optional message to add to ticket 

-t <tok_label> --token_label=<tok_label> 

Label of token containing the target object (may be numeric to refer to token by 

slot number) 

-S <serial_no> --tok_sno=<serial_no> 

Serial number of Token containing the target object. 

-l <target_label> --target_label=<target_label> 

Label of object that is the target of the operation 

-i <key_id> --target_key_id=<key_id> 

Key ID of object that is the target of the operation. 

key_id should be in HEX format 

-C<count> --usage_count=<count> 

Specify CKA_USAGE_COUNT value, ‘count’ is in decimal format. 

-L<limit> --usage_limit=<limit> 

Specify CKA_USAGE_LIMIT value, ‘limit’ is in decimal format. 

-s<date> --start_date=<date> 

Specify new CKA_START_DATE value for the target object. 

‘time’ format is YYYYMMDD – time is GMT. 

-e<date> --end_date=<date> 

Specify new CKA_END_DATE value for the target object. 

‘time’ format is YYYYMMDD – the time specified is GMT. 

-c<cert_file_name> --cert=cert_file_name 

Name of the file containing a public key certificate to be applied to 

CKA_ADMIN_CERT attribute 

-d<days> --duration=days 

Validity period of ticket in days 



ProtectToolkit C Administration Guide Command Line Utilities Reference 

93 

Commands 

Command Description 

ct Create ticket from offline specification 

This command creates an SET ATTRIBUTES ticket in the file filename.  

This ticket may be presented to a PTK C HSM using the ctlimits pt command. The ticket is 

signed with the authority of the user type specified by -U option (or the CKU_USER if no 

–U option is provided). 

 The key specified by –k parameter is used to identify the signing key used to sign the 

ticket. 

 The –k parameter may optionally provide the utility with a pin value. If none is supplied 

the utility will prompt the operator to enter one. 

 If the –m option is specified then a message, which may be used to identify the ticket, is 

included into the file containing the ticket. 

 To identify the target object completely all the –l  –t, -S and -i options must be specified 

 At least one of the –c, –L, -s and -e options must be provided In order to indicate the 

change required.  

 The valid time for the ticket is one day unless the –d option is used to specify a different 

duration. 

pt Present ticket to HSM 

This command reads a SET ATTRIBUTES ticket from filename and attempts to find the 

key in the token indicated by the –l  –t and optionally the -i options. 

If the key object is not found inside the token then the utility will attempt to login as the 

USER and will search again. In this case the USER pin is required. The –u option can be 

used to supply the USER pin or if this is not provided then the utility will prompt the 

operator to enter the USER pin. 

up Apply limit attributes directly 

This command sets or updates attributes on the target object directly without making an 

intermediate ticket file. The object must be modifiable. 

To identify the target object the –l and –t options must be provided. To further identify the 

target object the -i option may be specified. 

The target object will have its attributes updated according to the –C, –L, -s, -e and c 

options. At least one of these options must be provided. 

After the command sets the new attributes it will lock the object by setting the 

CKA_MODIFIABLE to False (in a C_CopyObject operation). 

If the key object is not found inside the token then the utility will attempt to login as the 

USER and will search again. In this case the USER pin is required. The –k option can be 

used to supply the USER pin or if this is not provided then the utility will prompt the 

operator to enter the USER pin. 

vk View key attributes 

This command displays the current limits attributes of an object. 

To identify the target object the –k option must be provided. To further identify the target 

object the -i option may be specified. 

If the key object is not found inside the token then the utility will attempt to login as the 

USER and will search again. In this case the USER pin is required. The –k option can be 

used to supply the USER pin or if this is not provided then the utility will prompt the 

operator to enter the USER pin. 



ProtectToolkit C Administration Guide Command Line Utilities Reference 

94 

CTKMU 

Key Management Utility for the ProtectToolkit C environment. 

Synopsis 

ctkmu c [-s<slot>] [-z<size>] [-g] [-k<numb>] [-p] [-C <curve_name>] -

a<attribute> -n<name> -t<type> 

ctkmu d [-s<slot>] -n<name> 

ctkmu e -c<slot> 

ctkmu i [-s<slot>] [-2] [-w<name>] (-y [-m] -a<attribute> -n<name> -t<type> |  

-c<slot> | <filename>) 

ctkmu idp [-s<slot>] -n<name> -t<type> [-a<attribute>] <filename> 

ctkmu it [-s <slot>] <filename> 

ctkmu j [-s<slot>] -a<attribute> -n<name> <filename> 

ctkmu l [-s<slot>] [-v] [-n<name>] 

ctkmu m [-s<slot>] -a<attribute> -n<name> 

ctkmu p [-s<slot>] [-O] 

ctkmu rt [-s <slot>] -d <slotlist> 

ctkmu s -c<slot> 

ctkmu t [-s<slot>] [-l<label>] 

ctkmu x [-s<slot>] [-3] [-n<name>] [-w<name>] (-y [-m] | -c<slot> [-M] | 

<filename>) 

ctkmu x [-s<slot>] [-n<name>] [-w<name>] [-c] [filename] [-y] [-m][-M] [-j]          

[--pkLabel] [--keyCertLabel] [--pkalgo] [--certalgo] 

ctkmu xt [-s <slot>] -S <serial> <filename> 

    

Description 

The ctkmu utility is used for ProtectToolkit C token management.  This includes the operations 

required by a token’s SO such as setting user PINs and re-initializing tokens as well as those 

operations required by the normal User such as object management. 

A number of commands can be used with the ctkmu utility to help with key creation, deletion, import, 

export, as well as PIN change, token initialization and replication. 

NOTE: When operating in WLD/HA mode, this utility should only be utilized to view the configuration. Any 

changes to the configuration should be made when operating in NORMAL mode. Refer to the Operation in 

WLD Mode and Operation in HA Mode sections for further details.



ProtectToolkit C Administration Guide Command Line Utilities Reference 

95 

Commands 

Command Description 

c Create Key command 

This command is used to generate new keys on the specified token. The –a parameter is 

used to specify the attributes, the –n parameter specifies the key’s label and the –t 

parameter the new key type.  Appendix B contains further information on key attributes. 

Common uses for this command are generation of a random key, import of a split custodian 

key (using the –k flag), or creation of a split custodian key (using the –g and –k flags). 

When importing a split custodian key, optionally, a supported pin pad device can be used 

(using the –p flag) to ensure that the key components are entered directly to the device.  

d Destroy Key command  

This command is used to delete a key on the specified token.  This command will 

permanently destroy the key with the label specified with the –n parameter. 

e Erase Smart Card command 

This command is used to erase a smart card in the specified slot and will leave the smart 

card in an un-initialized state. 

i Import Key command 

This command is used to import keys previously exported with the export command (see 

below). 

idt Import Domain Parameters command  

This command is used to store Domain Parameters objects onto a Token. 

 The –s option indicates the slot e.g. –s1 for slot 1 – default is slot 0. 

 The –n option indicates the label of the new object. 

 The –t option specifies the key type, it may be ‘ec’ or ‘dsa’ or ‘dh’ but only ‘ec’ is 

supported. 

 The –a option allows attributes to be specified. Only the ‘P’ private and ‘M’ 

Modifiable attributes are allowed. The default attribute if –a option is missing is 

CKA_PRIVATE=false and CKA_MODIFIABLE=false. 

The filename option specifies a test file that contains the information required to construct 

the domain parameters. See appendix G for examples of how to construct a parameter file. 

it Import Token command  

This command is used to import a token image into the specified token.  The -s parameter 

identifies the token that will be replaced with the imported token image, by default slot 0 is 

used. The <filename> parameter specifies the token image file to import. 

To complete this operation, ctkmu will prompt for the user PIN of the destination token. 

When importing into an un-initialized token, ctkmu will prompt for the SO PIN of the 

destination token. If the device is running in FIPS mode, ctkmu will prompt for the device 

administrator PIN of the destination token. 

j Import Private Key  

This command is used to import a Private Key and a Certificate from a PKCS #12 file 

format. 

l List Information  

This command is used to display information on the objects stored on the token in the 

specified slot.  This command will list the actual keys, certificates and other objects, or, if 

the token is a smart card token previously used with the key export function information on 



ProtectToolkit C Administration Guide Command Line Utilities Reference 

96 

Command Description 

that key backup set. 

m The Modify Attributes command ‘m’ is used to toggle the specified attributes. That is, 

change from TRUE to FALSE and vice versa or add the attribute if it does not exist. 

p The Pin command ‘p’ is used to initialize the User PIN or to change an existing PIN 

(either the User or SO PIN) the command will prompt.  'Cannot change the pin for the 

token in slot 1 as it is not initialized. You can use the command "ctkmu t -s 1" to initialize 

this token.' 

If the PIN is initialized the current PIN will be prompted for before the new PIN may be 

specified.  To change the SO PIN, specify the –O option. 

rt The replicate token command 'rt' is used to replicate a source token to one or more 

destination tokens. The -s parameter identifies the source token to be replicated, by default 

slot 0 is used. The -d parameter specifies one or more destination tokens to replicate the 

source token to. 

If an error occurs replicating to a particular token, an error will be reported and that token 

will be skipped. This prevents offline or faulty devices from spoiling the replication 

process for other tokens. 

To complete this operation, ctkmu will prompt for the user PIN of the source token. 

When replicating to an un-initialized token, ctkmu will prompt for the SO PIN of the 

destination token. If the device is running in FIPS mode, ctkmu will prompt for the device 

administrator PIN of the destination token. 

s The Smart Card status command ‘s’ is used to display information on the smart card 

token currently inserted in the specified slot.  Details of the keys exported to the token will 

be displayed. 

t The Initialize/Reset Token command ‘t’ allows for existing tokens to be initialized or re-

initialized.  If the specified token contains an initialized token the current SO PIN will be 

prompted for before a new Token label may be specified and the token re-initialized.  If the 

token is un-initialized this command will only operate if the ‘No clear PINs’ flag is not 

specified for the HSM (otherwise only the Administrator may initialize tokens with the 

ctconf utility).  In this case the new SO PIN and label may be specified.  Once the token 

has been reset or initialized a new user PIN may also be set. 

x The Export Key command ‘x’ allows for keys to be exported to one or more smart cards 

or to a file or to the screen. 

Keys exported to the screen are wrapped with standard algorithm and are suitable for 

transport to foreign systems. Keys wrapped for smart card or file backup use proprietary 

algorithms and can only be restored to compliant PTK based HSMs. 

The main difference between the standard and proprietary methods is that the proprietary 

method wraps all the attributes of the key so that when a key is restored it must contain the 

same attributes as the original. 

Keys wrapped for smart card backup may use one of two basic methods; keys may be 

exported as split custodian in which case they will be encrypted using a randomly 

generated key which is then split and distributed to a number of smart card tokens.  

Alternatively a key wrapping key may be specified which will then be used to encrypt the 

key specified for backup.  This encrypted data can then be written to a smart card token or 

to a file.   

Please note that if the -j parameter is used to export a private key and certificate to a 

PKCS#12 file format the following considerations need to be made.  Exportable private 

key types are: RSA, DSA, and ECDSA. 

 If the private key being exported is marked CKA_EXPORTABLE=TRUE and 

CKA_EXTRACTABLE=FALSE, the toolkit will prompt for Security Officer (SO) to 

login to perform the export operation. 



ProtectToolkit C Administration Guide Command Line Utilities Reference 

97 

Command Description 

 User performing the PKCS#12 private key export will be asked to provide two (2) 

passwords (one for Payload and one for HMAC).  At this stage the user must take into 

account which 3
rd

 party tools will be used to extract the PKCS#12 file.  For example 

Microsoft Windows requires that the Payload and HMAC passwords to be identical.  

OpenSSL, however, will extract Key and Certificate exported by ctkmu using two 

different passwords.  The users need to decide which password policy best suit their 

needs. 

 The RC family of encryption algorithms (and others) are prohibited in FIPS mode. 

ctkmu shall reject the command and display a warning message if they are used under 

this security policy. 

xt The export token command 'xt' is used to export a token for later import to a specific 

device. The -s <slot> parameter identifies the source token to be exported, by default slot 0 

is used. The -S parameter specifies the serial number of the intended device where token 

import will be later performed. The <filename> parameter specifies the output token image 

file. To complete this operation, ctkmu will prompt for the user PIN of the source token. 

 

Parameters  

Option Description 

-a<attributes> --attributes =<attributes> 

Specifies attributes for an object / key. Valid attributes are: 

P    CKA_PRIVATE=1 

M  CKA_MODIFIABLE=1 

T   CKA_SENSITIVE=1 

W  CKA_WRAP=1 

w   CKA_EXPORT=1 

U   CKA_UNWRAP=1 

X   CKA_EXTRACTABLE=1 

x    CKA_EXPORTABLE=1 

R   CKA_DERIVE=1 

E   CKA_ENCRYPT=1 

D   CKA_DECRYPT=1 

S    CKA_SIGN=1 

V   CKA_VERIFY=1 

L   CKA_SIGN_LOCAL_CERT=1 

C   CKA_USAGE_COUNT=1 

I    CKA_IMPORT=1 

-c<slot> --sc-slot-num =<slot> 

Specifies the Smart Card slot to export to or import from. 

-C <curve_name> --curve-name =<label> 

Specifies which curve to use. Valid values are: 

 P-192 (also known as prime 192v1 and secp192r1) 

 P-224 (also known as secp224r1) 

 P-256 (also known as prime 256v1 and secp256r1) 

 P-384 (also known as secp384r1) 

 P-521 (also known as secp521r1) 

 c2nb191v1 



ProtectToolkit C Administration Guide Command Line Utilities Reference 

98 

Option Description 

 c2tnb191v1e 

 or any valid Domain Parameters object label 

If -tec is specified, the –C parameter must be included in the command otherwise 

ctcert will exit with an error message. 

-d <slotlist> --dest =<slotlist> 

Specifies a comma-separated list of tokens identified by slot number. The special 

value all denotes all initialized tokens with a token label identical to the source token 

label and where trust has been established between the devices. 

-g --gen-comp 

Generate key components. 

-h, -? --help 

Display usage information. 

-j --pkcs12 

Export to PKCS#12 format. 

–pkLabel 

Private Key to be exported to PKCS#12 file. 

–keyCertLabel 

Certificate Label to be exported to PKCS#12 file. 

–pkalgo 

Private Key Encryption Algorithms.  This parameter is optional. The default setting is 

DES3. Possible settings are: RC4_128, RC4_40, DES3, DES2, RC2_128, RC2_40. 

Note that if FIPS mode is ON, then none of the algorithms in the RC family are 

allowed. 

–certalgo 

Certificate Encryption Algorithm. This parameter is optional.  In FIPS mode the 

default setting is DES3.  If FIPS mode is OFF, the default setting is RC2_40. Possible 

settings are: RC4_128, RC4_40, DES3, DES2, RC2_128, RC2_40. 

-k<numb> --num-comp =<numb> 

Number of key components required to be entered or number to be generated (when –

g parameter is specified). 

-l<label> --label =<label> 

Specify label. 

-m --multi-part 

Do a multi part key entry for console import/export. 

-M --NofM 

Causes the N of M scheme to be used for a multiple-custodians backup. This means 

that the key is split in such a way that the original key may be recovered with the co-

operation of any of the custodians with a user specified, minimum number of 

custodians being required. 

-n<name> --name =<name> 

Name of the object to operate on. 



ProtectToolkit C Administration Guide Command Line Utilities Reference 

99 

Option Description 

-O --SO-PIN 

Change the Security Officer PIN. Used with the change PIN command. 

-P --pinpad 

Use a supported pin pad device for entering key components. 

-s<slot> --slot-num =<slot> 

Specifies the slot to operate on.  Default is 0 (zero), however must be specified when 

using the l command and –v option for Slot 0. 

-S <serial> --serial =<serial> 

Specifies the device serial number. 

-t<type> --type=<type> 

The type of key to create. Options are: aes | des | des2 | des3 |rc2 |rc4 |cast| idea| seed | 

rsa | dsa | ec. 

-v --verbose 

Displays the attributes that ctkmu may change. 

-w<name> --wrap-key =<name> 

Name of the key used to wrap or unwrap. 

-y --console 

Import/Export using the console. 

-z<size> --size=<size> 

Size of the key to create/import (for aes, rc2, rc4, cast, rsa, dsa and generic secret). 

-2 --Cprov2 

Import keys from a Cprov 2 formatted file. This is used when migrating keys from an 

older Cprov 2 key format to the current format (see Appendix D ). 

-3 --PTKC3 

Generate export to smart card and file using the PTK C version 3 format. Used when 

exporting keys to be sent to older style HSMs. 

 

Exit Status 

The ctkmu utility will return a zero(0) exit status when successful. A non-zero exit status is returned on 

an error. Warnings are not treated as errors. 

CTPERF 

Performance reporting utility. 

Synopsis 

ctperf [-h] [-b<bytes>] [-c] [-e] [-i<count>] [-k] [-m< bits>] [-

n<mechanism>] [-o<mechanism>] [-p] [-q] [-r] [-R] [-s<slot>] 

[-t<seconds>] [-v] [-x] [-z<name>] 



ProtectToolkit C Administration Guide Command Line Utilities Reference 

100 

 

Description 

The ctperf utility reports on the performance of PKCS #11 cryptographic operations.   

NOTE: This performance measurement is application-dependent, therefore the results are indicative 

only. 

Options 

The following options are supported: 

Option Description 

-b<bytes> --block-size=<bytes> 

Specify the block size to use for the symmetric cipher tests. For example, -b8 

specifies 8 bytes, -b8k specifies 8 kilobytes.  Default size is 4 kilobytes. 

-c --strict 

Strict PKCS #11. 

-C<curve_name> --curve-name=<label>  

Specifies which curve to use. Valid  values are: 

 P-192 (also known as prime 192v1 and secp192r1) 

 P-224 (also known as secp224r1) 

 P-256 (also known as prime 256v1 and secp256r1) 

 P-384 (also known as secp384r1) 

 P-521 (also known as secp521r1) 

 c2nb191v1 

 c2tnb191v1e 

 or any valid Domain Parameters object label 

If a curve name is not specified, the default P-192 is used. 

-e --EMC 

Runs tests suitable for EMC testing purposes. 

-h,-? --help 

Display usage information. 

-i<count> --iterations=<count> 

The number of iterations of the performance tests to run.  Default is 1, use -1 to 

specify an infinite count. 

-k --keygen  

Generation random keys (default uses fixed keys). 

-m<bits> --modulus=<bits> 

Modulus bit length. 

-n<mechanism> --exc-mechanism=<mechanism> 

Mechanisms to exclude from the test. This option may be repeated with additional 

mechanisms to specify more than one. See the –o option for a list of mechanisms. 

Default is no mechanisms. 

-o<mechanism> --inc-mechanism=<mechanism> 



ProtectToolkit C Administration Guide Command Line Utilities Reference 

101 

Option Description 

Mechanisms to include in the test. This option may be repeated with additional 

mechanisms to specify more than one. Default is all mechanisms. (For details and a 

listing of ProtectToolkit C supported mechanisms please refer to the ProtectToolkit C 

Programmers Guide.) 

The following mechanism tests are supported: 

-o sha1    SHA-1 mechanism 

-o sha224    SHA-224 mechanism 

-o sha256   SHA-256 mechanism 

-o sha384    SHA-384 mechanism 

-o sha512    SHA-512 mechanism 

-o md    all Message Digest mechanisms 

-o md5    MD-5 mechanism 

-o rmd128    RMD-128 mechanism 

-o rmd160    RMD-160 mechanism 

-o aes     all AES mechanisms 

-o aes_ecb    AES ECB mechanism 

-o aes_cbc    AES CBC mechanism 

-o aes_mac    AES MAC mechanism 

-o des_all    all DES mechanisms 

-o des_ecb64    DES ECB with fixed buffer size of 54 bytes 

-o des    all single DES mechanisms 

-o des_ecb    single DES-ECB mechanism 

-o des_cbc    single DES-CBC mechanism 

-o des_mac   single DES-MAC mechanism 

-o des3    all triple-DES mechanisms 

-o des3_ecb    triple DES-ECB mechanism 

-o des3_ecb64    triple DES-ECB mechanism with fixed length 64 byte buffer 

-o des3_cbc    triple DES-CBC mechanism 

-o des3_mac    triple DES-MAC mechanism 

-o idea    all IDEA mechanisms 

-o idea_ecb    IDEA-ECB mechanism 

-o idea_cbc    IDEA-CBC mechanism 

-o idea_mac   IDEA-MAC mechanism 

-o cast    all CAST mechanisms 

-o cast_ecb    CAST ECB mechanism 

-o cast_cbc    CAST CBC mechanism 

-o cast_mac    CAST MAC mechanism 

-o seed    all SEED mechanisms 

-o seed_ecb    SEED ECB mechanism 

-o seed_cbc    SEED CBC mechanism 

-o seed_mac    SEED MAC mechanism 

-o rc2    all RC2 mechanisms 

-o rc2_ecb    RC2-ECB mechanism 

-o rc2_cbc    RC2-CBC mechanism 

-o rc4    RC4 mechanism 

-o rsa_kg    RSA PKCS key generation mechanism 

-o rsa_kg_x931    RSA C931 key generation mechanism 

-o rsa    most RSA mechanisms 

-o rsa_raw_enc    basic RSA public key transform 



ProtectToolkit C Administration Guide Command Line Utilities Reference 

102 

Option Description 

-o rsa_pkcs_enc    RSA public key enc with PKCS padding 

-o rsa_pkcs_ver    RSA private key verify with PKCS padding 

-o rsa_raw_dec    basic RSA private key transform 

-o rsa_pkcs_dec    RSA private key decrypt with PKCS padding 

-o rsa_9796_sign    RSA sign with ISO9796 padding 

-o rsa_raw_dec_crt    RSA private key primitive with CRT key 

-o rsa_9796_sign_crt    RSA ISO9796 sign, CRT key 

-o rsa_ncrt    all RSA mechanisms using non CRT keys 

-o dsa_kg    all DSA key generation mechanisms 

-o dsa    all DSA mechanisms. That is:  

dsa_sign 

dsa_verify 

-o sym    all symmetric algorithm mechanisms 

-o asym    all asymmetric algorithm mechanisms 

-o ec       all EC DSA operations. That is:  

ecdsa_kg 

ecdsa_sign 

ecdsa_verify 

ecdsa_sha1_sign 

ecdsa_sha1_verify 

-o cert gen    invokes certificate-generation and signing tests 

-o dh_kg    Diffie-Hellmann key generation mechanism 

-o rng     the random number generation mechanism 

-o extra the following:  

des3_ses_kg: DES3 Session Key Generation/Destruction  

des3_tok_kg: DES3 Token Key Generation/Destruction 

des3_kw: DES3 Key Wrap 

cert_gen: Certificate Generation/Destruction 

ses: Session Open/Close 

obj: Object Creation/Search/Destroy 

login: Login / Logout  

xor_dk: XOR Derive Key 

-o mc     reading of the monotonic counter object 

-p --dsa-params 

Parameters generated for DSA. 

-q --quick 

Quick Keygen (key generation tests not performed). 

-r --random 

Execute a random selection of the performance tests. 

  

-R --Random 

Seed the random number generator. This option should be used with the -r option to 

generate a unique sequence of tests, otherwise the same pseudo random sequence will 

be repeated. 

-s<slot> --slot-num=<slot> 

Specify the slot number to perform test on. 



ProtectToolkit C Administration Guide Command Line Utilities Reference 

103 

Option Description 

-t<seconds> --time-period=<seconds>  

Specify the measurement period. Default is 5 seconds. 

-v --verbose   

Verbose (provide more information). 

-x --csv 

Create a CSV (comma-separated variable) file. 

-z<name> --cryptoki-module=<name> 

Optionally, specify a different cryptoki module to use.  May include full path. 

 

CTSTAT 

Show status for ProtectToolkit C tokens and objects. 

Synopsis 

ctstat [–a ] [–b] [–h] [–j] [–m] [–n<name>] [–s<slot>] [–t<name>] [–v] 

  

Description 

The ctstat utility is used to check the status of a token, determine what state the token is in and what, if 

any, objects it contains. With no arguments, ctstat will provide a summary report of all tokens found. 

NOTE: When operating in WLD/HA mode, this utility should only be utilized to view the 

configuration. Any changes to the configuration should be made when operating in NORMAL mode. 

Refer to the Operation in WLD Mode and Operation in HA Mode sections for further details. 

Options 

The following options are supported: 

Option Description 

-a --all 

Display the status for everything associated with the ProtectToolkit C token. 

-b --attributes 

Display the attributes associated with a token. 

-h --help 

Display usage information. 

-j --objects 

Display all objects associated with a token. 

-m --mechanism 

Display all mechanisms available on a token. 

-n<name> --object-name=<name> 

Display the attributes of the specified object. 

–s<slot> --slot-num=<slot> 



ProtectToolkit C Administration Guide Command Line Utilities Reference 

104 

Option Description 

Specify the slot number to display statistics about. 

–t<name> token=<name> 

Specify the token name to display statistics about. 

-v --verbose 

Verbose (provide more information). 



ProtectToolkit C Administration Guide GUI Utilities Reference 

105 

C H A P T E R  8   

GUI UTILITIES REFERENCE 

This chapter outlines the graphical user interface utilities supplied with the ProtectToolkit C software. 

Key Management Utility  

The Key Management Utility (KMU) provides a graphical user interface to functions that allow 

management of keys using a PKCS #11- sub-system.  The functionality is identical to the command 

line utility “ctkmu” (Chapter 7). 

NOTE: The KMU application is a Java based application. Thus it is necessary to have a working Java 

runtime installed which supports the Swing user interface. This application has been tested with JDK 

1.2, JDK 1.3 and JDK 1.1 (with Swing installed).  In addition the screen shots throughout this manual 

may vary from platform to platform. 

NOTE: When operating in WLD mode, this utility should only be used to view the configuration. Any 

changes to the configuration should be made when operating in NORMAL mode. Refer to the 

Operation in WLD Mode section for further details. 

Compatibility Issues 

Using KMU with ProtectToolkit J 

ProtectToolkit J is SafeNet’s Java Cryptography Architecture (JCA) and Java Cryptography Extension 

provider (JCE) software. 

KMU may be used to set up tokens and keys for use with ProtectToolkit J V3 or later.  The tokens and 

keys that are managed with KMU are fully compatible and may be utilized by ProtectToolkit J.  The 

KMU may also be used to see and manipulate keys that have been created by ProtectToolkit J.  For 

more information, consult the Key Management section in the ProtectToolkit J Reference Manual. 

Please contact SafeNet for further details on its ProtectToolkit J products. 

Using KMU with ProtectToolkit C V4.0, V3.x, and V2.x 

This version of the KMU is not compatible for use with ProtectToolkit C version 4.0 or less.  

The KMU can read backup files and smart cards created by PTK C v2.x and v3.x but cannot create 

backup cards/files for these older versions. 

The ctkmu command line utility is capable of creating backup cards/files for PTK C v4.0 and V3.x 

HSMs. So, if you are exporting keys from a system running PTK C 4.1 or above for import to an older 

system then use the ctkmu and the -3 option. 

Please contact SafeNet for a KMU that is compatible with older versions of this software.  

Using KMU with the ProtectServer Blue 

This version of the KMU is not compatible for use with a ProtectServer Blue HSM. If you require a 

KMU for use with this type of HSM please contact SafeNet for further details. 



ProtectToolkit C Administration Guide GUI Utilities Reference 

106 

Main KMU Interface 

To start the KMU when using Microsoft Windows, locate the relevant program folder in the Windows 

Start menu and click on the appropriate shortcut.  To start the KMU in a UNIX environment, enter kmu 

at the command prompt.  To exit the KMU, select Tokens | Exit from the menu bar.  Selecting Help 

from the main menu can retrieve information about the current KMU version. 

When the KMU is first started, all toolbar functions are initially disabled.  The user must first select a 

Token from the Select a token drop-down box, which will list all available tokens. Initialized tokens are 

displayed by their assigned label name. Un-initialized tokens are displayed as “<Slot 

n>:<uninitialized token>”.  

NOTE: The KMU is unable to initialize tokens. There are other utilities, such as “gctadmin”, which 

can be used to initialize tokens.    

Once a token has been selected, the user is given the option to login (Figure 11). The PIN is 

authenticated, and a list of keys and other objects within the token are displayed in the Keys on Selected 

Token box.  Appropriate buttons on the toolbar are enabled as shown in Figure 10. 

 

Figure 10 - Key Management Utility Main Interface 



ProtectToolkit C Administration Guide GUI Utilities Reference 

107 

Token and Key Selection 

The selection boxes are as follows. 

Selection Box Description 

 

Token Selection drop-down 

 

Key Selection box 

 

The Key Selection box displays the objects currently stored on the selected token.  This list displays the 

label and the type of each object. The entries in this list may be selected in order to perform the various 

functions. 

NOTE: More than one key may be selected by drag-selecting to choose a range or SHIFT-LBUTTON 

to add/remove items to a selection. Operations that can accept more than one key will process all 

selected keys. 

Toolbar Buttons 

The buttons on the toolbar correspond to the following commands. 

Button Description Button Description 

 Token Info 
 

Delete Key 

 
Create Random Secret Key 

 
Display Key Check Value 

 
Create Key Pair 

 
Import Key 

 
Create Key & Components 

 
Export Key 

 Enter Key from Components   

 
Edit Key Attributes   

 

The toolbar can be enabled or disabled from within the View menu.  A check mark beside the selected 

toolbar item indicates the current view status.  For example, to hide the toolbar menu from view, select 

View | Toolbar, and make sure that there is no check mark beside the toolbar name. 



ProtectToolkit C Administration Guide GUI Utilities Reference 

108 

Logging into a Token  

1. Select an initialized token. 

2. Select a user type and enter the PIN corresponding to the selected token (Figure 11).   

NOTE: Make sure that the CAPS lock is not on if the password contains lower case characters. 

PIN entry is masked so only the '*' character will be displayed as characters are typed.  Some 

operations require the Security Officer (SO) to be logged in while other operations (private object 

operations) require the user to be logged in.  It is also possible to open the token without logging 

in, however only public objects will be visible if this option is used (in addition, depending on the 

security policy for the token, various operations might not be possible – for example, key 

generation). 

 

Figure 11 - Token Password Entry screen. 

Logging Out from a Token 

1. To log out from the current token, select Tokens | Logout From Token from the menu bar. 

Setting the User's PIN 

When the User’s PIN is un-initialized it may be set by the security officer.  

1. Choose Tokens | Set User Pin from the menu bar.  The Set User PIN dialog appears (Figure 12).  

NOTE: The Security Officer must be logged in before being able to set the User PIN.  

2. Enter the User Password into the appropriate fields.  The User Password must be re-entered for 

validation.   



ProtectToolkit C Administration Guide GUI Utilities Reference 

109 

3. Press OK to confirm your entry or Cancel to reject your input. 

 

Figure 12 - Set User Password 

The values for each password must be between 4 and 32 characters long and alphanumeric.  All input 

fields echo characters with an asterisk (*). 

Changing the PIN of the Logged on User 

1. Choose Tokens | Change Pin from the menu bar.  The Change Pin dialog appears (Figure 13). 

2. Enter the Old User PIN and the New User PIN into the appropriate entry fields.  The new User 

PIN must be re-entered for validation.   

3. Press OK to accept or Cancel to reject your input. 

 

Figure 13 - Change PIN Dialog 

The values for each password must be between 4 and 32 characters long and alphanumeric.  All 

input fields echo characters with an asterisk (*). 



ProtectToolkit C Administration Guide GUI Utilities Reference 

110 

Retrieving Information about a Token 

1. Click the “Token Info” button n the toolbar, or choose Tokens | Token Info from the menu bar.  

The Token Info dialog will be shown (Figure 14). 

 

Figure 14 - Token Info dialog 

For a more information on the items shown in this dialog, please refer to the PKCS #11 standard 

document. 



ProtectToolkit C Administration Guide GUI Utilities Reference 

111 

Creating Keys 

The KMU supports four key creation functions.  These are: 

 Creating a Random Secret Key 

 Creating a Random Key Pair (for example, RSA public and private keys) 

 Creating Key Components 

 Entering a Key from Components 

NOTE: To refresh the key information that is displayed on screen at any time, select Options | 

Refresh from the menu bar.  The display is just a representation of what KMU has found on that token.  

If the token is modified by any other process or if for any reason the KMU is out of sync with the 

token.  In such a case choosing this menu option will refresh the display. 

The KMU also supports key export and import for the purposes of key backup and / or key escrow.  

This feature uses the PKCS #11 concept of key wrapping using high security key encryption keys 

(KEK) to wrap other key encrypting keys and / or data keys.  The KEK is a special key that is created 

with the "wrap" attribute allowing it to be used for this purpose. KEKs are usually created as split 

custodian keys because of their high security nature. 

NOTE: Only keys marked for export may be wrapped in this way, so it is possible to create keys that 

can never be extracted from the secure key storage. 

Key Component entry is an important feature of this software since it allows the distribution of key 

material, in parts, across multiple trusted custodians for the highest level of security assurance where 

keys must be managed this way.  To reconstruct any of the key material, all custodians must combine 

their components so that the key parts may be recombined into the original key(s).  Key custodians 

may use smart cards for key component and authentication PIN data storage, or just use a disk file for 

key component storage. 

Available Keys 

The following different key types are available when selecting a key operation.  A list of available key 

types is as follows: 

Single Key Types Key Pair Types 

DES RSA (Public)           

Double DES  RSA (Private) 

Triple DES DSA (Public)           

AES    (16, 24, or 36 bytes) 
DSA (Private) 

IDEA DH (Public) 

CAST128   (1 to  16  bytes) DH (Private) 

RC2   (1 to  128 bytes) EC  (Public) 

RC4             (1 to  256 bytes) EC  (Private) 

SEED  



ProtectToolkit C Administration Guide GUI Utilities Reference 

112 

Key Attribute Types 

You can specify what attributes a key will have when it is created.  The following table describes the 

attributes which you can set when creating a key using the KMU. 

Attribute Description 

Persistent Stores the object on non-volatile memory.  Persistent objects 

can be accessed after session termination. 

Private Defines whether the user PIN protects the object.  A private 

object is only accessible to an application that has supplied the 

user PIN. 

Sensitive If a key is sensitive, the key’s value cannot be revealed in plain 

text.  Once a key becomes Sensitive it cannot be modified to be 

non-sensitive. 

Modifiable Indicates whether or not the object is modifiable, that is, if the 

object’s attributes may be modified after creation. 

Wrap Indicates that the key may be used to wrap (that is, extract) 

other keys. 

Unwrap Indicates that the key may be used to unwrap keys. 

Extractable An extractable key can be wrapped (encrypted with another 

key) and extracted from the HSM. 

Export Indicates the key may be used to export other keys (similar to 

the wrap function). 

Exportable An exportable key may be wrapped (encrypted with another 

key) but only with keys marked with the Export attribute. 

Derive Indicates that the key can be used in key derivation functions. 

Encrypt Indicates that the key may be used for encryption. 

Decrypt Indicates that the key may be used for decryption. 

Sign Indicates that the key may be used for signing. 

Verify Indicates that the key may be used for verifying signatures or 

MAC values. 

 



ProtectToolkit C Administration Guide GUI Utilities Reference 

113 

Creating a Random Secret Key 

1. Select an initialized token from the Token Selection drop-down box and click on the Secret Key 

button in the toolbar. Alternatively, select Options | Create | Secret Key from the menu bar. 

The “Generate Secret Key” dialog is displayed (Figure 15). 

 

Figure 15 - Generate Secret Key Dialog 

2. Choose the type of key you wish to generate from the Mechanism drop-down box.  If you are 

generating an AES, CAST, RC2 or RC4 key, you must specify a Key Size. 

3. Enter a Key label for the key into the Label input field. 

The group of checkboxes shown in this dialog represent the various attributes which can be set 

for the selected key.  There will be a default set of attributes checked for the selected key. 

4. Click OK to generate the secret key, or Cancel to reject your input and return to the previous 

menu. 

The generated key will be displayed in the “Key Selection” box on the main KMU user interface. 



ProtectToolkit C Administration Guide GUI Utilities Reference 

114 

Creating a Random Key Pair 

1. Select an initialized token from the Token Selection drop-down box and click on the Key Pair 

button in the toolbar. Alternatively, select Options | Create | Key Pair from the menu bar.  

The Generate Key Pair dialog is displayed (Figure 16). 

 

Figure 16 - Generate Key Pair dialog – when RSA selected 

 

Figure 17 - Generate Key Pair dialog – when Elliptic Curve selected 



ProtectToolkit C Administration Guide GUI Utilities Reference 

115 

2. Select the type of key pair you wish to generate from the Key Pair Type drop-down box.  

The “Subject” can be left blank, in which case there will be no X500 certificate information 

attached to the key pair. If you specify a “Subject”, it must be set according to X.500 distinguished 

name syntax rules. For example,. C=AU, O=safenet, CN=Alice.  The subject fields can be any of 

the following, and may be input in any order: 

 C= Country code 

 O= Organization 

 CN= Common Name  

 OU= Organizational Unit 

 L= Locality name 

 ST= State name 

This information will be stored with the public and private key objects in the 

CKA_SUBJECT_STR attribute and also DER encoded and stored in the CKA_SUBJECT 

attribute.  This attribute will be propagated into PKCS #10 and X.509 certificates which are 

derived from these keys.  

3. Specify the “Key Size (bits)” or “Curve Name” (only enabled if Key pair type is “Elliptic Curve”).  

Available curve names are: 

 P-192 (also known as prime192v1 and secp192r1) 

 P-224 (also known as secp224r1) 

 P-256 (also known as prime256v1 and secp256r1) 

 P-384 (also known as secp384r1) 

 P-521 (also known as secp521r1) 

 c2tnb191v1 

 c2tnb191v1e 

4. Label both the public key and the private key. 

NOTE: The check boxes are enabled and disabled according to the selected Key Pair Type. 

5. Press OK to generate the keys, or press Cancel to discard your input and return to the previous 

menu. 

Generated keys will be displayed under the Key Selection list on the main KMU user interface. 



ProtectToolkit C Administration Guide GUI Utilities Reference 

116 

Creating Key Components 

This function will create a random key as a number of components.  These components may be 

recorded manually, either for backup purposes or so that they can be entered on another machine by 

using the Enter Key function. 

This is useful for the creation and distribution of Key Encryption Keys (KEKs) with multiple 

custodians.  With this function it is possible to create a key whose value is unknown to any single 

party.  However, by combining the components known by each custodian the key may be regenerated.  

Each component that is generated is random and in itself does not expose any portion of the final key 

value. 

1. Select an initialized token from the Token Selection drop-down. 

2. Choose Options | Create | Key Components from the menu bar, to open the Create Key 

Components dialog box (Figure 18). 

 

Figure 18 -  Create Key Components Dialog 

3. Select a key type from the Mechanism drop-down list.  

4. Enter a label for the key into the Label field. 

5. For key types AES, CAST, RC2 and RC4, specify in the Key Size (bits) field the size of the key 

that you wish to generate. 

6. Decide the attributes for the key and click active checkboxes as required. 

7. Click OK to continue, or Cancel to abort this operation and return to the previous menu. 

8. When prompted by the KMU, enter in the Number of Components field the number of components 

that you wish the key to be split into. There is no limit on the number of components. 



ProtectToolkit C Administration Guide GUI Utilities Reference 

117 

9. Click OK to start displaying the key components, or Cancel to abort this operation and return to 

the previous menu. 

The number of component screens that display will correspond to the number of components that 

were specified in step 8. 

An example Component Generation dialog is shown in the next figure. 

 

Figure 19 - Component Generation Dialog 

10. Record the Component Value and Key Check Value (KCV), both given in hexadecimal, displayed 

in these dialogs.  The KCV for the generated component may be used to verify correct entry of the 

component when performing manual key component entry. 

Entering a Key from Components 

This function enables a key to be entered from one or more components. 

1. Select an initialized token from the Token Selection drop-down box and click Enter Key From 

Components on the toolbar. Alternatively, select Options | Create | Enter Key From 

Components from the menu bar. 

The Enter Key Components dialog will open (Figure 20). 

 

Figure 20 - Enter Key Components Dialog 

2. Select a key type from the Mechanism drop-down list.  

3. Enter a label for the key into the Label field. 

4. For key types AES, CAST, RC2 and RC4, specify in the Key Size (bits) field the size of the key 

that you wish to generate. 



ProtectToolkit C Administration Guide GUI Utilities Reference 

118 

5. Decide the attributes for the key and click active checkboxes as required. 

6. Click OK to continue, or Cancel to abort this operation and return to the previous menu. 

7. When prompted by the KMU, enter in the Number of Components field the number of components 

that you wish the key to be split into. There is no limit on the number of components. 

8. Click OK  to continue and open the Ready to accept component dialog (Figure 21), or Cancel to 

abort this operation 

The number of components screens requiring input, corresponds to the number of components 

specified in the Enter Key dialog. 

 

Figure 21 - Component Entry Dialog 

NOTE: The KMU will check that the KCV entered matches that of the key components being input. If 

a mismatch is detectecd, an error is shown. 

NOTE: The component entry may be masked by selecting Options | Mask Component Entry before 

beginning the operation. 

Key check value (KCV) of symmetric keys can be displayed by selecting a key and clicking View on 

the toolbar.  Alternatively you may also select Options | View from the menu bar. 

Refer to Appendix B for details on how the KCV is calculated. 



ProtectToolkit C Administration Guide GUI Utilities Reference 

119 

Editing Key Attributes 

The attributes you can edit depend on what attributes were set when the key was created.  The Edit 

Attributes dialog box displays only the attributes that can be changed. Unavailable attributes are grayed 

out. 

1. Double-click on the key you want to edit. 

2. In the Edit Attributes dialog box, check the active boxes for the attributes you want to change 

(Figure 22 and Figure 23). 

 

Figure 22 - Edit Attributes Dialog – for RSA keys 

 

Figure 23 - Edit Attributes Dialog – for EC keys 

Available curve names when Elliptic Curve is selected are: 

 P-192 (also known as prime192v1 and secp192r1) 

 P-224 (also known as secp224r1) 

 P-256 (also known as prime256v1 and secp256r1) 

 P-384 (also known as secp384r1) 

 P-521 (also known as secp521r1) 

 c2tnb191v1 

 c2tnb191v1e 



ProtectToolkit C Administration Guide GUI Utilities Reference 

120 

Deleting a Key 

1. Select an initialized token from the Token Selection drop-down box.   

2. Select the key that you want to delete from the Key Selection box, and click Delete Key on the 

toolbar.  Alternatively select Options | Delete from the menu bar. 

Display Key Check Value 

You can check that a key matches an expected key value, without having to reveal anything about the 

actual key value, by checking the Key Check Value (KCV) for the key. 

The KCV is a standard technique for obtaining a fingerprint from a key for identification purposes.  

The mechanism used is compatible with AS 2805 and is simply the first three hex digits obtained by 

encrypting binary zeros with the key.  Please refer to Appendix C for details of the KCV generation. 

To display the KCV for a key (Figure 24): 

1. Select a key and click the View button on the toolbar. Alternatively, select Options | View from 

the menu bar. 

 

Figure 24 - Display KCV Dialog 

Exporting Keys 

This function allows keys to be encrypted and written to smart cards, files or the screen. The keys can 

then be transferred to other machines. See the section Secure Key Backup and Restoration in  

Operational Tasks for background information on backup and recovery methods, key splitting schemes 

and key attributes. 

Preparation 

Before attempting a key backup please ensure that you have: 

 A valid key that can be backed up. 

 A smart card reader connected (if backing up to smart cards). 

 Sufficient initialized and erased smart cards or disk space to back up the required data. 

 If backing up using a wrapping key, created a wrapping key. Refer to Creating Keys for details on 

how to create keys. 



ProtectToolkit C Administration Guide GUI Utilities Reference 

121 

To export a key (or set of keys): 

1. From the Key Management Utility main interface (Figure 10), under Select a token, select the 

token containing the key(s) to be exported and log on to the token. 

The Objects on Selected Token table is populated with values for the selected token. 

2. Select one or more keys to export from the Objects on Selected Token table. 

3. Right click on the selected key(s) or go to the Options menu. Then select Export. Alternatively, 

click on the Export Key button on the toolbar 

The Export Keys dialog box displays (Figure 25). Details of selections appear in the Selected 

Token and Selected Key(s) fields. 

4. From the Wrapping Key drop-down list, select an appropriate wrapping key based on your choice 

of backup and recovery method. See the table below for further assistance. 

To use the: Select: 

Multiple custodians method <Random key> 

Single custodian method* The particular wrapping key required 

This key is then used to encrypt the key (or set 

of keys) to be exported 

* Note that wrapping keys must have been previously created. Refer to the Creating Keys section 

for details on how to create keys. 

5. In the Options area, make further selections as appropriate for the backup and recovery method 

and destination backup media to be used. 

When using the multiple custodians backup and recovery method, only Write to smart card(s) and 

associated options may be selected. 

Continue with the following steps for the destination backup media required. 

 

Figure 25 - Export Keys Dialog Box with Use N of M selected 



ProtectToolkit C Administration Guide GUI Utilities Reference 

122 

To export the selected key(s) to smart cards: 

1. In the Options area, select Write to smart card(s). 

2. Enter an identifying name for the smart card set in the Batch Name field. 

The batch name cannot be the same as the token label if the N of M key splitting scheme is to be 

used (see below). 

3. If the multiple custodians backup and recovery method is to be used (<Random key> selected 

from the wrapping key drop-down list) enter the number of custodians required. 

4. When using the multiple custodians backup and recovery method you may also elect to use the N 

of M key splitting scheme so that only N out of M custodians are needed to recover the key. 

For example, if M = 3 and N = 2, only two out of the three custodians need to present their smart 

cards to recover the key. To use the N of M scheme select the Use N of M checkbox and enter the 

minimum number of custodians required to recover the key (N) in the No. of custodians for 

recovery field. This field only displays after Use N of M has been selected. Note that N may not 

equal M. 

5. Click OK to begin the export operation or Cancel to abort it. 

After clicking OK a dialog box displays and shows the Batch Name, a User Name entry field and a 

Smart card PIN entry field for a custodian (Figure 26). 

 

Figure 26 - Smart Card User PIN entry dialog box 

6. Insert a smart card in the smart card reader. 

7. Any user name may be entered. The PIN entered can be that already established for the inserted 

smart card or a new one may be entered. The PIN must be entered again in the Re Enter PIN field 

as an accuracy check. 

8. Click OK to move on. 

9. If a new PIN was entered, a prompt for the old PIN displays. Enter the old PIN to complete the 

change. 

If an incorrect smart card PIN is entered more times than the number specified for the card during 

its initialization, the smart card will become blocked.  The card may then only be un-locked by 

entering the Security Officer PIN. Refer to the smart card initialization section for further details. 

Data is now written to the smart card. If additional key shares are to be written to smart cards then 

a prompt for the next smart card displays. 

10. Remove the smart card from the smart card reader and repeat steps 11 to 14 until all the key shares 

required have been written to smart cards. 

When the operation is complete, an Export Successful message box displays. 

11. Click OK to return to the main Key Management Utility interface. 



ProtectToolkit C Administration Guide GUI Utilities Reference 

123 

To export the selected key(s) to a file: 

Available for the wrapping key backup and recovery method only. 

1. In the Options area, select Write to selected file. 

2. Enter the path and filename of the file to be created in the File to write field. If a file with the same 

filename already exists at this location then it will be overwritten. Alternatively, browse to a 

location and enter a filename by clicking on the “…” button next to the File to write field. 

3. Click OK to begin the export operation or Cancel to abort it. 

To export the selected key(s) to the console: 

Available for the wrapping-key backup and recovery method only. 

1. In the Options area, select Write encrypted parts to the screen. 

2. Select single or multi-part export. 

3. Click OK to begin the export operation or Cancel to abort it. 

Importing Keys 

Importing allows keys, stored on smart cards, in files or as encrypted parts that were exported to the 

screen, to be restored to a token. See the section Secure Key Backup and Restoration.  

Operational Tasks for all the necessary background information on backup and recovery methods, key 

splitting schemes and key attributes. 

To import a key (or set of keys): 

1. From the Token Selection drop-down box select the token that is to receive the imported keys and 

click the Import Keys button on the toolbar. Alternatively select Options | Import from the menu 

bar. 

The Import Key(s) dialog displays (Figure 27). 

 

Figure 27 - Import Key(s) dialog box 



ProtectToolkit C Administration Guide GUI Utilities Reference 

124 

2. In the Options area, choose either Read from smart card(s), Read from selected file, or Import 

encrypted parts, depending on the media that was used to store the key(s). 

When choosing to read from smart card(s): 

1. Select the backup and recovery method that was used to backup the key(s), either the multiple 

custodians or the single custodian method, by making the appropriate selection from the Unwrap 

Key drop-down list. 

If the backup method was: Select: 

Multiple custodians <Random key> 

Single custodian the particular wrapping key that was used to 

create the backup 

2. In the Options area, select Read from smart card(s). 

3. Insert the smart card in the smart card reader. 

4. Select the smart card from the Selected Smartcard drop-down list. 

5. Click OK to start the import operation, or Cancel to abort. 

6. The following dialog box, displaying the current card number and batch name, prompts for the 

smart card PIN.  

 

Figure 28 - Smart Card Key Import – PIN request dialog box 

7. Enter the PIN for the smart card and click OK. 

If an incorrect smart card PIN is entered a prompt will display to enable re-entry. If an incorrect 

smart card PIN is entered more times than the number specified for the card during its 

initialization, the smart card will become blocked.  The card may then only be un-locked by 

entering the Security Officer PIN.  Refer to the smart card initialization section for further details. 

If a smart card is from a different batch is inserted or if the card has already been read it will be 

rejected. A prompt will display to insert another card. 

Data is now retrieved from the smart card. If additional key shares are required to recover the 

key(s) then a prompt for the next smart card displays. 

8. Remove the smart card from the smart card reader and insert the next one. Repeat the previous 

step until all the key shares required have been retrieved from smart cards. 

When the operation has completed, the message Import Successful message is displayed. The 

newly imported key(s) also display in the Objects on Selected Token table in the main Key 

Management Utility interface. 

9. Click OK to return to the main Key Management Utility interface. 



ProtectToolkit C Administration Guide GUI Utilities Reference 

125 

When choosing to read from a selected file: 

1. From the Unwrap Key drop-down list, select the wrapping key that was used to create the backup. 

If a wrong wrapping key is selected the error message, Key used to import was not the same as the 

key used to export, will display. 

2. Select Read from selected file. 

3. Enter the filename for the encrypted key file into the File to Read field. The “…” button can be 

used to find and select the file. 

4. Click OK to import the selected key, or Cancel to abort this operation. 

If the import key operation is a success, the message Import command succeeded is displayed.  

The newly imported key also displays in the Objects on Selected Token table in the main Key 

Management Utility interface. 

When choosing to import encrypted parts: 

1. From the Unwrap Key drop-down list, select the wrapping key that was used to create the backup. 

If a wrong wrapping key is selected, the error message Key used to import was not the same as the 

key used to export will display. 

2. Select Import encrypted parts. 

3. Select either Multi Part or Single Part as applicable and click OK to continue. 

4. Enter the encrypted key (or key parts) and click OK to import the key. 

If the import key operation is a success, the message Import command succeeded is displayed.  

The newly imported key also displays in the Objects on Selected Token table in the main Key 

Management Utility interface. 

Administration Utility (GCTADMIN) 

The Administration Utility (GCTADMIN) provides a graphical user interface to functions that allow 

management of the HSM hardware using a PKCS #11- sub-system.  The functionality which is 

provided is identical to that of the command line utility “ctconf” (Chapter 7). 

NOTE: The GCTADMIN application is a Java based application.  Thus it is necessary to have a 

working Java runtime installed which supports the Swing user interface.  This application has been 

tested with JDK 1.2, JDK 1.3 and JDK 1.1 (with Swing installed).  In addition the screen shots 

throughout this manual may vary from platform to platform. 

NOTE: When WLD mode is configured, this utility does not operate.  

To start the admin utility when using Microsoft Windows, locate the program folder titled 

“ProtectToolkit c Runtime” in the Windows Start menu and click on the appropriate shortcut.  To start 

the admin utility in a UNIX environment, enter gctadmin at the command prompt.  

To exit the utility select File | Exit from the menu bar.   

Selecting Help from the main menu can retrieve information about the current version of the software. 

Logging In 

After starting GCTADMIN, the utility will check if the HSM hardware has been initialized.  

If the hardware has not been initialized, the operator will be prompted to initialize the admin token. For 

full details regarding initial configuration, please refer to Chapter 4. The purpose of initialization is for 

the Admin SO to create the administrator user.  



ProtectToolkit C Administration Guide GUI Utilities Reference 

126 

If the hardware has been initialized, the operator is prompted for entry of the Administrator PIN.  

PIN entry is masked so only the '*' character will be displayed as characters are typed.  

Logging Out 

To log out from the main interface, select the Logout option from the File menu.  

Main GCTADMIN Interface 

Following a successful login, the main user interface is displayed (\Figure 29). The main interface 

shows the currently selected HSM and a variety of settings pertaining to the hardware.  

In a host system which contains multiple HSMs, other HSMs can be selected by opening the File menu 

and choosing the Select Adapter option. Choosing a different HSM will require a new login. 

 

\Figure 29 - Main GCTADMIN interface 

Toolbar Buttons 

The buttons on the toolbar correspond to the following commands. 

Button Description Button Description 

 Token Configuration  Set Transport Mode 

 Create Slots  Synchronize Clock 

 Set Security Policy  View Event Log 



ProtectToolkit C Administration Guide GUI Utilities Reference 

127 

Slot and Token Management 

Creating Slots 

1. To create slots on the HSM, select Create Slot from the File menu, or click Create slots on the 

toolbar. A dialog will prompt for the number of slots to be created.  

NOTE: It is not possible to add slots using GCTADMIN while other ProtectToolkit C 

applications are running.   

Removing Slots 

Before removing slots from ProtectToolkit C, ensure that the contained token and objects are not in 

use. 

1. To remove a slot, select Delete Slots from the File menu. A list of available slots is displayed. 

Select the slot to delete from the list and click the Delete button.  

NOTE: The slot containing the admin token cannot be deleted. 

Initializing a Token 

The initialization of a token is performed to set the user and token SO PIN.  

1. To initialize a token, select Tokens… from the Edit menu to open the Manage Tokens dialog 

(Figure 30).  

 

Figure 30 - Manage Tokens dialog 

2. Select an un-initialized token from the slot drop-down box. 

3. Click Initialize. The initialize token dialog will prompt for the token label, SO PIN and User PIN. 

A token is considered initialized after entry of the SO PIN. The User PIN does not have to be set 

until an application requires storage on that slot. 

 
NOTE: PINs have to be entered twice to confirm correct entry.  

 

4. Click Done to exit the Manage Tokens dialog. 



ProtectToolkit C Administration Guide GUI Utilities Reference 

128 

Setting the Token User PIN 

1. To set a token User PIN, select Tokens… from the Edit menu.  

2. Select an initialized token from the slot drop-down box, then click User PIN. If the selected token 

does not have a current User PIN, the dialog will prompt for the SO PIN in order to authorize the 

creation of the new User PIN.  

If the selected token already has an assigned User PIN the dialog will prompt for the current and 

new User PIN to be entered.  

NOTE: PINs have to be entered twice to confirm correct entry.  

3. Click Done to exit the Manage Tokens dialog. 

Setting the Token SO PIN 

1. To set a token SO PIN, select Tokens… from the Edit menu.  

2. Select an initialized token from the slot drop-down box, then click SO PIN. The dialog will 

prompt for the current and new SO PIN to be entered.  

NOTE: Enter PINs twice to confirm correct entry.  

3. Click Done to exit the Manage Tokens dialog. 

Resetting a Token 

A token reset can only be done to initialized tokens. Admin tokens cannot be reset and any attempt to 

do so will display a warning. 

NOTE: Resetting a token will erase all objects and user data on that token and set a new user PIN. 

1. Select an un-initialized token from the slot drop-down box, and then click Reset to open the 

initialize-token dialog.  

2. Enter a token label, SO PIN and User PIN. A token is considered initialized after entry of the SO 

PIN. The User PIN does not have to be set until an application requires storage on that slot. 

NOTE: PINs have to be entered twice to confirm correct entry.  

3. Click Done to exit the Manage Tokens dialog. 



ProtectToolkit C Administration Guide GUI Utilities Reference 

129 

HSM Management 

Setting the Security Policy 

It is the Administrator’s task to choose the settings, or Security Policy, which will ultimately determine 

how ProtectToolkit C can be used.  This is the most important aspect of ProtectToolkit C 

administration.  Therefore, the Administrator is strongly advised to read Security Policies and User 

Roles which explains in detail how different settings affect the security and performance of the 

ProtectToolkit C environment. 

1. To set the HSM security policy, select Security Mode from the Edit menu.  

2. Select the settings as required. 

3. Click OK to store the selected security policy. 

Setting the Transport Mode 

The HSM transport mode is used to set the method in which the HSM responds when removed from 

the PCI bus. The mode can be set to the following: 

Disabled  To be applied when HSM is installed and configured.  This mode will tamper the 

HSM if removed from the PCI Bus. 

Single Shot  The HSM will not be tampered after removal from the PCI bus.  HSM will 

automatically change to No Transport Mode the next time the HSM is reset or 

power is removed and restored. 

Continuous  The HSM will not be tampered by being removed from the PCI bus. 

NOTE: The transport mode does not disable the tamper response mechanism entirely.  Any attempt to 

physically attack the HSM will still result in a tamper response. 

Clock Drift Correction 

Due to host system and HSM timing differences, the clock drift correction is used to synchronize the 

HSM and host system clock.  

NOTE:  It is not possible to directly specify a value for the HSM clock. It is only possible to 

synchronize the HSM clock with the host system clock. 

1. To synchronize the HSM clock, select Clock from the Edit menu.  

The current value of the HSM clock is displayed.  

2. Synchronize the host and HSM clock by clicking Synch.  



ProtectToolkit C Administration Guide GUI Utilities Reference 

130 

Viewing and Purging the System Event Log 

ProtectToolkit C maintains a system event log as a means of tracking serious hardware or consistent 

operational faults. For full details on what the event log stores and how to interpret its data, please refer 

to the Using the System Event Log section in Operational Tasks. 

When the event log is full, the HSM will no longer store new event records and will need to be purged.   

NOTE: The event log cannot be purged until it is full. 

1. To view the event log, select Event Log View from the Event Log menu. 

A dialog is shown containing a list of events with columns for “Firmware Type”, “Firmware 

Date”, “Error”, “Date”. 

2. To purge the event log, select Event Log Purge from the Event Log menu. 

NOTE: If the event log is not full, an error is displayed. 

Updating HSM Firmware 

The firmware that operates on the ProtectServer hardware can be upgraded to newer versions through a 

secure upgrade facility. This facility will only allow the HSM to be upgraded to firmware versions that 

have been digitally signed by SafeNet. 

NOTE: Subject to the security policy, the HSM might do a soft-tamper before the upgrade process is 

executed.  This tamper will erase all key and configuration data on the HSM.  Please see Security 

Policies and User Roles for more information on security policies. 

Firmware upgrades are distributed in the form of a digitally signed file. 

1. Before a firmware upgrade, ensure that you have done the following: 

 All important user data and keys have been backed up 

 The current HSM configuration has been noted 

 All applications using the HSM have been closed 

2. To upgrade the firmware, select Upgrade Firmware from the File menu. 

3. Select the firmware upgrade file and click OK to continue with the firmware upgrade. 

NOTE: The upgrade process may take up to two minutes to complete. Following the upgrade, the 

user is shown a dialog stating the success or failure of the upgrade operation. 

Tampering the HSM 

The tampering of the HSM may be necessary at the end of its lifecycle or any other security sensitive 

event that requires all stored data to be immediately destroyed. 

A tamper formats the secure memory of the HSM and thereby erases all configuration and user data. 

To tamper the HSM: 

1. Select Tamper Adapter from the File menu.  

2. In response to the prompt, confirm the desired action. 



ProtectToolkit C Administration Guide GUI Utilities Reference 

131 

THIS PAGE INTENTIONALLY LEFT BLANK 



ProtectToolkit C Administration Guide Event Log Error Types 

132 

A P P E N D I X  A  

EVENT LOG ERROR TYPES 

The following table lists the error entries that may be generated by the ProtectServer HSM firmware 

and written to the HSM’s event log. 

Name Description 

POST_ERR_SRAM_WRITE POST Error: Cannot write to SRAM 

POST_ERR_SRAM_READ POST Error: Cannot read from SRAM 

POST_ERR_SDRAM_DATA_STUCK POST Error: SDRAM, bit stuck 

POST_ERR_SDRAM_DATA_SHORT POST Error: SDRAM data bits short 

Param 1. Bit number  

Param 2. Value 

POST_ERR_SDRAM_ADDR_STUCK POST Error: SDRAM address bit stuck 

POST_ERR_SDRAM_ADDR_SHORT POST Error: SDRAM address bits short 

Param 1. Bit number 

POST_ERR_SDRAM_BAD_BYTESEL POST Error: SDRAM bad bytes select 

POST_ERR_BAD_SECTOR0 POST Error: POST Sector checksum is not correct 

POST_ERR_NOMEM Cannot allocate memory 

POST_ERR_OS_HASH The OS hash value is incorrect 

POST_ERR_KAT Known answer test failed 

Param 1. Algorithm Identifier 

Param 2. Error Code 

POST_ERR_RNG RNG did not pass chi-squared test 

POST_ERR_NO_THREAD Unable to start POST Thread 

POST_ERR_SMFS Secure memory file system error 

Param 1. Error Number 

POST_ERR_RTC Unable to access RTC 

POST_ERR_SER Unable to access UART 

EXCEPT_UNDEF An undefined instruction has been executed 

Param 1. Address 

Param 2. Instruction 

EXCEPT_SWI A software interrupt generated 

Param 1. Address 

Param 2. Instruction 

EXCEPT_PREFETCH A Prefetch abort generated 

Param 1. Address 

EXCEPT_DATA A Data abort generated 

Param 1. Address 

EXCEPT_IRQ An unhandled IRQ received 

Param 1. Identifier 

ERR_HOT_TAMPER Hot tamper detected 

LOG_FIRST_ENTRY Initial event entry 

LOG_INITIALIZING_SRAM Initializing the SRAM after a tamper 

LOG_EVENT_LOG_PURGED Event log has been purged 

ERROR_ASSERT Runtime Assertion 

Param 1. File 

Param 2. Line 

ERROR_INIT_RESOURCE Out of resources in initialization 



ProtectToolkit C Administration Guide Event Log Error Types 

133 

Name Description 

Param 1. File 

Param 2. Line 

ERROR_INIT_PLATFORM Failed to detect hardware platform 

Param 1. File 

Param 2. Line 

HEAP_INVALID_ADDRESS Heap Invalid block address 

Param 1. Heap number  

Param 2. Address 

HEAP_MEM_FREED_TWICE Heap: Memory Freed twice 

Param 1. Address 

PCCISES_TIMEOUT PCCISES: Timeout error on device 

Param 1. Error 

PCCISES_BAD_STAT PCCISES: Bad device status 

Param 1. Status 

PCCISES_BAD_DATA PCCISES: Bad input data 

PCCISES_RNG_STUCK PCCISES: Continuous RNG test error 

Param 1. Value 

PCCISES_LNAU_EXCEPTION PCCISES: Large Number Arith Hardware exception (Unit,0) 

PCCISES_FAILED_RESET PCCISES: Failed to reset 

PCCISES_RESOURCES PCCISES: Insufficient resources to start driver 

CPROV_OS_UPGRADED OS Upgrade performed 

Param 1.  Mod 

Param 2. Version 

CPROV_OS_UPGRADE_FAILED OS Upgrade failed 

PROT_NO_SMPR PROTECTION: HSM SMPR not found 

PROT_CIPHER_ERROR PROTECTION: Cipher operation failed 

KEYGEN_ERR_PAIRWISE Key generation: Pair-wise consistency failure 

FM_OP_DOWNLOAD FM Download Performed 

Param 1.  Mod 

Param 2. Version 

FM_OP_DISABLE FM Disabled 

Param 1.  Mod 

Param 2. Version 

FM_MODULE_FAILED FM failed to load 

Param 1.  Mod 

Param 2. Version 

PTKC_CFG_CHNG PTK C config change 

Param 1.  New Val 

Param 2. Old Val 

 



ProtectToolkit C Administration Guide Event Log Error Types 

134 

THIS PAGE INTENTIONALLY LEFT BLANK 



ProtectToolkit C Administration Guide PKCS #11 Attributes 

135 

A P P E N D I X  B  

PKCS #11 ATTRIBUTES 

Objects as described by PKCS #11 consist of a number of attributes that define both the object and its 

access policy. In general the ProtectToolkit C system will define the object’s attributes. Access policy 

should be provided by the user based on their particular requirements. The following attribute 

descriptions are intended to assist with these decisions. 

CKA_LABEL 

This attribute specifies a textual label for an object.  This label is used to assist in differentiating the 

various objects stored on a token.   

NOTE:  Although ProtectToolkit C does not require this attribute to be unique, various tools may do 

so. 

CKA_CLASS 

This attribute is assigned by the system when an object is created.  There are a number of classes in 

common use: 

 CKO_PUBLIC_KEY 

 CKO_PRIVATE_KEY 

 CKO_SECRET_KEY 

 CKO_CERTIFICATE 

 CKO_CERTIFICATE_REQUEST 

 CKO_DATA 

CKA_KEY_TYPE 

This attribute specifies the key type associated with the object.  There are many key types supported by 

ProtectToolkit C.  For example:  

 CKK_AES, CKK_DES, CKK_DES2, CKK_DES3, CKK_RSA, CKK_DSA 

 CKA_ENCRYPT 

 CKA_DECRYPT 

 CKA_SIGN 

 CKA_VERIFY 

 CKA_WRAP 

 CKA_UNWRAP 

The previous attributes describe the cryptographic operations the key may be used for.  Careful 

consideration should be given when assigning these attributes to avoid key misuse. 



ProtectToolkit C Administration Guide PKCS #11 Attributes 

136 

CKA_IMPORT 

This attribute is similar to the standard CKA_UNWRAP attribute. It is used to determine if a given key 

can be used to unwrap encrypted key material.  The important difference between these attributes and 

their standard counterparts is that if CKA_IMPORT is set to True and CKA_UNWRAP attribute is set 

to False, then the only unwrap mechanism that can be used is CKM_WRAPKEY_DES3_CBC.  With 

this combination, the error code CKR_MECHANISM_INVALID will be returned for all other 

mechanisms.  

CKA_EXPORT 

This attribute is similar to the CKA_WRAP attribute in that it specifies that the key may be used to 

encrypt a second key so that it may be extracted from the HSM in an encrypted form.  Unlike the 

CKA_WRAP attribute however only the security officer may specify this attribute. 

CKA_SENSITIVE 

This attribute specifies that the key object cannot be extracted from the token in the clear.  Generally 

this attribute should be specified to ensure the key material is not exposed.  When the No Clear PINs 

flag is set only sensitive keys may be created on the HSM. 

CKA_EXTRACTABLE / CKA_EXPORTABLE 

These attributes are used to specify that the key may be extracted from the token in an encrypted (for 

example, wrapped) form.  These attributes determine how the key may be backed up. Please consult the 

key backup section in Chapter 6 for more information. 

 



ProtectToolkit C Administration Guide KMU Key Check Value (KCV) Calculation 

137 

A P P E N D I X  C  

KMU KEY CHECK VALUE (KCV) CALCULATION 

The key management utility calculates and displays keys according to AS 2805.6.3. 

Single-length Key KCV 

The single-length key check value is a one-way cryptographic function of a key which is used to verify 

that the key has been correctly entered. 

The KCV is calculated by taking an input of constant D (64 Zero bits) and encrypting it with key K (64 

bit).  The 64 bit output is truncated to the most significant 24 bits which is reported as the keys KCV 

(Figure 31). 

 

Figure 31 - Single-length Key Check Value KCV(K). 

Double-length Key KCV 

The single-length key check value is a one-way cryptographic function of a key which is used to verify 

that the key has been correctly entered. 

The KCV is calculated by taking an input of constant D (64 Zero bits) and key *K (128 bit string made 

up of two 64 bit values KL and KR ). Data value D is encrypted with KL as the key.  The result is 

decrypted with KR as the key.  The result is then encrypted with KL as the key. The 64 bit output is 

truncated to the most significant 24 bits which is reported as the double length keys *KCV (Figure 32). 

 

KCV(K) 



ProtectToolkit C Administration Guide KMU Key Check Value (KCV) Calculation 

138 

 

Figure 32 - Double length Key Check Value *KCV(*K) 

 

 

*KCV(*K) 



ProtectToolkit C Administration Guide Key Migration from ProtectToolkit C V4.1 

139 

A P P E N D I X  D  

KEY MIGRATION FROM PROTECTTOOLKIT C V4.1 

Overview 

ProtectToolkit C version 4.1 has introduced new key wrapping mechanisms to support algorithms that 

meet the minimum key requirements for NIST 2010. 

The old algorithms are still supported by may be disabled of the HSM is operating in FIPS mode. 

The smart card and file backups data contains version information that allows the ctkmu or KMU to 

determine what mechanism should be applied to import that keys. 

The ctkmu and KMU will by default produce backup images using the new mechanisms. The ctkmu 

utility has a -3 option that will cause it to create backup images using the older mechanism so that they 

can be imported into an older HSM. 



ProtectToolkit C Administration Guide Key Migration from ProtectToolkit C V4.1 

140 

THIS PAGE INTENTIONALLY LEFT BLANK

 



ProtectToolkit C Administration Guide External Key Storage Application Note 

141 

A P P E N D I X  E  

EXTERNAL KEY STORAGE APPLICATION NOTE 

The secure memory available on ProtectServer HSMs is limited to 4MB. 

Applications in which secure memory requirements exceed those stated above can utilize the External 

Token Support Library (ExtToken) to overcome this limitation. ExtToken facilitates secure, external-

to-the-HSM storage for token objects. ExtToken manages external token support transparently to host 

applications. Host applications can utilize standard PKCS#11 function calls to access and manipulate 

token objects as though the token objects were stored on the HSM.  

The ExtToken library is available with the ProtectToolkit C product (PTK-C) and is a part of the 

standard installation of the PTKcprt package incorporated in the PTK-C product release. The ExtToken 

library is supported on Windows platforms only. 

 

ExtToken supports the secure external storage of token objects for the purpose of RSA signing, 

checking certificates, DES key exchange and DES encryption of transaction messages, to name a few. 

To reduce the processing overhead introduced in the secure and external storage of token objects, the 

HSM utilizes internal cache memory to store the most recently utilized token objects. The number of 

token objects stored in cache is configurable by the user.  

The PSI-E2 and PSE2 HSMs support the use of secure external token object storage and the storage of 

token objects in user slots simultaneously. 



ProtectToolkit C Administration Guide External Key Storage Application Note 

142 

Implementation 

The following figure illustrates how external key storage is achieved on the host system and HSM.  

 

ADAPTER/

HSM 

Cache

HOST 

SYSTEM

PKCS#11 APPLICATION

ExtToken Library

 P
K

C
S

#
1

1
 

F
u

n
c
ti
o

n
s

P
K

C
S

#
1

1
 

F
u

n
c
ti
o

n
s

PCI Driver / 

NetServer Driver

CUSTOM API

Cryptoki Library

 

External, Secure 

Object Store 

(slot 0)

Load External, 

SecureToken Objects

 

public private

User Token

(slot 0)

Key used for wrapping 

public external objects

Key used for wrapping 

private external objects
Cache storage for 

external objects

 
 

PKCS#11 applications interface to the ExtToken library via standard PKCS#11 function calls. The 

ExtToken library makes use of another PKCS#11 provider, the Cryptoki library. The Cryptoki library 

is responsible for enforcing security policies and storing all data not related to the token objects of an 

external token. All cryptographic processing is performed on the standard Cryptoki library. The 

Cryptoki Library interfaces to local HSMs via the PCI driver and remote HSMs via the Netserver 

Driver. 

 



ProtectToolkit C Administration Guide External Key Storage Application Note 

143 

ExtToken achieves secure external storage by using two master keys. These master keys are used to 

transparently wrap and unwrap the external objects. One of these keys is for protecting public objects, 

and the other is for protecting private objects. These master keys are DES2 keys and will be stored in 

slot 0. The token in slot 0 is automatically treated as an external token. The relevant objects (the 

external token data object and the two master keys) are automatically generated, if they are missing. 

 

As token objects are created via the ExtToken library, they are stored in the External, Secure Object 

Store, residing on the host system. The External Secure Object Store is divided so that objects wrapped 

by public keys are stored separately to objects wrapped by private keys. When these external objects 

are referenced by an application, the ExtToken library automatically loads them into the standard 

Cryptoki library. Any operations on a non-external token are passed on to the standard Cryptoki library 

for processing. All externally stored objects reside in the token in slot 0. The externally stored objects 

share the same logical slot (slot 0) as the master keys although they are physically stored in separate 

locations. 

 

The HSM utilizes internal cache memory to store the most utilized token objects. The number of token 

objects stored in cache is configurable by the user. During operation, the token objects are loaded into 

cache one at a time. If this limit is reached, then the least used object is unloaded from cache.  

Key back up can be achieved simply by storing the master keys on a smart card and compressing the 

files utilized by the Secure Object Store using SafeNet’s ProtectPack. 

Technical Details 

Installation 

After installing PTK-C, installation instructions for ExtToken are provided the 

<InstallDir>\extToken\readme.txt file. 

Performance 

Performance overhead is introduced when storing objects externally. The overhead is introduced by the 

need to unwrap objects. The CTPERF utility (provided with the PTK-C installation) can be used to 

determine performance on individual systems. As an indication, 109 keys/ second can be unwrapped 

using a DES3 key. As previously discussed, the HSM utilizes internal cache memory to store the most 

recently utilized token objects in an effort to reduce this processing overhead. The environment 

variable ET_PTKC_MAXLOADED allows the user to configure the maximum number of token 

objects stored in cache. However, there is also a processing overhead involved in managing the keys 

stored in cache. This overhead increases linearly as the number of items stored in cache increases. 

Systems must be individually tuned for maximum performance depending upon patterns of key usage 

by the host application and by taking into consideration the tradeoff between the processing overhead 

involved in unwrapping keys and the processing overhead involved in managing the cache.  

External Secure Object Store 

There are two files per external token: 

 

1. The Object Data Store (ODS) contains the token objects of the external token, wrapped under its 

corresponding master key (public objects using the public master key; private objects with private 

master key) using the SafeNet vendor defined mechanism CKM_WRAPKEY_DES3_CBC. This 

mechanism wraps both the object value and attributes in the created cryptogram. Please refer to 

the ProtectToolkit C Programmers Manual for mechanism details. 

 

2. The Object Reference Table (ORT) contains an index of the token objects stored in the ODS and 

the KCVs of the master keys of the external token. 

 



ProtectToolkit C Administration Guide External Key Storage Application Note 

144 

Known Limitations 

1. The ExtToken library does not protect against multiple processes updating the external token files 

concurrently. When an application starts, the ORT is cached. If a second application modifies the 

ORT by manipulating token objects on the external token, the cache of the first application will be 

inconsistent. The results are undefined.  

2. For performance reasons, the attributes in the template passed to C_FindObjectsInit() function 

should be limited to:  

 CKA_TOKEN (If present, must be true. If missing, assumed to be true, i.e., can only find 

token objects.) 

 CKA_LABEL 

 CKA_CLASS 

 CKA_KEY_TYPE 

 CKA_PRIVATE 

Session objects can be used in an external token, so long as they are generated or created. Other 

attributes in the template are supported, but they may have a negative effect on the application 

performance. This negative effect can be countered by using as many attributes from the above list 

as possible, and limiting such operations to application initialization. 

3. Only objects with the CKA_EXTRACTABLE attribute set to TRUE can be imported to an 

external token. 

4. It is not possible to set the SafeNet vendor defined CKA_EXPORT attribute to TRUE on an 

external token object. 

5. It is not possible to set the CKA_TRUSTED attribute to TRUE on an external token object.  

6. The ORT and ODS files are susceptible to growth. The space associated with the cryptogram of 

deleted objects in the ODS is not reused. One way to reclaim this space is to use the CTKMU 

utility provided with the PTK-C product to backup all the objects to a file, rename/delete the 

existing ORT and ODS files, then restore from the backup. 

7. If an application uses one session to access all objects on an external token, the HSM may run out 

of resources. As this is related to the size and number of objects, it is not possible to state the upper 

limit supported by SafeNet HSMs. One example of such an application is ctkmu. This means that 

it is possible to have so many objects on an external token that it is not possible to back them up. 

This can be rectified by adjusting the value of ET_PTKC_EXTTOKEN_MAXLOADED to a 

value which suits your application/environment. 

8. The SafeNet implementation of JCA/JCE (ProtectToolkit J) uses one session per KeyStore. An 

application which uses the same KeyStore to access a large number of keys runs the risk of 

consuming all HSM resources (see point 7). A work-around is to use a new KeyStore object when 

locating keys. This does not introduce a significant performance overhead. 

9. Smartcards and the Admin Token cannot be used as external tokens. 



ProtectToolkit C Administration Guide Sample EC Domain Parameter Files 

145 

A P P E N D I X  F  

SAMPLE EC DOMAIN PARAMETER FILES 

C2tnB191v1 

# 

#This file describes the domain parameters of an EC curve 

# 

#File contains lines of text. All lines not of the form key=value are 

ignored. 

#All values must be Hexidecimal numbers except m, k, k1, k2 and k3 

which are decimal. 

#Lines starting with ';' or '#' are comments. 

# 

#Keys recognised for fieldID values are - 

#prime           - only if the Curve is based on a prime field 

#m               - only if the curve is based on a 2^M field 

#k               - only if the curve is 2^M field and is Trinomial 

basis 

#k1, k2, k3      - these three only if 2^M field and Pentanomial 

basis 

# 

#You should have these combinations of fieldID values - 

#prime      - if Curve is based on a prime field 

#m          - if curve is based on 2^M and Basis is Gaussian normal 

basis 

#m,k        - if curve is based on 2^M and Basis is Polynomial basis 

#m,k1,k2,k3 - if curve is based on 2^M and Basis is Pentanomial basis 

# 

#These are the values common to prime fields and polynomial fields. 

#curveA          - field element A 

#curveB          - field element B 

#curveSeed       - this one is optional 

#baseX           - field element Xg of the point G 

#baseY           - field element Yg of the point G 

#bpOrder         - order n of the point G 

#cofactor        - (optional) cofactor h 

# 

# 

# Curve name C2tnB191v1 

 

m          = 191 

k          = 9 

curveA     = 2866537B676752636A68F56554E12640276B649EF7526267 

curveB     = 2E45EF571F00786F67B0081B9495A3D95462F5DE0AA185EC 

baseX      = 36B3DAF8A23206F9C4F299D7B21A9C369137F2C84AE1AA0D 

baseY      = 765BE73433B3F95E332932E70EA245CA2418EA0EF98018FB 

bpOrder    = 40000000000000000000000004A20E90C39067C893BBB9A5 

 



ProtectToolkit C Administration Guide Sample EC Domain Parameter Files 

146 

brainpoolP160r1 

# 

#This file describes the domain parameters of an EC curve 

# 

#File contains lines of text. All lines not of the form key=value are 

ignored. 

#All values must be Hexidecimal numbers except m, k, k1, k2 and k3 

which are decimal. 

#Lines starting with ';' or '#' are comments. 

# 

#Keys recognised for fieldID values are - 

#prime           - only if the Curve is based on a prime field 

#m               - only if the curve is based on a 2^M field 

#k               - only if the curve is 2^M field and is Trinomial 

basis 

#k1, k2, k3      - these three only if 2^M field and Pentanomial 

basis 

# 

#You should have these combinations of fieldID values - 

#prime      - if Curve is based on a prime field 

#m          - if curve is based on 2^M and Basis is Gaussian normal 

basis 

#m,k        - if curve is based on 2^M and Basis is Polynomial basis 

#m,k1,k2,k3 - if curve is based on 2^M and Basis is Pentanomial basis 

# 

#These are the values common to prime fields and polynomial fields. 

#curveA          - field element A 

#curveB          - field element B 

#curveSeed       - this one is optional 

#baseX           - field element Xg of the point G 

#baseY           - field element Yg of the point G 

#bpOrder         - order n of the point G 

#cofactor        - (optional) cofactor h 

# 

# 

# Curve name brainpoolP160r1 

 

prime      = E95E4A5F737059DC60DFC7AD95B3D8139515620F 

curveA     = 340E7BE2A280EB74E2BE61BADA745D97E8F7C300 

curveB     = 1E589A8595423412134FAA2DBDEC95C8D8675E58 

baseX      = BED5AF16EA3F6A4F62938C4631EB5AF7BDBCDBC3 

baseY      = 1667CB477A1A8EC338F94741669C976316DA6321 

bpOrder    = E95E4A5F737059DC60DF5991D45029409E60FC09 

 



ProtectToolkit C Administration Guide Sample EC Domain Parameter Files 

147 

Hexadecimal to Decimal Conversion Table 

Hex Dec Hex Dec Hex Dec Hex Dec Hex Dec Hex Dec Hex Dec Hex Dec 

00 000 20 032 40 064 60 096 80 128 A0 160 C0 192 E0 224 

01 001 21 033 41 065 61 097 81 129 A1 161 C1 193 E1 225 

02 002 22 034 42 066 62 098 82 130 A2 162 C2 194 E2 226 

03 003 23 035 43 067 63 099 83 131 A3 163 C3 195 E3 227 

04 004 24 036 44 068 64 100 84 132 A4 164 C4 196 E4 228 

05 005 25 037 45 069 65 101 85 133 A5 165 C5 197 E5 229 

06 006 26 038 46 070 66 102 86 134 A6 166 C6 198 E6 230 

07 007 27 039 47 071 67 103 87 135 A7 167 C7 199 E7 231 

08 008 28 040 48 072 68 104 88 136 A8 168 C8 200 E8 232 

09 009 29 041 49 073 69 105 89 137 A9 169 C9 201 E9 233 

0A 010 2A 42 4A 074 6A 106 8A 138 AA 170 CA 202 EA 234 

0B 011 2B 043 4B 075 6B 107 8B 139 AB 171 CB 203 EB 235 

0C 012 2C 044 4C 076 6C 108 8C 140 AC 172 CC 204 EC 236 

0D 013 2D 045 4D 077 6D 109 8D 141 AD 173 CD 205 ED 237 

0E 014 2E 046 4E 078 6E 110 8E 142 AE 174 CE 206 EE 238 

0F 015 2F 047 4F 079 6F 111 8F 143 AF 175 CF 207 EF 239 

10 016 30 048 50 080 70 112 90 144 B0 176 D0 208 F0 240 

11 017 31 049 51 081 71 113 91 145 B1 177 D1 209 F1 241 

12 018 32 050 52 082 72 114 92 146 B2 178 D2 210 F2 242 

13 019 33 051 53 083 73 115 93 147 B3 179 D3 211 F3 243 

14 020 34 052 54 084 74 116 94 148 B4 180 D4 212 F4 244 

15 021 35 053 55 085 75 117 95 149 B5 181 D5 213 F5 245 

16 022 36 054 56 086 76 118 96 150 B6 182 D6 214 F6 246 

17 023 37 055 57 087 77 119 97 151 B7 183 D7 215 F7 247 

18 024 38 056 58 088 78 120 98 152 B8 184 D8 216 F8 248 

19 025 39 057 59 089 79 121 99 153 B9 185 D9 217 F9 249 

1A 026 3A 058 5A 090 7A 122 9A 154 BA 186 DA 218 FA 250 

1B 027 3B 059 5B 091 7B 123 9B 155 BB 187 DB 219 FB 251 

1C 028 3C 060 5C 092 7C 124 9C 156 BC 188 DC 220 FC 252 

1D 029 3D 061 5D 093 7D 125 9D 157 BD 189 DD 221 FD 253 

1E 030 3E 062 5E 094 7E 126 9E 158 BE 190 DE 222 FE 254 

1F 031 3F 063 5F 095 7F 127 9F 159 BF 191 DF 223 FF 255 

 



ProtectToolkit C Administration Guide Sample EC Domain Parameter Files 

148 

THIS PAGE INTENTIONALLY LEFT BLANK 



ProtectToolkit C Administration Guide Glossary 

149 

GLOSSARY 

AES Advanced Encryption Standard. 

API Application Programming Interface. 

ASO Administration Security Officer. 

Bus One of the sets of conductors (wires, PCB tracks or connections) in an IC. 

CA Certification Authority. 

CAST Encryption algorithm developed by Carlisle Adams and Stafford Tavares. 

CMOS Complementary Metal-Oxide Semiconductor. A common data storage component. 

Cprov ProtectToolkit C - SafeNet’s PKCS #11 Cryptoki Provider. 

DES Cryptographic algorithm named as the Data Encryption Standard. 

DSA Digital Signature Algorithm. 

FIPS 

HA 

Federal Information Protection Standards. 

High Availability 

HSM Hardware Security Module 

IDEA International Data Encryption Algorithm. 

IP Internet Protocol. 

KWRAP Key Wrapping Key. 

PEM Privacy Enhanced Mail. 

PCI Peripheral Component Interconnect. 

PIN Personal Identification Number. 

PKCS Public Key Cryptographic Standard. A set of standards developed by RSA Laboratories for Public 

Key Cryptographic processing. 

PKCS #11 Cryptographic Token Interface Standard developed by RSA Laboratories. 

PKI Public Key Infrastructure. 

RC2/RC4 Ciphers designed by RSA Data Security, Inc. 

RNG Random Number Generator 

RSA Cryptographic algorithm by Ron Rivest, Adi Shamir and Leonard Adelman.  

RTC Real Time Clock. 

SO Security Officer. 

TC Trusted Channel. 

TCP/IP Transmission Control Protocol / Internet Protocol. 

URI Universal Resource Identifier 

VA Validation Authority. 

X.509 Digital Certificate Standard. 



ProtectToolkit C Administration Guide Glossary 

150 

END OF DOCUMENT 


